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Concentration fluctuation in binary polymer blends:
x parameter, spinodal and Ginzburg criterion
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A theory for concentration fluctuations in binary polymer blends is developed using field-theoretic
techniques. The theory provides a simple, unified framework for addressing a number of important
issues. First, consideration of the fluctuation and correlation effects on different length scales leads
to a clarification of three differentx parameters and their interrelationship. By incorporating
interaction~modeled by the barexb! and packing effects up to the polymer size, an effectivexe

emerges as the natural parameter for characterizing the molecular compatibility of the two polymer
species. The measured quantity in small-angle neutron scattering~SANS! experiments is an
apparentxa that includes long wavelength critical and spinodal fluctuations, and is related toxe

through a self-consistent equation.xa exhibits the typical upward parabolic composition
dependence observed in experiments and computer simulations. Second, a unified Ginzburg
criterion involving both the composition and temperature~or temperaturelike variable! is derived
that is applicable to both the critical and the off-critical spinodal regimes. The common
characterization of the Ginzburg criterion in terms of a range of temperature~or temperaturelike
variable! alone is generally inadequate. The molecular weight scaling proposed by de Gennes and
Binder in the respective critical and off-critical spinodal regimes are recovered as special casesin
the limit of large molecular weights. For typical molecular weights used in experiments the
Ginzburg region is larger than commonly believed. Finally, the nature of thethermodynamic
spinodal is examined. It is shown that a true off-critical thermodynamic spinodal does not exist in
spatial dimensions less than 4. In its place, a pseudo-spinodal can be defined where the susceptibility
reaches a finite maximum. The pseudo-spinodal precedes the mean-field spinodal but approaches the
latter in the limit of infinite molecular weights. The pseudo-spinodal correlates strongly with the free
energy barrier for nucleation becoming orderkT. Thus it provides a kinetic limit for the physically
accessible metastable state, beyond which phase separation may exhibit features characteristic of
spinodal decomposition. The calculated location of the pseudo-spinodal for two samples used in a
recent experiment of Balsara and co-workers agrees with the onset of spinodal-decomposition-like
nucleation observed in the experiement. ©2002 American Institute of Physics.
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I. INTRODUCTION

Much of our understanding of the thermodynamic—a
indeed dynamic—behaviors of binary polymer blends
based on the Flory–Huggins theory, epitomized in the f
lowing simple equation for the free energy of mixing per u
volume:1

f mix~f!

kT
5

f

NAvA
lnf1

12f

NBvB
ln~12f!1xf~12f!,

~1.1!

whereNa , va (a5A,B) are respectively the degree of p
lymerization and the monomer volume of thea-species,f is
the volume fraction of the A-polymer, and the blend is a
sumed incompressible.x is a phenomenological paramete2

that accounts for the interaction between the two polym
From this free energy, the phase diagram can be easily
structed with a critical point located at
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~NBvB!1/2

~NAvA!1/21~NBvB!1/2, ~1.2!

xc5
@~NAvA!1/21~NBvB!1/2#2

2NANBvAvB
. ~1.3!

The spinodal curve, the limit of metastability of the on
phase state, is given by

xs5
1

2

fNAvA1~12f!NBvB

f~12f!NAvANBvB
. ~1.4!

In addition to predicting the thermodynamic state of
binary polymer blend, the mean-field phase diagram can
used to infer the kinetic mechanisms of phase separation3–5

Inside the spinodal curve, the binary mixture is unstable w
respect to infinitesimal, long wavelength perturbations a
phase separation occurs spontaneously through spinoda
composition. Between the coexistence curve~the binodal!
and the spinodal, a one-phase state is metastable, an
formation of a new phase occurs via nucleation. Thus, wit
© 2002 American Institute of Physics
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mean-field theory, the spinodal plays a crucial role in dem
cating the two distinct kinetic mechanisms of phase sep
tion.

The Flory–Huggins theory is a mean-field approxim
tion based on the assumption of random mixing. In this
ticle, we consider the effects of concentration fluctuation
the thermodynamics of binary polymer blends and their
netic implications. Three interrelated issues will be a
dressed: the validity of the mean-field description; the nat
of the thermodynamic spinodal; and the meaning of
Flory–Huggins parameterx.

The validity of mean-field theory is determined by th
so-called Ginzburg criterion—first proposed by Ginzbu
and Levanyuk6 as a measure of the proximity to the critic
point where mean-field theory breaks down because of l
wavelength fluctuations. For binary polymer blends,
Gennes7 derived a Ginzburg criterion by comparing the ma
nitude of the concentration fluctuation on the coexiste
curve with the width of the miscibility gap. He demonstrat
that the non-mean-field region—hereafter referred to as
Ginzburg region—is limited to a small temperature windo
very close to the critical temperatureTc : u12Tc /Tu;1/N;
thus mean-field theory is expected to be a valid descrip
of polymer blends over a wide temperature range. This
portant insight provides the theoretical basis for the appl
tion of mean-field @random phase approximation~RPA!#
theory to the interpretation of scattering experiments in po
mer blends.8 Bates et al.9 and Hair et al.10 extended de
Gennes’ derivation to include molecular asymmetry betw
the two polymers in the blends. Belyakov and Kiselev11 and
Anisimov et al.12 proposed an expression that involves cr
cal amplitudes and exponents using the renormaliza
group approach. Several experiments have been perfor
to test the Ginzburg criteria for polymer blends near the cr
cal point.9,10,13–15The Ginzburg criterion was also examine
extensively by Dudowiczet al.16 and Lifschitzet al.17 using
input from the lattice cluster theory.18 Most of these studies
show large discrepancies with de Gennes’ prediction
with the generalized expressions given in Refs. 9 and 10

Binder generalized the concept of the Ginzburg criter
to the study of nucleation.5 By comparing the magnitude o
the concentration fluctuation at a metastable compositiof
with the distance to the spinodal compositionfs , as well as
by examining the free energy barrier for nucleation, he
termined that, ind-dimension, the Ginzburg region is give
by (f/fs21)32d/2;N12d/2(12T/Tc)

d/222; thus in three-
dimension, (f/fs21);N21/3(12T/Tc)

21/2. We are not
aware of experiments specifically designed to test this G
zburg criterion, although we recently suggested19 that the
anomalous findings in the nucleation behavior observed
Lefebvreet al.20 may be related to the onset of the Ginzbu
region.

Because the Ginzburg criteria given by de Gennes
Binder were derived using different arguments, their expr
sions do not allow a crossover from one to the other as
move from the critical regime to near an off-critical spinod
and neither arguments can be used to derive the Ginz
criterion above the critical temperature. A unified derivati
of the Ginzburg criterion that covers both the critical a
Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AI
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off-critical spinodal regimes is still lacking. In addition, it i
not clear how large the molecular weights need to be in or
to reach the scaling behavior predicted by de Gennes
Binder. Furthermore, these RPA-based Ginzburg crite
leave ambiguity in the interpretation of the parameters t
enter the criteria because the critical temperature predi
by the RPA theory is generally quite different from the tr
critical temperature.

