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Abstract 

 

Background 

Targeting the green fluorescent protein (GFP) via the E. coli lac repressor (LacI) 

to a specific DNA sequence, the lac operator (lacO), allows visualization of 

chromosomes in yeast and mammalian cells.  In principle this method of visualization 

could be used for genetic mosaic analysis, which requires cell-autonomous markers that 

can be scored easily and at single cell resolution.  The C. elegans lin-3 gene encodes an 

epidermal growth factor family (EGF) growth factor.  lin-3 is expressed in the gonadal 

anchor cell and acts through LET-23 (transmembrane protein tyrosine kinase and 

ortholog of EGF receptor) to signal the vulval precursor cells to generate vulval tissue.  

lin-3 is expressed in the vulval cells later, and recent evidence raises the possibility that 

lin-3 acts in the vulval cells as a relay signal during vulval induction. It is thus of interest 

to test the site of action of lin-3 by mosaic analysis.   

 

Results  

We visualized transgenes in living C. elegans by targeting the green fluorescent 

protein (GFP) via the E. coli lac repressor (LacI) to a specific 256 sequence repeat of the 

lac operator (lacO) incorporated into transgenes. We engineered animals to express a 

nuclear-localized GFP-LacI fusion protein. C. elegans cells having a lacO transgene 

result in nuclear-localized bright spots (i.e., GFP-LacI bound to lacO).  Cells with diffuse 

nuclear fluorescence correspond to unbound nuclear localized GFP-LacI. We detected 

chromosomes in living animals by chromosomally integrating the array of the lacO 

repeat sequence and visualizing the integrated transgene with GFP-LacI.   

This detection system can be applied to determine polyploidy as well as 

investigating chromosome segregation. To assess the GFP-LacI•lacO system as a marker 

for mosaic analysis, we conducted genetic mosaic analysis of the epidermal growth factor 

lin-3, expressed in the anchor cell. We establish that lin-3 acts in the anchor cell to induce 

vulva development, demonstrating this method’s utility in detecting the presence of a 

transgene. 

 



 

Conclusions 

The GFP-LacI•lacO transgene detection system works in C. elegans for visualization of 

chromosomes and extrachromosomal transgenes.  It can be used as a marker for genetic mosaic 

analysis. The lacO repeat sequence as an extrachromosomal array becomes a valuable technique 

allowing rapid, accurate determination of spontaneous loss of the array, thereby allowing high-

resolution mosaic analysis.  The lin-3 gene is required in the anchor cell to induce the epidermal 

vulval precursors cells to undergo vulval development. 

 



Background 

The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has been used 

extensively for observation in vivo of gene expression and cell morphology in C. elegans [1-4].  

GFP has also been targeted to specific subcellular structures by fusing GFP to various proteins.  

A technique utilizing a chimeric protein of GFP (S65T) and the E. coli lac repressor (LacI) along 

with lac operator (lacO) makes the visualization of chromosomes possible [5-8].  This fusion 

protein has the DNA-binding capability of LacI and the fluorescent properties of GFP.  The 

fusion protein is capable of binding to the lacO, thus localizing GFP expression at the DNA 

repeat.   Such localization allows direct visualization of segregating chromosomes during 

mitosis.   

We have applied the GFP-LacI technique to C. elegans.  We show that the GFP-

LacI•lacO repeat technique allows visualization of transgenes present as either 

extrachromosomal arrays or integrated into a chromosome.  The integrated version allows 

visualization of chromosomal segregation and determination of polyploidy.   

Visualization of extrachromosomal arrays provides a method to detect transgenes used 

for mosaic analysis.  Genetic mosaics in C. elegans are typically generated by the spontaneous 

somatic loss of an extrachromosomal transgenic array or a free duplication [9-13].  When the 

free duplication or extrachromosomal array containing a wild-type cell-autonomous marker gene 

(often ncl-1; enlarged nucleoli) and a gene of interest is lost from one of the daughter cells 

during mitosis, it gives rise to a lineage of cells lacking wild-type activity of the marker gene and 

of the gene of interest.  Extra-chromosomal arrays are mitotically unstable, resulting in a 

complex mosaic pattern, establishing a method of scoring individual cells under Nomarski 

differential interference contrast microscopy. 