While fluctuation results in significant modification i
the thermodynamic behavior of a binary fluid mixture ne
the critical point, theexistenceof a critical point is unaf-
fected in three-dimension. The situation is different for t
spinodal. There is general recognition that the spinodal
mean-field concept. Experimental data21,22 and computer
simulation results23,24 do not show a physically accessib
singularity. The lack of a sharp spinodal is usually explain
in kinetic terms:25,26near the spinodal the free energy barr
for homogeneous nucleation becomes comparable tokT, so
that the lifetime of the metastable state becomes compar
to the diffusive relaxation time in the system. Thermod
namically, Lebowitz and Penrose27 established the condition
under which a metastable state could exist in the gas–liq
transition by relating to the range of interactions in a van
Waals fluid. A renormalization group study by Saito28 using
e-expansion~with e562d! based on a phenomenologic
Ginzburg–Laudau free energy functional showed that
spinodal fixed-point is unstable in spatial dimensions l
than six, suggesting the nonexistence of a truethermody-
namic spinodal in three-dimension. For symmetric diblo
copolymers, it was first demonstrated by Fredrickson a
Helfand,29 based on the work of Brazovskii,30 and later by
others,31,32 and is now widely accepted in the block copol
mer community, that the large concentration fluctuations n
the order-disorder-transition~ODT! destroy the mean-field
spinodal. However, the existence of athermodynamicspin-
odal in binary polymer blends has not been questioned in
polymer physics literature. In this work we will show that
true, off-critical thermodynamic spinodal does not exist
spatial dimensions less than four. We will explore the th
modynamic and kinetic consequences of this conclusion

The issue of the Flory–Huggins parameter is inextric
bly linked to the other fluctuation-related issues discus
above. Originally introduced as a composition independ
parameter to account for the enthalpic effect due to mixing
is now well-known that thex parameter includes both entha
pic and entropic effects, with significant composition,33–35

pressure,36 and often non-simple temperature37 dependence
for most polymers. Clearly, construction of the phase d
gram and application of the Ginzburg criteria requires kno
ing the temperature and composition dependence of thx
parameter and specifyingwhich x parameter is to be use
since there are several possible definitions ofx once fluctua-
tions are included. Beyond this obvious need, it is the task
any statistical mechanical theory of polymer blends to
plain a phenomenalogical parameter in terms of more fun
mental properties. From both theoretical and experime
points of view, an understanding of how fluctuations on t
different length scales contribute to this all-important para
eter is highly desirable.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



e
s
m
t

ts
f o

th
-
ti

isi
a

ca

n
si
ac

ng
et
e
od
th
ts
g
ns

to
g
em
i

e

o
ich
of
iva
ed
rs
a
al
-

nd
d
a
d
w
io
ie
th
u

an

th
th
er

ne-
th-

f
ain
. A
ion
ion

rent
c-
this
nt
le

ci-

nd

ob-
ec.

y
gth

ical
al-
ered
l

en
that
ff-
d
the
hed

dal
la-
rgy
ec.

ree

l or
eta-
tud-

ted
t of
that
tic
lts
h-
the
ase
ca-
rk

s in

483J. Chem. Phys., Vol. 117, No. 1, 1 July 2002 Concentration fluctuation in binary polymer blends
A large body of theoretical literature exists on th
x-parameter issue.18,38–46Most work focuses on the effect
of monomer structure, local liquid structure, and finite co
pressibility. Statistical mechanical approaches, such as
PRISM theory,41,42 the lattice cluster theory,18,43 and other
lattice approaches,44,45 have yielded many important insigh
into these effects. We emphasize here that the purpose o
work is not to develop a new quantitative theory for thex
parameter, but rather a simple and clear elucidation of
essential physical effects on thex parameter due to concen
tration fluctuations. While our coarse-grained field-theore
approach is not best suited to address certain effects ar
from the microscopic details of the polymers, it provides
convenient and unified framework for studying both the lo
~beyond some microscopic cut-off! and long wavelength
fluctuations, with the molecular characteristics included i
few easily interpretable parameters. Previous studies u
field-theoretical approaches focused either on the local p
ing effects47 or on long wavelength fluctuations.33,48 De la
Cruzet al.49 incorporated fluctuations on both short and lo
length scales for symmetric blends using a field-theor
approach similar to ours. But the work did not focus on thx
parameter issue and instead predicted a shift in the spin
as a result of using an unrenormalized version of
theory.50 A rather comprehensive study of fluctuation effec
in symmetric binary polymer blends was conducted by Sin
et al.51 using a closure condition for the integral equatio
developed by Yethiraj and Schweizer.52 This work included
both local and long wavelength fluctuations and took in
account the renormalization effects due to long wavelen
fluctuations. However, as commented by the authors th
selves, any atomic-based closure is prone to qualitatively
correct description of long wavelength fluctuations,52,53 and
we believe their theory indeed missed some qualitative
fects due to fluctuations near the off-critical spinodal.

In this article, we attempt a systematic examination
concentration fluctuations in binary polymer blends, wh
simultaneously addresses thex parameter issue, the nature
the spinodal and the Ginzburg criterion. Besides the mot
tions mentioned above, our effort is particularly motivat
by recent experimental results of Balsara and co-worke20

on the early stages of nucleation in a metastable bin
blend. The experiment used a binary blend made of parti
deuterated polymethylbutylene (A) and hydrogeneous poly
ethylbutylene (B), with degrees of polymerizationNA

53357 andNB54260, respectively. These authors fou
that the critical length scales for nucleation, instead of
verging asx is increased towards the mean-field spinod
decrease with increasingx and seem to show extrapolate
divergence in the metastable part of the phase diagram
before the spinodal. A recent self-consistent field calculat
by Wood and Wang19 estimates that most of their data l
within or near the Ginzburg region as determined from
free energy barrier for homogeneous nucleation. The iss
of spinodal and Ginzburg criterion are both clearly relev
here.

We summarize our results through a description of
organization of the article. In the next section, we derive
free energy of mixing for incompressible binary polym
Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AI
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blends by incorporating concentration fluctuations to o
loop order using a field-theoretic formulation. The zero
order terms yield the Flory–Huggins free energy Eq.~1.1!,
with the barexb introduced in the model playing the role o
the Flory–Huggins parameter. The first-order terms cont
corrections due to both enthalpic and entropic effects
renormalized theory is obtained by considering fluctuat
corrections on different length scales. The renormalizat
procedure leads naturally to the definition of an effectivexe

that incorporates the local molecular effects and an appa
xa that includes long wavelength critical and spinodal flu
tuations. In Sec. III, we examine the issues mentioned in
Introduction. First, we discuss the meaning of the differe
x’s and their interrelationship. Our theory yields a simp
interpretation of the physical content of the differentx’s and
suggestsxe as the true characterization of molecular mis
bility between two polymers. The SANS measuredxa in-
cludes renormalization due to long wavelength critical a
spinodal fluctuations and is related toxe through a self-
consistent equation. The renormalizedxa exhibits the char-
acteristic upward parabolic composition dependence
served in experiments and computer simulations. In S
III B, we derive a unified Ginzburg criterion~expressed as a
Ginzburg number! based on the inverse susceptibility b
considering the relative importance of the long wavelen
fluctuation correction to the~renormalized! mean-field term.
Our result provides a smooth crossover between the crit
and off-critical spinodal regimes. The molecular weight sc
ing proposed by de Gennes and that by Binder are recov
for very large molecular weights. The nature of the spinoda
is discussed in Sec. III C. We first show that a truethermo-
dynamicspinodal does not exist in three-dimension. We th
examine the effects of spatial dimension, demonstrating
the lower critical dimension for the existence of an o
critical thermodynamicspinodal is four and that mean-fiel
behavior prevails in spatial dimensions greater than six,
latter result being consistent with earlier conclusions reac
through examination of the nucleation barrier5,26 and renor-
malization group study.28 By considering the physical limit
of the inverse susceptibility, we identify a pseudo-spino
where the susceptibility reaches a finite miximum. The re
tionship between this pseudo-spinodal and the free ene
barrier for homogeneous nucleation is established in S
III C, where we show that at the pseudo-spinodal the f
energy barrier becomes of orderkT. On this basis, we pro-
pose that the pseudo-spinodal be taken as the physica
kinetic spinodal separating the physically accessible m
stable state from the unstable state. For the two samples s
ied in the experiments of Ref. 20, we find that the predic
location of the pseudo-spinodal is very close to the onse
anomalous nucleation behavior. This strongly suggests
the findings in that work are manifestations of the kine
spinodal effects. Finally, in Sec. III E, we recast our resu
for the simplified case of symmetric blends in order to hig
light the scaling dependence of various properties on
degree of polymerization. We present a generalized ph
diagram and discuss its thermodynamic and kinetic impli
tions. In Sec. IV, we recapitulate the main points of this wo
and briefly discuss the approximations and assumption
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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our theory. Several appendices are provided that con
technical details of the calculations omitted in the main bo
of the article.

II. FREE ENERGY OF MIXING
BEYOND THE FLORY–HUGGINS THEORY

A. Model

We consider an incompressible binaryA/B polymer
blend in a large volumeV. We use a coarse-grained mod
where the polymer chains are represented as continu
threads obeying Gaussian statistics in the absence of inte
tions. Interactions in the blend are assumed to be of
types: the hard-core short-ranged repulsion between
monomers is modeled by local incompressibility of the
nary liquid mixture, and the enthalpic interaction betwe
the A and B polymers is modeled by a local pseud
potential.

Before we proceed to the mathematical expression of
model, we briefly comment on the parametrization of t
model. In the theoretical literature, a polymer chain in t
melt and blend is usually charaterized by its degree of po
merizationN, the monomer volumev and the Kuhn length
b. The monomer is understood as aneffectivemonomer of a
Kuhn unit and the degree of polymerization is similiarly i
terpreted. In relating to the true monomer size, bond len
and degree of polymerization, the characteristic ratioC` is
required.1 Such a characterization is inconvenient when co
paring theory with experiments.

In this work, we adopt a different parametrization that
free from such an inconvenience. We characterize a poly
by its volumeVa ~i.e., the partial molar volume of the poly
mer a divided by the Avogadro number! and its root-mean-
square end-to-end distanceRa (a5A,B). A flexible polymer
in the melt and blend~with neglibible volume change upo
mixing! is completely specified byVa and Ra , both easily
determined experimentally.

The primary quantity we seek to obtain is the Helmho
free energy of mixing per unit volume as a function of t
composition.~We shall not distinguish between the Helm
holtz free energy and the Gibbs free energy here since
system is assumed incompressible.! For most of our discus-
sions, we are concerned with spatially homogeneous st
where the average concentration is uniform. Because
blend is assumed incompressible, the average volume
tion of one of the polymers, sayA, uniquely characterizes
the composition of the system. Henceforth, we usef to de-
note the volume fraction of theA polymers; the volume frac
tion of theB polymers is simply 12f. Here and in the res
of the article,f denotes the bulk homogeneous compositi
When the context is clear, we also usef for the spatially
varying concentration for notational simplicity; when a d
tinction needs to be made explicitly, the latter will be d
noted byf(r ).

For studying fluctuation, it is convenient to consider
open system in equilibrium with a large, homogeneous r
ervoir. The appropriate free energy is the grand poten
defined as

G~m,V!5Vg~m!5V @ f ~f!2mf#, ~2.1!
Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AI
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where f is the Helmholtz free energy density of the syste
and m is a chemical potential-like field that is conjugate
the volume fractionf defined as

m[
] f

]f
. ~2.2!

Once g is obtained as a function ofm, the Helmholtz
free energy density is calculated from Eq.~2.1!, with f given
by

f52
]g

]m
, ~2.3!

and the free energy of mixing is then obtained from

f mix~f!5 f ~f!2@f f ~0!1~12f! f ~1!#. ~2.4!

We calculateG(m,V) by using field-theoretical tech
niques. First, the grand partition function corresponding
G(m,V) is transformed into a multi-fold functional integra
of field variables through a serious of identi
transformation.54 The functional integral is then evaluate
through a systematic loop expansion. In this work, we p
form the expansion to the one-loop order.

We start with the grand partition function for an ope
incompressible system of a two-component polymer blend
equilibrium with a reservoir at chemical potentialm:

J~m,V![exp@2G~m,V!#

5 (
nA50

`

(
nB50

`
1

nA!nB!

1

~VA!nA~VB!nB
exp~mnAVA!

3E DnA$rA%E DnB$rB%)
r

d~f̂A~r !

1f̂B~r !21!expF2(
i 51

nA

hi
A2(

j 51

nB

hj
B

2xbE dr f̂A~r !f̂B~r !G . ~2.5!

In this expression,hi
a is the single-chain Gaussian Hami

tonian for thei th polymer of speciesa that accounts for the
chain connectivity

hi
a5

3

2Ra
2 E

0

1

dtS dra~t!

dt D 2

~2.6!

and f̂a(r ) is the instantaneous concentration~volume frac-
tion! of a at r defined as

f̂a~r !5Va(
i 51

na E
0

1

dtd@r2ra~t!#. ~2.7!

Heret is an internal index along the chain contour that ru
from 0 at one end to 1 at the other end. Thed-function in Eq.
~2.5! enforces the incompressibility and the last term in t
exponential represents the ‘‘bare’’ enthalpic interaction b
tween the two polymers. The notation*Dna$ra% denotes in-
tegration over all chain configurations of polymers of typea.
The use of the chain volumeVa instead of the cube of the
thermal de Broglie wavelength as the volume scale in
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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partition function is a matter of convenience; the effect i
composition-independent shift in the chemical potential t
has no consequences on the thermodynamics of interest
unit of energy is chosen to bekT.