The inductive signal for hermaphrodite vulval differentiation is the epidermal growth 

factor (EGF) like protein LIN-3 [14, 15].  lin-3 encodes proteins that have an extracellular 

domain with one EGF motif, a transmembrane domain and a cytoplasmic domain.  In the 

presence of the gonadal anchor cell (AC), three of the six vulva precursor cells (VPCs) undergo 

three rounds of mitosis and generate the cells that form the vulva. The VPCs are the posterior 

daughters (P3.p-P8.p) of six of the twelve Pn cells present at hatching [16, 17].  The VPC (P6.p) 

nearest to the AC will adopt the 1° fate since it receives more signal than its neighbors.  P5.p and 

P7.p cells are induced to adopt the 2° fate, either directly by LIN-3 [18] or indirectly via the 1° 



VPC [19].  The VPCs (P3.p, P4.p. and P8.p) further from the AC adopt the 3° fate, which is to 

generate two non-vulval descendants that fuse with the hyp7 epidermal syncytium.  The fates 

adopted by the VPCs are distinguished in part by the number of progeny they generate.  The 1° 

and 2° cell fates generate eight and seven descendants, respectively, which form the mature 

vulva [15].  Decreased lin-3 activity results in decreased vulval development while 

overexpression of lin-3 results in increased vulval development.  Genetic epistasis tests indicated 

that lin-3 acts upstream of let-23, sem-5, let-341, let-60, lin-45, mek-2 and mpk-1 during vulval 

induction [reviewed by [20]. Based upon lacZ and GFP reporter gene constructs, lin-3 is 

expressed in the anchor cell at the time of vulval induction [14, 21-23], and in the 1° vulval 

lineage after vulval induction [24].  Recently, Dutt et al. [25] argue based on molecular genetic 

experiments that lin-3 can act in the VPCs to extend the range of induction.  Based upon its 

structure, expression and genetic properties, the AC has been proposed to secrete LIN-3 protein 

[14, 18].  We have tested by mosaic analysis, using GFP-LacI•lacO, whether lin-3 signal is 

required solely in the anchor cell for vulval induction. 

 

 

Results and Discussion 

 

Visualization of chromosomes 

To test whether the GFP-LacI•lacO system could be used to visualize the DNA of 

extrachromosomal arrays in C. elegans, we engineered sequences that encode a GFP-LacI fusion 

protein under the control of the heat-shock enhancer/promoter in vector pPD49-78 (hsGFP-

LacI).  We then microinjected a DNA mixture containing hsGFP-LacI, the lacO repeat and dpy-

20 rescuing DNA (pMH86) into the gonad of an adult dpy-20(e1282) hermaphrodite.  After a 30-

minute heat-shock at 33°C, transformants were found to express nuclear GFP and have intense 

foci of subnuclear fluorescence, presumably corresponding to the DNA of the extrachromosomal 

arrays.  DAPI co-staining confirmed that the GFP-LacI•lacO system has nuclear expression and 

association with DNA.  We first detected expression in embryos at early gastrulation (~24 cell 

stage).   Larvae and adults express GFP broadly.  

DNA molecules injected into the C. elegans gonad syncytium assemble into arrays; 

extrachromosomal arrays consist of many rearrangements of the DNA injected [26].  The fusion 



protein bound to the lacO repeat resulting in one to two bright spots per nucleus as well as the 

unbound fusion protein resulting in nuclear diffuse fluorescence (“haze”) (Figure 1).  Mitotic 

loss of these mixed extrachromosomal arrays in a single founder cell results in a clone of cells 

lacking the activities of all genes in the array [11, 27]. 

 To test the reliability and consistency of the GFP-LacI•lacO as a detection method for 

transgenes, we examined animals in which every cell has the lacO array and in which most cells 

express GFP-LacI.  Specifically, non-Dpy transformants of dpy-20(e1282); syEx[pMH86 + 

pPD49-78GFP-LacI + lacO] were X-irradiated to integrate the transgenic array into the genome, 

yielding integrated transgene syIs44 in the strain PS2442 (Table 1).  In this strain, we observed 

that most nuclei had one or more spots of fluorescence (see Figure 1B). Detection of 

chromosomes was efficient. For example, we observed two pairs of sister cells in each of the 20 

animals, the embryonic sisters F and U and the postembryonic sisters P8.pa and P8.pp.  We 

found that all 80 cells had one or two fluorescent spots.  Therefore, we are able to detect a 

transgene in every cell.   

We then examined the behavior of an extrachromosomal transgene carrying lacO in a 

strain (PS3427) that expressed GFP-LacI from an integrated trasngene (syIs46).  To ascertain 

whether the loss of the array coincides with the progenitor cell and its two daughters, we looked 

at the nuclei of two sister cells, namely, F and U (Table 2).  Of the 67 animals viewed with the 

integrated GFP-LacI and the extrachromosomal lacO, 65.6% of the progenitor cells had a 

localized bright spot (i.e., array present).  Of the 65.6% progenitor cells having a localized bright 

spot, 15.9% pass the array to only one of the daughter cells.  

 

GFP-LacI • lacO as a single cell marker 

The ncl-1(e1865) mutation results in enlarged nucleoli of a large number of cell types 

(the Ncl phenotype).  Since ncl-1 acts in a cell autonomous manner, it is useful as a cell lineage 

marker [10].  The cosmid clone (C33C3) rescues the ncl-1 phenotype and has been used as a cell 

lineage marker on extrachromosomal arrays [28-30].  To test the utility of the GFP-LacI•lacO 

technique as a single cell marker, we compared it with ncl-1.  A DNA mixture composed of the 

lacO repeat, C33C3, and lin-15B (+) DNA was injected into the gonads of syIs46; ncl-1(e1865); 

dpy-20 (e1282); lin-15(e1763) animals.  The isolated transgenic mosaic animals were then heat 

shocked (See Methods).  We scored the Ncl
 
phenotype in the nucleoli of 22 different cells (m2, 



m3L, m3VL, m4, m3R, m3VR, m3DR, m3DL, hyp7 dorsal head, hyp7 ventral head, P/I, p3.p, 

P4.p, P5.p, P6,p, P7.p, P8.p, B, F, U, hyp7 ventral tail, hyp7 anus) per mosaic animal (n=37; 

Table 3).  The presence of the spot is unequivocal evidence that the transgene is present. The 

existence of Ncl cells with fluorescent spots thus clearly indicates a false negative by Ncl-1.  

Conversely, non-Ncl cells without a fluorescent spot suggests either the perdurance of the NCL-1 

protein (i.e., false positive) or a false negative by GFP-LacI•lacO.  Both markers agree in scoring 

approximately 80%, while false negatives of Ncl-1 (N, +) occur about 16% (Table 3).  The 

occurrence of false positives of Ncl-1 (W, -) is 2%.  However, neither marker is perfect.  The Ncl 

marker is undetectable in intestinal nucleoli and endogenously large nucleoli such as some hyp 

cells and muscle cells.  The GFP-LacI•lacO system has a higher apparent loss rate per cell 

division (15.9%; Table 3; discussed later) as well as bleaching of GFP.  

One explanation for the lack of intense fluorescent spots (false negatives by GFP-

LacI•lacO) is that the expression of GFP-LacI is insufficient.  We thought this possibility likely 

since the expression initially depended on the GFP filter combination used, and the light source 

(200 watt vs. 100 watt HBO burner).  To increase the sensitivity, we engineered a GFP-LacI 

under the control of the ubiquitously expressed dpy-30enhancer/promoter [31].  Another 

possibility is that non-Ncl nuclei without spots reflect perdurance of NCL-1. 

 The combined use of the cell lineage marker ncl-1 and the GFP-LacI•lacO would 

increase the accuracy and ease of mosaic analysis.  In order to use both markers, the double 

mutant ncl-1; dpy-20 was injected with the DNA mixture (pMH86 (dpy-20(+)) + pPD49-

78::GFP-LacI + dpy-30::GFP-LacI).  Once non-Dpy transformants were isolated, the 

extrachromosomal array was integrated into the genome by X-ray irradiation to yield strain 

PS2958 syIs46 [pMH86 + pPD49-78::GFP-LacI + dpy-30::S65T*LacI] II; ncl-1 III; dpy-20 IV.  