Before we proceed to the evaluation of the partiti
function, a few remarks about the coarse-grained continu
model are in order. Clearly, the coarse-grained descriptio
a polymer chain as a Gaussian thread breaks down at le
scales approaching the monomer size. Similarly, both the
compressibility condition and the enthalpic pseudo-poten
interaction term should be understood to imply a local spa
averaging of the instantaneous monomer densities over s
length scale larger than the monomer size. Therefore,
coarse-grained continuum description implicitly involves
microscopic cut-off lengthl, roughly of the order of the
Kuhn length. In a lattice model, the lattice spacing serves
the natural cut-off length. In off-lattice molecular models, t
microscopic cut-off is contained in the local liquid-structu
which in principle can be extracted from the integral equ
tion approaches. In this work, we will takel as an additional
parameter in the model without pursuing its detailed mole
lar origin. From its interpretation as the minimum leng
scale for the applicability of the coarse-grained model,l is
expected to be independent of the composition.

B. Free energy to the one-loop order

The partition function Eq.~2.5! cannot be calculated ex
actly because of the interacting nature of the problem~both
incompressibility and enthalpic!. To make it amenable to sys
in
-

n
an

rg
s
l
c
u
e
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tematic approximations, we rewrite the partition function
the form of a multi-fold functional integral through the in
troduction of collective variables. The details are provided
Appendix A; the result is~aside from some unimportant no
malization factor!

J~m,V!5E DfE DWAE DWB exp~2K !, ~2.8!

where

K5xbE drf~12f!2 i E dr @WAf1WB~12f!#

1I ~m,WA ,WB!. ~2.9!

In the above equations,iWA(r ), iWB(r ) can be considered
effective external fields for theA andB chains, respectively
and I @m,WA(r ),WB(r )# is the grand ‘‘free energy’’ of non-
interacting Gaussian chains in these effective external fie
given by Eq.~A4! in Appendix A. Thus, the interacting-chai
problem is transformed into a single-chain problem in flu
tuating fields; the initial difficulty due to interaction is now
shifted to integration over these fluctuating fields.

We evaluate the functional integral by a systematic lo
expansion.55 To this end, we introduce a smallness parame
~the loop parameter! a for keeping track of the order of the
expansion; this parameter will be eventually set to unity.~Al-
ternatively but equivalently, a true smallness parameter
be identified in terms of the molecular weight by nondime
sionlizing the variables.54! Inserting the loop parametera
into Eq. ~2.8!, we have
J~m,V!5exp@2a21G~m,V!#5E DfE DWAE DWB exp$2a21K@m;f~r !,WA~r !,WB~r !#%. ~2.10!
re
on-
m-

y

G(m,V) is evaluated perturbatively as an expansion
the loop parametera. The zeroth-order approximation corre
sponds simply to the saddle-point value ofK; this is the
self-consistent field approximation. The first-, second- a
higher-order terms correspond to the one-loop, two-loop,
higher-loop corrections. The expansion inG(m,V) is then
converted into an expansion of the Helmholtz free ene
using Eqs.~2.1! and ~2.3! and the free energy of mixing i
obtained from~2.4!. In this work, the various quantities wil
be calculated only to the one-loop order, as this order suffi
for addressing the relevant issues. The details of the calc
tions are provided in Appendix B; the final result for th
Helmholtz free energy of mixing is

f mix5
f

VA
ln f1

12f

VB
ln~12f!1xbf~12f!

1D f pack1D f int , ~2.11!

where
d
d

y

es
la-

D f pack5
1

4p2 E
0

2p/l

k2dkFf lnS fVADA1~12f!VBDB

VADA
D

1~12f!lnS fVADA1~12f!VBDB

VBDB
D G , ~2.12!

D f int5
1

4p2 E
0

2p/l

k2dk lnS 122xb
f~12f!VAVBDADB

fVADA1~12f!VBDB
D .

~2.13!

In Eqs.~2.12! and ~2.13!, Da is the Debye function

Da~xa!52xa
22@xa1exp~2xa!21# ~2.14!

with xa5k2Ra
2/6. l is the microscopic cut-off length.

The zeroth-order terms in Eq.~2.11! amount to the
Flory–Huggins approximation. The correction terms a
separated into a packing contribution and an interaction c
tribution. The former reflects the effects of molecular asy
metry: D f pack50 if VA5VB andRA5RB . The leading con-
tribution to D f pack is due to conformation asymmetr
manifested through the difference in the ‘‘packing length’’l a
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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defined asl a[Va /Ra
2 .56 This term was obtained previousl

by Bates and Fredrickson.47 Mathematically, this leading
contribution comes from the large-k behavior of the Debye
functions. Differences in molecular architecture47 andVa or
Ra give rise to correction terms due to chain ends that a
factor l/R smaller than the leading term. Here, we only e
plicitly keep the leading term due to conformation asymm
try; the packing correction to the free energy is thus

D f pack5
2p

3l3 Ff ln
l̄

l A
1~12f!ln

l̄

l A
G , ~2.15!

where l̄ [f l A1(12f) l B is the volume fraction-average
packing length.

The interaction contribution to the free energy correct
D f int reflects the effects due to the enthalpic interaction
tween the two polymer species~in the bare theory!. To evalu-
ate D f int , we note that the logarithm in Eq.~2.13! has a
singularity atk50 whenxb is at its mean-field spinodalxs

where

xs5
1

2 F 1

fVA
1

1

~12f!VB
G5

1

2

1

f~12f!

V̄

VAVB
~2.16!

with V̄[fVA1(12f)VB . The factor multiplying 2xb in
Eq. ~2.13! can be easily recognized as the RPA struct
factorS0(k) for a noninteracting binary polymer blend.8 Be-
cause the main effects due to long wavelength critical
spinodal fluctuations arise from the small-k behavior, we ap-
proximateS0(k) by the Ornstein–Zernike form:

S0~k!5
1

2xs~11j0
2k2!

, ~2.17!

where

j0
2[

1

18

l̄

l Al B

VAVB

V̄
. ~2.18!

This approximation yields the correct small-k behavior up to
k2 ~which is all that is required to capture the leading sing
lar behavior near the spinodal! and gives the correct 1/k2

behavior for largek with only a difference of23 in the pref-
actor. Performing the fairly straightforward integration, a
keeping only the leading terms, we obtain

D f int52
18l Al B

pl l̄
xbf~12f!1

1

12pj0
3 F12S 12

xb

xs
D 3/2G .
~2.19!

Thus, to the one-loop order, the free energy of mixing

f mix5
f

VA

ln f1
12f

VB

ln~12f!1xbf~12f!

1
2p

3l3 Ff ln
l̄

l A

1~12f!ln
l̄

l B
G2

18l Al B

pl l̄
xbf~12f!

1
1

12pj0
3 F12S 12

xb

xs
D 3/2G . ~2.20!
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Following Eq. ~2.2!, a chemical potential corresponding
the free energy of mixingmmix5] f mix /]f can be defined

mmix5
1

VA

~ ln f11!2
1

VB

~ ln~12f!11!1xb~122f!

1
2p

3l3 F ln
l B

l A

1
l A2 l B

l̄
G

2
18l Al B

pl l̄ 2
„~12f!2l B2f2l A…x

b

1
1

8pj0
3

2xbVAVB

V̄2
„~12f!2VB2f2VA…S 12

xb

xs
D 1/2

.

~2.21!

Finally, the inverse susceptibility~osmotic compressibility!
or the inverse structure factor at zero scattering angle
obtained from the second derivative of the free energy, wh
yields

k215
1

VAf
1

1

VB~12f!
22xb2

2p

3l3S l A2 l B

l̄
D 2

1
36

p

l A
2 l B

2

l l̄ 3
xb

2
1

2pj0
3

xbVA
2VB

2

V̄3
S 12

xb

xs
D 1/2

3F11
1

2

xb

V̄
„~12f!2VB2f2VA…

2S 12
xb

xs
D 21G .

~2.22!

In calculating the chemical potential and the inverse s
ceptibility, the weak composition dependence inj0 is ig-
nored, which becomes exact forVA5VB andRA5RB .

We note that for symmetric blends, Eq.~2.19! is essen-
tially the same as the expression derived by de la C
et al.49 The difference is only in the numerical factors whic
results from their using a slightly different extrapolatio
function for the noninteracting structure factor. On the oth
hand, Eq.~2.19! differs from the corresponding equation
Ref. 33.

C. Renormalization

Equation~2.22! forms the starting point for much of ou
subsequent analysis and discussion. The inverse suscep
ity is obtained through a one-loop expansion and is
pressed in terms of the bare parameters of the mode
order to relate to physically measurable parameters an
capture the full effect of summing over an infinite subset
one-loop diagrams,55 the theory needs to be renormalize
We do so in two steps based on a consideration of the len
scales.

The terms nonsingular in 12xb/xs reflect the packing
and interaction effects due to fluctuation and correlation
molecular length scales. The terms containing the sing
12xb/xs arise from the long wavelength concentration flu
tuations due to proximity to the critical point and spinoda
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Focusing on the local molecular effects, we see that
fluctuation corrections lead to a finite shift in the spinod
value ofxb from that given in Eq.~2.16!. Rather than defin-
ing a new spinodal in terms ofxb, we absorb the shift
through the definition of an effectivexe:

xe[xb2
18

p

l A
2 l B

2

l l̄ 3
xe1

p

3l3 S l A2 l B

l̄
D 2

, ~2.23!

where, in the spirit of renormalization, we have replacedxb

in the one-loop term byxe. The above equation can be triv
ally solved to yield

xe5xbS 11
18

p

l A
2 l B

2

l l̄ 3 D 21

1
p

3l3 S l A2 l B

l̄
D 2

. ~2.24!
o
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This prescription for renormalization preserves t
Flory–Huggins or RPA form of the inverse susceptibility a
leaves the spinodal value unchanged from its mean-fi
value Eq.~2.16!. The resulting theory can thus be consider
a fluctuation-renormalized mean-field theory, withxb re-
placed byxe.

We now turn to the effects of long wavelength fluctu
tions. Usingxe, we write the inverse susceptibility as

k2152xs22xe2Dk21~xe!, ~2.25!

where
rent

ue
e factor
Dk215
1

2pj0
3

xeVA
2VB

2

V̄3
S 12

xe

xs
D 1/2 F11

1

2

xe

V̄
„~12f!2VB2f2VA…

2S 12
xe

xs
D 21G , ~2.26!

where we have replacedxb in Dk21 by xe, which is consistent to the one-loop order.
Because of the long wavelength fluctuation correction, the critical point or spinodal no longer occurs atxe5xs . The true

critical point or spinodal is determined byk2150. We account for this further renormalization effect by definining an appa
xa through

k2152xs22xa, ~2.27!

so that

xa5xe1
1

2
Dk21~xa! ~2.28!

with

Dk21~xa!5
1

2pj0
3

xaVA
2VB

2

V̄3
S 12

xa

xs
D 1/2F11

1

2

xa

V̄
„~12f!2VB2f2VA…

2S 12
xa

xs
D 21G , ~2.29!

where, in the spirit of renormalization, we have replacedxe in Dk21 by xa since it is the latter that determines the tr
proximity to spinodal. Our choice of the renormalization prescription once again preserves the RPA form of the structur
and leaves the~nominal! spinodal value unaltered. Making use of the definition forj0 @Eq. ~2.18!# andxs @Eq. ~2.16!#, we can
write the self-consistent equation forxa as

xa5xe1
27xa

A2p
S l Al B

l̄
D 3/2~VAVB!1/2

V̄3/2
S 12

xa

xs
D 1/2F11

1

4

xa

xs

„~12f!2VB2f2VA…
2

f~12f!VAVB
S 12

xa

xs
D 21G . ~2.30!

It is instructive to write the above equation as a self-consistent equation for the renormalized structure factor atk50:

S21~0!5SRPA
21 ~0!1

1

p2 F xa

f~12f!

VAVB

V̄2
E*

k2dkS~k!2
~xa!2

@f~12f!#2

1

V̄2
„~12f!2VB2f2VA…

2E*
k2dkS2~k!G , ~2.31!
the
g

whereSRPA
21 (0) andS21(0) are respectively given by

SRPA
21 ~0!52~xs2xe! ~2.32!

and

S21~0!52~xs2xa!. ~2.33!

In Eq. ~2.31!, the superscript* indicates that the integral is t
be evaluated using dimensional regularization,55 since the
short wavelength fluctuations have been absorbed into
definition of xe. By the same token, we only need the lon
wavelength part of the structure factorS(k) in the integrals,
which we approximate with the Ornstein–Zernike form

S~k!5
S~0!

11j2k2 ~2.34!

with
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j5j0~12xa/xs!
21/2. ~2.35!

In Eq. ~2.31!, the first integral represents fluctuation e
fects near the critical point. The second integral accounts
fluctuations near the off-critical spinodal. In Appendix C, w
show that Eq.~2.31! can be mapped to ac3-c4 field theory
with vertex functions forc3 and c4 that vanish whenxe

50. Thus the RPA structure factor is exact for an inco
pressible blend with no interactions between the two po
mer species. This exact result cannot be captured by fluc
tion theories that start with the Flory–Huggins–de Gen
free energy or other phenomenalogical free energies w
x-independent third- and fourth-order vertex functions.

III. DISCUSSION OF ISSUES

A. The x parameter

The renormalization procedure discussed in Sec.
lends itself naturally to the clarification of the meaning a
interpretation of thex parameter.

Clearly one must distinguish among threex parameters,
each reflecting effects on different length scales. The barexb

is the ‘‘microscopic’’ interaction parameter introduced in t
model. In an incompressible lattice model, this parame
would correspond to the (1/2)z(eAA1eBB22eAB) which is
the x parameter envisioned in the Flory–Huggins theor1

where z is the lattice coordination number andeab is the
nearest neighbor interaction energy between thea andb spe-
cies (a,b5A,B). In the free energy resulting from a ‘‘bare
mean-field approximation~corresponding to the zero-loo
order!, such as RPA or self-consistent field theory,xb is the
Flory–Huggins parameter.