This strain became the basis for our genetic mosaic analysis of lin-3, discussed below.   

The comparison between ncl-1 and the GFP-LacI•lacO as single cell markers indicate 

that GFP-LacI•lacO is comparable in its reliability to ncl-1 as a cell lineage marker for the 

presence of a transgene (Table 3).  The main advantage of using the fusion protein GFP-

LacI•lacO rather than Ncl is that scoring the mutant Ncl phenotype is typically more difficult 

than scoring cells with the bound GFP-LacI fusion protein.  Also, GFP-LacI can be used in cells 

such as intestinal cells for which ncl-1 is not applicable.  We find that the GFP-LacI method 

(spot or not spot) is much easier than scoring nucleolus size.  Such ease of scoring may also be 



used for more accurate mosaic analysis.  The comparison between the GFP-LacI •lacO and ncl-1 

as a single cell marker as well as its loss rate per cell division (Tables 2 and 3) confirms that 

using both the Ncl-1 phenotype and the integrated GFP-LacI together will increase the accuracy 

of mosaic analysis.  An alternative mosaic marker, the nuclear-localized SUR-5-GFP, 

demonstrates the ease and speed of scoring cells by fluorescence comparative to the ncl-1 marker 

[30].  This technique allows to rapidly screen with a dissecting microscope for rare mosaic 

animals, unlike the GFP-LacI•lacO methodology that requires a compound microscope.  SUR-5-

GFP is an excellent mosaic marker for determining if the gene of interest is either in the AB or 

P1 lineage but for finer single cell analysis, either ncl-1 or GFP-LacI•lacO is required.  Another 

limitation of SUR-5-GFP is its limited expression pattern. GFP-LacI•lacO is expressed 

throughout the somatic cell lineage. 

The high apparent loss rate of GFP-LacI•lacO, for example 15.9% per cell division in 

one experiment, could result from two general causes.  First, the presence of lacO repeats might 

lead to decreased stability of the arrays.  Second, the presence of the repeats might increase 

silencing of the transgenes in some manner [32]. We also believe that the ability to detect rapidly 

the presence of the transgene in individual cells affords a more accurate picture of the degree of 

mosaicism than gross phenotypic description.   

 

Polyploidy 

Our method for ploidy detection was tested by injecting a DNA mixture consisting of a 

fusion protein under the control of the heat-shock promoter pPD49-78, the lacO repeat, plus rol-

6(su1006) dominant into a lin-5(e1348) mutant, which fails to undergo mitosis [33].  The Rol 

segregants of strain PS2629 confirmed that GFP-LacI +lacO could detect polyploid cells.  

Multiple dots have been seen when viewing known polyploid cells (i.e., intestines and 

hypodermal cells; Figure 2).  We conclude that the GFP-LacI•lacO method is useful in 

determining which cells are polyploid.  However, the number of spots within the cell cannot 

unambiguously determine the extent of ploidy.  In particular, diploid cells have 1-3 spots while 

polyploid cells have ≥ 4 spots. 

The number of fluorescent spots per nucleus does not correlate precisely with the 

expected copy number, raising the possibility that there is some synapsis of chromosomes at 

some stages of the cell cycle.  Nonetheless, while examination of a single cell is not sufficient, 



examination of several cells would be, and thus this method could be used for screens or as an 

assay for alterations in ploidy.  

 

GFP-LacI•lacO as a mosaic marker  

As a test of this method of mosaic analysis, we chose to determine the site of action of 

lin-3 for its role in vulval induction. lin-3 was proposed to act in the anchor cell based upon its 

expression in the anchor cell, and its expression under control of heat shock enhancer/promoter 

could compensate for lack of an anchor cell[14, 21-23].  We used a strain heterozygous for two 

mutant alleles of lin-3: n378, which is defective only in vulval development and n1059 (a 

genetically-defined null allele) in order to decrease lin-3 activity in vulval induction but still have 

viable animals [14, 34, 35]. A strain of genotype syIs46; lin-3(n378) let-59(s49) unc-22(s7)/lin-

3(n1059) unc-24(e138) was injected with lin-3(+) (20 ng/µl), lacO (50 ng/µl), transformation 

marker pPD118-33 (myo-2::GFP) (16 ng/µl)[36], and carrier DNA BSK+II (120 ng/µl).   