However, even if we ignore long wavelength fluctu
tions, the local correlation and fluctuation effects due
chain connectivity and interaction modifies the thermod
namics so thatxe, rather thanxb, determines the thermody
namic state~the miscibility! of the blend. The main effect
are twofold: first, the~enthalpic! interaction effect is reduced
by a factor that depends on the cut-off length, and, seco
entropy loss due to packing of conformationally asymme
polymers makes the two polymer species less miscible;
Eq. ~2.24!. The first effect is consistent with the Guggenhe
arguments57 that each interior unit in a polymer chain
bonded to two neighboring units, so that the effective co
dination number is reduced fromz to z22; this effect was
observed in Monte Carlo simulation using lattice model58

and was also captured in the PRISM study by Singhet al.51

for symmetric polymer blends. The effect of conformati
asymmetry was first elucidated by Bates and Fredrickso47

using a field-theoretic approach. The lattice cluster theory
Freed and Dudowicz43 predicts both effects as the leadin
terms in the Flory–Huggins parameter for incompressi
binary blends in the long chain limit. A detailed comparis
between the result of the lattice cluster theory or of
PRISM theory on one hand, and Eq.~2.24! on the other, can
in principle yield an estimate of the cut-off length. Howev
since our focus here is the qualitative clarification of t
various physical effects rather than a quantitative theory
the x parameter, we will not make such an effort. Neverth
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less, it is reassuring that our simple coarse-grained mo
captures both effects in a simple and transparent way at
one-loop order.

Thexe defined in Eq.~2.24! has the desired properties a
the truex parameter for characterizing the molecular effe
on polymer blend compatibility. This parameter contai
both enthalpic and entropic contributions and incorpora
fluctuation and correlation effects up to the polymer leng
scales. By excluding long wavelength critical and spino
concentration fluctuations, thexe so defined is insensitive to
the thermodynamic state~i.e., proximity to criticality or spin-
odal! of the blend and hence is a reflection of themolecular
effects on blend compatibility. In the long-chain limit,xe is
independent of the molecular weight and architecture. T
molecular weight dependence ofxe arises from ends effect
and leads to corrections ofO(1/N1/2) or smaller relative to
the leading molecular weight independent terms. These
ditional terms can be included in Eq.~2.24! without modify-
ing the structure of the theory. When ends effects are ta
into account,xe will generally depend on the molecular a
chitecture and may acquire additional composition dep
dence. For example, anA/B binary blend and the corre
sponding A-B diblock copolymer will havexe’s with a
relative difference ofO(1/N) from each other.59 Theoreti-
cally speaking, from the monomer design point of view, t
preferred Flory–Huggins parameter isxe with the ends ef-
fects excluded. In real polymer blends, of course, the e
effects are unavoidable.

In the literature,xe andxb are often confused with eac
other. This confusion is the basis for the widely but erron
ously accepted notion that RPA theory represents a good
proximation for very long polymers or far away from th
critical point or spinodal. It should become clear from t
discussions above that even in the absence of long w
length fluctuations, RPA or self-consistent field theory, wh
interpreted literally, is a poor description of polymer blen
or block copolymers. For example, RPA or self-consist
field predicts a mean-field spinodal located at

xs
b5

1

2

V̄

f~12f!VAVB
, ~3.1!

whereas when local correlation and fluctuation effects
taken into account, the~mean-field! spinodal is shifted to

xs
b5

1

2

V̄

f~12f!VAVB
S 11

18

p

l A
2 l B

2

l l̄ 3 D 2
p

3l3 S l A2 l B

l̄
D 2

.

~3.2!

However, in terms ofxe, the latter theory still yields

xs
e5

1

2

V̄

f~12f!VAVB
. ~3.3!

Thus theapparentagreement between these two predictio
is a result of mistakingxe for xb. All comparisons in the
literature between experiments and RPA or self-consis
field calculations have in fact been~awaredly or unawaredly!
using a renormalized version of the mean-field theory; thi
the reason for the reasonable agreement between ex
ments and mean-field predictions. Indeed, had a literal R
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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or self-consistent field theory been used, predictions for
phase diagram would be far off. When we discuss the va
ity of mean-field theory in the next section, it is understo
that we will be referring to the renormalized mean-fie
theory that has already taken into account the local corr
tion and fluctuation effects; in no parts of the phase diagr
is the bare mean-field theory valid quantitatively, even
infinitely long polymers.

Although the effectivexe is the truex parameter for
characterizing the molecular miscibility of two polymers,
experimental determination is by SANS measurements fi
using the RPA form of the structure factor. The full structu
factor inevitably includes long wavelength fluctuations th
become important near the critical point or spinodal. Clea
an RPA fitting yields the apparentxa, not xe. xa is deter-
mined byxe through the self-consisten equation~2.30!. The
apparentxa is always larger than the effectivexe, with a
difference that varies inversely with the square-root of
molecular weights. Thus for infinitely long polymersxa and
xe become identical. For polymers with moderate molecu
weights, the two can differ from each other visibly, with
larger difference the further away from the critical compo
tion. Figure 1 shows the composition dependence of the r
of xa to xe at a fixedxe50.9xc for a symmetric (VA5VB

5V,l A5 l B5 l ) blend for three polymer lengths.~The more
common characterization in terms of the degree of polym
izationN, monomer volumev and Kuhn lengthb is used in
the figure;Nb6/v25V/ l 3.! The figure exhibits the upward
parabolic shape as observed in experiments33,35 and com-
puter simulations.58 Similar behavior was also predicted b
Singhet al.51

The parabolic composition dependence of the measu
x parameter in isotopic33,60 and certain polyolefin35 blends
has been an unsolved puzzle. The main features that de
satisfactory explanation are the large magnitude of the
crease of the measuredx at extreme compositions—typicall
50% or larger compared to the value at the critic

FIG. 1. Composition dependence of the ratio of the apparentxa to the true
~effective! xe for symmetric blends at a fixedxe50.9xc . The param-
eter b3/v is chosen to be 3.N is related to the polymer volumeV via
Nb6/v25V/ l 3.
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composition—and seemingly divergent behavior atf50
andf51 for some isotopic blends. The most recent theor
ical work46 that examines these unexplained features
tributes the observed behavior to experimental errors o
some unknown intrinsic composition dependence in the b
xb. While long wavelength concentration fluctuations are u
able to account for the magnitude of the increase of the
perimentally measuredx at the extreme compositions, th
predicted upward increase is not insignificant for moderat
long polymers, and the effect can be made more pronoun
when density fluctuations are taken into account.51 Thus con-
centration fluctuations could be partially responsible for
experimentally observed behavior. For the parabolic com
sition dependence observed in computer simulations
Binder and co-workers,58 concentration fluctuations
~enhanced by coupling with density fluctuations! appear to
be a reasonable explanation.

We close this section by a comparison between our fl
tuation theory ofx for binary blends and the correspondin
field-theoretically based theory for diblock copolymers. Co
centration fluctuations near the order-disorder-transition
diblock copolymers were treated in a seminal work by F
drickson and Helfand,29 using methods develope
Brazovskii.30 The Fredrickson-Helfand-Brazovskii~FHB!
theory provides important insight to the nature of the ODT
block copolymers and forms the theoretical basis for the
terpretation of experimental SANS data for diblock copo
mers. The theory predicts a significant deviation from t
RPA structure in the disordered phase near the ODT wh
has since been confirmed experimentally. In spite of its m
successes, however, the theory has several flaws. First
theory is essentially phenomenalogical, which used
Leibler mean-field free energy functional in which the ord
parameter was allowed to fluctuate. While such an appro
captures the essential physics in a qualitative and even s
quantitative way, treating fluctuations by allowing the ord
parameter to fluctuate in a mean-field free energy functio
is theoretically unjustified.54 This point is shown explicitly
for the case of binary polymer blends in Appendix C. Se
ond, the FHB theory is an asymptotic theory where the f
energy and its parameters are expanded around the~mean-
field! critical point. The theory would predict a finitexa even
if xe is zero. Finally, the Brazovskii method for treating flu
tuation used a simple Hartree renormalization where o
fluctuation effects due to the quartic nonlinearity are
cluded. The method is incapable of including fluctuation
fects due to the cubic term in the free energy that accou
for the asymmetry of the diblock. Just as in the case
blends where renormalization due to the cubic term is alm
always as important as or more important than that due to
quartic term, except in the small vicinity of the critical com
position ~see next section!, so we expect that the cubic term
in the case of diblock copolymers will have similarly impo
tant effects. Thus, strictly speaking, the FHB theory is on
applicable to diblock copolymers with a composition ve
close to the mean-field critical composition~where mean-
field theory would predict a direct transition from the diso
dered phase to the lamellar phase!. Recently, Maureret al.61

examined the consistency in using a singlex parameter to
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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characterize the phase behavior for binary blends and
corresponding diblock copolymers, and found discrepa
between the SANS measuredxA/B for the blend andxA2B

for the diblock data, with the latter obtained using the FH
theory. Earlier studies by Krishnamoorti62 also suggested tha
the x parameter obtained for a binary blend does not alw
predict the correct phase behavior in the correspond
diblock. Reference 61 attributes this discrepancy to ch
stretching of the diblock near the ODT that was not a
counted for in the FHB theory, but some or all of the oth
limitations we have just mentioned may also be responsi

B. The Ginzburg criterion

The Ginzburg criterion yields an estimate of the range
temperature in which mean-field theory is valid. From o
discussions in Sec. III A, it should be clear that mean-fi
theory here refers to the renormalized theory in which
local correlation and fluctuation effects have been taken
account. Physically the criterion requires that the fluctuat
correction to a physical quantity be much smaller than
quantity itself. The Ginzburg criterion is often expressed
terms of the Ginzburg number Gi[u12Tc /TGu, so that
mean-field theory is valid foru12Tc /Tu@Gi. Because of the
entropic contribution to thex parameter, a Ginzburg numbe
expressed in terms of temperature requires knowledge o
temperature dependence of thex parameter. Indeed some o
the discrepancies between the Gi obtained in experim
and the theoretical Gi given by de Gennes can be attribu
to the complex temperature, composition and pressure
pendence inx15 and do not by themselves necessarily refl
the inadequacy of de Gennes Ginzburg criterion. We av
this problem by defining the Ginzburg number in terms
the Flory–Huggins parameterxe as

Gi[u12xG
e /xsu. ~3.4!

Note that we have defined the Ginzburg number w
respect to the spinodal valuexs since we are interested i
both the critical region and the region near an off-critic
spinodal; the critical point is just a special point on the sp
odal at the critical composition. We usexe because this
quantity is the controlling variable for the thermodynam
behavior of the blend, and we use the mean-field expres
xs @Eq. ~2.16!# because this is the only measurable quan
free from intepretational ambiguity.

In the critical region abovexc
e ~or below the critical tem-

peratureTc in a UCST system!, the Ginzburg criterion is
commonly derived by comparing the mean-square comp
tion fluctuation^(df)2& with the square of the miscibility
gap (f (1)2f (2))2, the former quantity being evaluated usin
the mean-field~RPA! structure factor. In the metastable r
gion, Binder replaced the latter quantity by the square of
difference between the metastable bulk composition and
spinodal composition. As alluded to in the Introduction, th
derivation does not provide a crossover between the crit
and off-critical spinodal regimes, nor can it be easily e
tended to the critical region belowxc

e ~aboveTc!. Further-
more, in light of our discussions on thex parameter issue, a
Ginzburg criterion derived within a mean-field theory leav
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an ambiguity as to which of thex parameters is to be used
since the critical temperatures determined from usingxb and
xe can be far off from each other.

Amit proposed a rational Ginzburg criterion based
comparing the first-order fluctuation correction to the inve
susceptibility to the mean-field susceptibility using renorm
ized parameters.63 Similar strategy was used in the work o
Lifschitz et al.17 Both studies considered only the critic
regime. However, the idea is equally applicable to the o
critical near-spinodal region.

We now derive a unified expression for the Ginzbu
number valid both in the critical and off-critical spinod
regimes. To this end, we write the inverse susceptibility a

k2152~xs2xa!5k0
212Dk21, ~3.5!

wherek0
21 is the fluctuation-renormalized mean-field part

k0
2152~xs2xe! ~3.6!

andDk21 is the one-loop correction due to long waveleng
fluctuations given in Eq.~2.29!. The Ginzburg criterion is
then expressed asDk21!k0

21 or, equivalently, asDk21

!k21. Operationally, we define the Ginzburg number
settingDk215ck21, i.e., k0

215(11c)k21 or

12
xe

xs
5~11c!S 12

xa

xs
D , ~3.7!

wherec is a numerical coefficient of order one. The choi
of the numerical coefficient is somewhat arbitrary;c50.1
was used in the work of Schwahn and co-workers;14,15,64here
we leave it free.

The above equation, together with the self-consist
equation~2.30! determinesxG

e , the onset of the Ginzburg
region, and the Ginzburg number is then given by Eq.~3.4!.
The loci of the points determined by Eq.~3.7! are shown in
Fig. 4 for a symmetric blend.~Other features of the figure
will be discussed in Sec. III E.! Note that the Ginzburg cri-
terion is represented by a curve~hereafter referred to as th
Ginzburg curve! in the phase diagram. Thus, specifiying t
validity of the mean-field theory requires specifying bothxe

~or T! andf. Mean-field theory is valid below this curve.65

The usual interpretation of the Ginzburg criterion as a te
perature range is inaccurate. The need for an additional v
able than the temperature orx was suggested earlier by Re
16. A few points are worth commenting. First, we note th
the minimum of the Ginzburg curve does not occur at
critical compositionfc50.5. Rather a small maximum ap
pears there. However, overall the portion near the criti
composition is fairly flat. Second, part of the binodal cur
lies within the Ginzburg region and intersects the Ginzbu
curve. The location of the intersection corresponds to a p
ticular xG

e 8, so that the portion of the binodal belowxG
e 8 is

no longer correctly described by mean-field theory. This
tersection is the one used by de Gennes in deriving
Ginzburg criterion.7

If the Ginzburg number is small, i.e., Gi!1, which cor-
responds to the case of very long polymers, the Ginzb
number can be shown to satisfiy the following equation:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Gi1/25
27~11c!1/2

A2cp
S l Al B

l̄
D 3/2S VAVB

V̄2 D 1/2

V̄21/2

3F11
~11c!