We examined animals with a fluorescent pharynx due to expression of MYO-2::GFP.   

These animals have the transgene in either the AB lineage or P1 lineage or both [36].  We picked 

L3-L4 animals expressing myo-2::GFP by viewing them under a dissecting microscope with a 

GFP filter.  These animals were then heat-shocked for 30 minutes in a 33°C water-bath followed 

by a one-hour recovery period in a 20°C incubator. 

We examined a total of 114 animals prescreened under a dissecting stereomicroscope.  

We considered three possibilities: lin-3 acts in the AC, it acts in the VPCs or both since lacZ and 

GFP reporter gene constructs indicate lin-3 expression in the anchor cell at the time of vulval 

induction  [14, 21-23], and that it acts in the 1° vulval lineage after vulval induction [24, 25]. We 

scored the AC and the VPCs of wild type, Vul and Muv lin-3 transgenic animals.  Of the 114 

animals, 91 had wild-type vulva, 15 animals were vulvaless and eight animals were multivulva.  

Eighty-eight animals with the array present in both the AC and VPCs were wild type or Muv.  

All eight animals lacking the array in both the AC and VPCs were Vul, indicating that lin-3 is 

necessary either in the anchor cell, the VPCs or both.  Of nine animals that had the array in the 

AC but not in the VPCs, eight were wild type and one was Muv (Table 4, Figure 3A-D), 

indicating that expression of lin-3 in the anchor cell is sufficient for vulval induction.  All seven 

animals that had the array in the VPCs but not in the AC were Vul (Table 4 and Figure 3E-F), 

indicating that expression of lin-3 in the VPCs is not sufficient to induce the vulva.  We conclude 



that lin-3 acts in the AC during vulval induction.  Seven of sixteen animals (W.26, W.58, W.64, 

W.84, V.2, V.7 and V.10) had late losses during Pn.px divisions resulting in a complex mosaic 

pattern.  We conclude that a subset of cells involved in vulva formation having the lin-3 gene can 

neither induce nor hinder vulval induction.  

 

 

Conclusions 

We demonstrated that GFP-LacI•lacO can be used to visualize transgenes in living C. 

elegans, either as extrachromosomal arrays or as arrays integrated into a chromosome.  We also 

showed GFP-LacI•lacO as a useful marker for ploidy determination in vivo.  In addition, we 

showed that this direct visualization using transgenes facilitate the high-resolution of mosaic 

analysis.   The ease and accuracy of detecting mosaics using GFP-LacI•lacO  were examined by 

comparing its efficiency with ncl-1 as a single cell marker.  We demonstrated the utility of GFP-

LacI •lacO as a mosaic marker by demonstrating that the lin-3 site of action for vulval induction 

is in the anchor cell. Overall, GFP-LacI•lacO is a useful tool for several aspects of C. elegans 

molecular genetics. Indeed, our system have been successfully used in several experiments by 

others to co-localize proteins binding DNA and for determination of ploidy [37-43].   

 



Methods 

 

Nematode methods 

Growth and handling of C. elegans strain N2 were according to Brenner [44].  All 

experiments were performed at about 20°C unless otherwise stated.  The genetic and cellular 

nomenclature of C. elegans was followed according to [45] and [17], respectively.  

 

Strains 

The standard wild-type N2 strains and other mutant strains used (ncl-1(e1865) and lin-

5(e1348) dpy-10(e128) II) was obtained from the Caenorhabditis Genetics Center (USA).    

The transgene syEx [(dpy-20(+) (20 ng/µl) + pPD49-78 GFP-LacI (100 ng/ml) + lacO 

(50ng/µl)] was integrated into a dpy-20(e1282)IV strain via X-ray irradiation [46]to yield 

PS2442 with syIs44 (Table 1).  The transgene syEx[dpy-20(+) (20 ng/µl) +dpy-30::S65T*LacI 

(100 ng/µl) +  pPD49-78 GFP-LacI (100 ng/µl)] was integrated into a ncl-1; dpy-20(e1282)IV 

strain via X-ray irradiation [46] to yield PS2958 with syIs46 (Table 1). 

 

GFP-LacI fusion and 256 lacO repeat 

The GFP-LacI fusion protein and the lacO repeat [6-8] were graciously given to us by 

Andrew Belmont.  We placed GFP-LacI under the transcriptional control of an hsp16 

promoter/enhancer element pPD49-78 [47, 48] The fusion protein was inserted into KpnI/SacI 

site of heat shock vector pPD49-78.  pPD49-78 is expressed very well in the neural and 

hypodermal cells, as well as in the gut, muscles, and pharynx but not in the germline [47, 48].  

The GFP-LacI coding sequences were also placed under the transcriptional control of the dpy-30 

promoter graciously provided by Barbara Meyer.  The dpy-30 promoter/enhancer directs 

expression throughout the animal’s somatic cells. [31]. The GFP was replaced with GFP(S65T) 

from the vector pPD93-65, which contains introns, in order to increase translation of the fusion 

protein [47].  The GFP (now designated S65T
*
) is inserted in the KpnI/EcoRI site of the dpy-

30::GFP-LacI plasmid, now called dpy-30::S65T
*
-LacI.   

 

 

 



Germline-mediated transformation by microinjection 

Microinjection was performed according to Mello et al. ([26]).  Young adult 

hermaphrodites were placed live on pads of 2% agarose under an inverted differential contrast-

interference (Nomarski) microscope (Carl Zeiss, Oberkochen, West Germany) and the DNA was 

injected into the gonad using an Eppendorf micro injector 5242 (Eppendorf Gertebau Netheler, 

Hamburg, West Germany).  The Ncl vs. GFP-LacI experiments was done in a syIs46; lin-

15(e1763) background.  The injection mixture for the Ncl vs. GFP-LacI experiment contained 

the 256 repeat lacO array (50 ng/µl), cosmid C33C3 (rescues the Ncl-1 mutant phenotype [29, 

49]  (50 ng/µl), lin-15B(+) genomic DNA (50ng/µl) and pBluescript II SK+ (Stratagene) as 

carrier DNA (5 ng/µl).  For the polyploidy experiments, the plasmid pRF4, containing the rol-

6(su1006) mutant gene [26], was used as a dominant transformation marker at a concentration of 

40 ng/µl.  The injection mixture for the polyploidy experiments contained pPD49-78::GFP-LacI 

(100 ng/µl), 256 repeat lacO array (50 ng/µl), and pBluescript II SK+ (Stratagene) as carrier 

DNA (5 ng/µl). This injection mixture was injected into the gonads of lin-5(e1348) dpy-10(e128) 

II to yield syEx207 in the strain PS2629. 

The transgenic lines obtained from each experiment were heat-shocked for 30 

minutes at 33°C to elicit GFP-LacI expression. Expression of the GFP-LacI can be seen 

as early as 30 minutes after heat-shock, and as late as 24 hours. 

 

Mosaic analysis of lin-3 gene function in vulval induction 

Mosaic animals were obtained from a somatic loss of the extrachromosomal array 

syEx345[lin-3(+), lacO, myo-2::GFP( pPD118-33)] from the vulvaless strain PS3427 syIs46; 

lin-3(n378) let-59(s49) unc22(s7)/ lin-3(n1059)unc-24(e138) (Table 1). The point of loss was 

determined by the absence of fluorescent spots in cells of interest.  For mosaic analysis, we used 

L3-L4 wild-type, multivulva, and vulvaless animals with their pharynges fluorescing due to 

expression of MYO-2::GFP [36] to ensure the array was present in the zygote.  The nuclei 

observed to identify mosaic animals were: AC, P3.p, P4.p, P5.p, P6.p, P7.p and P8.p, or the 

descendants of these latter six cells. 

 

 

 



Microscopy and Photography 

Animals were anesthetized with 2 mM levamisole on 5% Noble agar pads. Photographs 

were taken on Kodak Ektachrome, ASA 160 or Fuji Provia, ASA 400 on a Zeiss Axioplan with 

Chroma High Q GFP LP filter set (absorption band 450 nm and 505 nm emission) at 100X optics 

or by confocal photomicrography for strain PS2442.  

 

 

Abbreviations: 

Is, Insertion Site (integrated transgene) 

GFP, green fluorescent protein 
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Figure Legends 
 

Figure 1.  Visualization of C. elegans extrachromosomal arrays by GFP 

One to two bright spots are seen per nucleus when the fusion proteins are bound to the lacO 

array. If the fusion proteins remain unbound, then the nucleus has diffuse fluorescence 

(arrowheads).  If fusion proteins bind to the lacO array then the nucleus have localized bright 

spots (arrows).   (A) Embryos:   dpy-20; syEx [pMH86, pPD49-78::GFP-LacI, lacO] embryos 

were mounted on 5% Noble agar and examined under Nomarski optics and epifluorescence at 

100X. (B) A confocal photomicrograph of a syIs44 L4 hermaphrodite pharynx.  

 

Figure 2.   Assay for polyploidy of nuclei 

Comparison of body muscle between syIs44 [dpy-20(+)+pPD49-78::GFPlacI+lacO]; 

dpy-20 and lin-5(e1348), dpy-10(e128) II; syEx207 [pRF4 (rol-6(su1006) ) +pPD49-

78GFP-LacI+lacO].  Animals were mounted on 5% Noble agar containing ~100nM 

levamisole and examined under Nomarski microscopy and fluorescence at 100X.  a) lin-

5(e1348), dpy-10(e128) II; syEx207 L4 hermaphrodite.  b) syIs44; dpy-20  L4 

hermaphrodite. Arrows point to GFP-LacI bound to lacO. 

 

Figure 3.  lin-3 mosaic analyis. (A) lin-3 mosaic animal at L4 stage with normal vulval 

development.  Anchor cell labeled with arrowhead; bar indicates vulva.  (B) Same lin-3 

mosaic animal viewed under epifluoresence.  The anchor cell has an intense spot of 

fluorescence, and thus the transgenic array (lin-3(+) + lacO + pPD118-33).  The vulval 

descendants do not have the intense spot of fluorescence, and thus lack the transgenic 

array. (C) lin-3 mosaic animal at L4 stage with no Pn.px cells adopting vulval fate.  

Anchor cell labeled with arrowhead.  Pn.px cell progeny labeled with arrows.  (D) Same 

lin-3 mosaic animal viewed under epifluoresence.  The anchor cell does not have the 

intense spot of fluorescence, and thus lacks the transgenic array (lin-3(+) + lacO + 

pPD118-33).  The Pn.px cells do have the intense spot of fluorescence, and thus have the 

transgenic array.  (E)  lin-3 mosaic animal at L4 stage with multivulva phenotype.  

Anchor cell labeled with arrowhead; bar indicates vulva. (F)  Same lin-3 mosaic animal 

viewed under epifluoresence. The anchor cell has an intense spot of fluorescence, and 



thus the transgenic array.  The vulval descendants do not have the intense spot of 

fluorescence, and thus lack the transgenic array.   

 

 



 

Table 1.  Transgenes and strains 

 

PS2442:  dpy-20(e1282;) syIs44 [pMH86 (dpy-20(+) ), pPD49-78GFP-lacI, lacO]  

[strain available from the CGC] 

 

PS2381:   ncl-1(e1865) II; syEx154 [pRF4 (rol-6(su1006) ), cosmid C33C3, pPD49-

78GFP-lacI, lacO]  

 

PS2629:    lin-5(e1348), dpy-10(e128) II; syEx207 [pRF4 (rol-6(su1006) ), pPD49-

78GFP-LacI, lacO256] 

 

PS2958:    syIs46 [pMH86 (dpy-20(+)), dpy-30S65T*LacI, pPD49-78GFP-LacI] II; 

ncl-1(e1865) III; dpy-20(e1282) IV; him-5(e1490) V 

[strain available from the CGC] 

 

PS3047:    syIs46; ncl-1(e1865); dpy-20(e1282); lin-15(e1763); syEx272 [lin-15B(+), 

lacO , cosmid C33C3] 

 

PS3427:  syIs46; lin-3(n378) let-59(s49) unc-22(s7)/ lin-3(n1059) unc-24(e138); 

syEx345 [lin-3(+), lacO, pPD118-33] 



 

Table 2.  Apparent loss rate per cell division: FU sister cells.   -/- : cell had lost the 

array; +/- : loss at this cell division; +/+: no loss at this cell division. Loss rate is [+/-

]/[(+/+) +(+/-)].   Strain PS3427 (Table 1), integrated GFP-LacI.   n=67 animals. 

 

GFP   

F U  no.   FU %   Loss Rate 

+ +  37   55.2%              15.9% 

-  -  23   34.3% 

+    -  7   10.4% 

 

 



Table 3.  ncl-1 versus GFP-LacI••••lacO as markers for mosaic analysis. 

  Phenotype of cells  

Cell W, + or N,- W, - N, + ? 

m2 32 (87%) 0 3 (8%) 2 

m3L 31 (84%) 2 (5%) 4 (11%)  

m3VL 31 (84%) 1 (3%) 5 (13%)  

m4 28 (76%) 0 9 (24%)  

m3R 31 (84%) 2 (5%) 4 (11%)  

m3VR 30 (81%) 1 (3%) 6 (16%)  

m3DR 29 (78%) 0 8 (22%)  

m3DL 30 (81%) 0 7 (19%)  

hyp7(dorsal head) 30 (81%) 1(3%) 6 (16%)  

hyp7 (ventral head) 32 (87%) 0 5 (13%)  

P/I 33 (89%) 1 (23%) 3 (8%)  

P3.p 30 (81%) 1 (3%) 3 (8%) 3 

P4.p 29 (78%) 2 (5%) 4 (11%) 2 

P5.p 30 (81%) 2 (5%) 4 (11%) 1 

P6.p 32 (87%) 0 4 (11%) 1 

P7.p 33 (89%) 0 3 (8%) 1 

P8.p 26 (70%) 1 (3%) 9 (24%) 1 

B 22 (59%) 1 (3%) 14 (38%)  

F 31 (84%) 1 (3%) 5 (13%)  

U 29 (78%) 2 (5%) 6 (16%)  

hyp7 (ventral tail) 29 (78%) 0 7 (19%) 1 

hyp7 (anus) 21 (57%) 1 (3%) 8 (22%) 7 

Mean % 80% 2% 16% 2% 

Standard Dev 8% 2% 7% 4% 

     Mosaic animals from strain PS3047 (n=37) were used to determine the occurrence of 

the Ncl phenotype and GFP-LacI •lacO. Scored by cell from anterior to posterior of the 

worm: m2, m3L, m3VL, m4, m3R, m3VR, m3DL, m3DR, hyp7(dorsal, head), 



hyp7(ventral head), P/I, P3.p, P4.p, P5.p, P6.p, P7.p, P8.p, B, F, U, hyp7(tail), 

hyp7(anus). +: GFP-LacI bound to the lacO, fluorescent spot;  -: diffuse fluorescence, W: 

normal nucleolus (non-Ncl) size, N: enlarged nucleolus (Ncl) and ?: undetermined.  



Table 4.  Mosaic analysis of lin-3 with GFP-LacI••••lacO 

Worm P3.p P4.p P5.p P6.p P7.p P8.p Anchor Cell 

W.26 - + + - + + + 

W.36 + + + - + + + 

W.39 - - - - - - + 

W.53 + - + - + - + 

W.58 - + - - - - + 

W.64 - + + - + - + 

W.84  - - + - - - + 

W.91 - - - - - - + 

V.2 - - - - - + - 

V.3 + + + + + + - 

V.7 + + - + - - - 

V.9 + + + + + + - 

V.10 - + + + + + - 

V.12 + + + + + + - 

V.15 + + + + + + - 

M.5 - - - - - - + 

 

Mosaic analysis of lin-3(n378)/(n1059) animals at mid-L4 using GFP-LacI•lacO as the 

marker reveals that the wild-type lin-3 gene is required in the AC for normal vulval 

induction. +: GFP-LacI• lacO, fluorescent spot;  -: diffuse fluorescence.  Letters 

correspond to vulval status: W= normal vulva; M= multivulva; V = vulvaless.  +, one of 

more of the indicated cell’s progeny had fluorescent spots. The animal W.84 was scored 

at early L4.   
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