4

„~12f!2VB2f2VA…
2

f~12f!VAVB

Gi21G .

~3.8!

We now examine several limiting cases of Eq.~3.8!.
Near the critical point, Eq.~3.8! simplifies to

Gi1/25
27~11c!1/2

A2cp
S l Al B

l̄
D 3/2

V̄21/2

3@11~11c!~df̄!2Gi21#, ~3.9!

wheredf̄ is the relative deviation from the critical compo
sition defined as

df̄[
f2fc

@fc~12fc!#
1/2 ~3.10!

and where we have made use of the fact that at the cri
composition,VAVB /V̄251 @cf. Eq. ~1.2!#. At the critical
composition (df̄50) xc5xs . As xe approaches the critica
xc from below, the Ginzburg number is easily solved to b

Gi[12
xG

e

xc

5
729~11c!

2c2p2 S l Al B

l̄
D 3

1

V̄
. ~3.11!

Above xc , the mean-field composition of the two coe
isting phases can be obtained using the renormalized Flo
Huggins theory. Near the critical point, the coexistence co
positions are given by

df̄56A3uxe/xc21u1/2. ~3.12!

Substituting this result into Eq.~3.9!, we obtainxG
e 8 at the

intersection between the mean-field binodal curve and
Ginzburg curve.xG

e 8 thus defines a special Ginzburg numb
This Ginzburg number is usually expressed in terms of
critical ~rather than the spinodal! temperature~here the criti-
cal xc!. On the coexistence curve, it can be shown that

12xe/xs52~xe/xc21! ~3.13!

so that the Ginzburg number in terms of the distance to
critical xc becomes

Gi8[
xG

e 8

xc

21

5
729~11c!

4c2p2 S 11
3

2
~11c!D 2S l Al B

l̄
D 3

1

V̄
. ~3.14!

The corresponding range of composition is
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ufG2fcu5
27

2cp
Afc~12fc!S 11

3

2
~11c!D

3S l Al B

l̄
D 3/2

V̄21/2. ~3.15!

In terms of the Ginzburg number defined by Eq.~3.4!,
except very close to the critical composition, the bracket
the rhs of Eq.~3.8! is dominated by the second term. In fac
since Gi→0 in the limit of infinite molecular weights, the
second term will always dominate over the first term at a
noncritical composition for sufficiently long polymers. Ne
glecting the subdominant term, we obtain

Gi[12
xG

e

xs

5
9

2~2cp!2/3
~11c!S l Al B

l̄
D S VAVB

V̄2 D 1/3

3V̄21/3F „~12f!2VB2f2VA…
2

f~12f!VAVB
G 2/3

. ~3.16!

Equations~3.14! and ~3.16! recover the limiting scaling
expressions near the critical point and near an off-criti
spinodal, as first derived by de Gennes and Binder, res
tively. However, very large molecular weights are required
reach these scaling results. In Fig. 2, we show the Ginzb
numbers atf50.5 andf50.15 as a function of the degre
of polymerization for symmetric blends.~Recall that for
symmetric blendsNb6/v25V/ l 3.! The dash line and the
dash-dot line are the analytical predictions given by E
~3.11! and ~3.16!, respectively@or more directly by Eqs.
~3.30! and ~3.32!#. For f50.5, N.104 is required to reach
the scaling limit. Forf50.15, we needN.105. Lattice
cluster theory calculations in Ref. 17 showed that, in co
pressible blends, the 1/N scaling for the critical Ginzburg
number requires very largeN.

FIG. 2. Dependence of the Ginzburg number on the degree of polyme
tion for symmetric polymer blends withb3/v53. c is chosen to be 0.1. The
dash and dash-dot lines are the asymptotic scaling behaviors given by
~3.30! and ~3.32!, respectively.N is related to the polymer volumeV via
Nb6/v25V/ l 3.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C. The spinodal

In this section, we discuss the nature of the thermo
namic spinodal for a binary polymer blend.

Thermodynamic spinodal is defined byk2150, i.e.,xa

5xs . At the composition such that (12f)2VB2f2VA50,
the second term inDk21 @Eq. ~2.29!# vanishes identically,
and the conditionk2150 yields

xc
e5xc

a5
1

2

~VA
1/21VB

1/2!2

VAVB
. ~3.17!

This is just the critical point@cf. Eq. ~1.3!#.
For (12f)2VB2f2VAÞ0, however, the second term i

Dk21 diverges asxa→xs , and no physical solution forxe is
possible that satisfiesk2150. Thus a true thermodynami
spinodal does not exist! We note that a similar argument
used in demonstrating the disappearance of the spinod
symmetric diblock copolymer melts.29,30

Because fluctuation effects usually depend on spatia
mension, it is of interest to extend our theory to gene
spatial dimensiond. The generalization is fairly straightfor
ward with the following result for the inverse structure fact
at zero wavenumber:

S21~0!5SRPA
21 ~0!

1
1

2

1

~2p!d
AdF 4xa

f~12f!

VAVB

V̄2
E*

kd21dkS~k!

2
4~xa!2

@f~12f!#2

1

V̄2
~~12f!2VB

2f2VA!2E*
kd21dkS2~k!G , ~3.18!

whereAd is the area of ad-dimension sphere of unit length
Ad52pd/2/G(d/2), with G(x) the usual gamma-function
and the superscript* again indicates that the integral is to b
evaluated using dimensional regularization. In the ab
equation, the short wavelength fluctuations are understoo
have been incorporated through the definition ofxe using an
equation similar to Eq.~2.24!. SRPA

21 and S21 are given re-
spectively by Eqs.~2.32! and ~2.33!, and the Ornstein–
Zernike form of the structure factorS(k) @Eq. ~2.34!# is used
in the integrals.

The integrals in Eq.~3.18! can be easily evaluated usin
standard techniques55 to yield

E*
kd21dkSm~k!

5Sm~0!j2dE* xd21dx

~11x2!m

5
1

2
Sm~0!j2d

G~d/2!G~m2d/2!

G~m!
, ~m51,2!. ~3.19!

Using Eqs.~2.33! and~2.35! for S(0) andj, and noting that
xs is given by Eq.~2.16!, the above result becomes
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l

e
to

E*
kd21dkSm~k!

5
1

2

G~d/2!G~m2d/2!

G~m!

3S f~12f!VAVB

V̄
D m

j0
2dS 12

xa

xs
D 2m1d/2

. ~3.20!

Substituting this result into Eq.~3.18!, we obtain

xa5xe1
G~22d/2!

2d21pd/2j0
d

xaVA
2VB

2

V̄3
3F 1

d22
S 12

xa

xs
D d/221

1
1

4

xa

xs

„~12f!2VB2f2VA…
2

f~12f!VAVB
S 12

xa

xs
D d/222G .

~3.21!

It can be easily checked that the above equation redu
to Eq. ~2.30! when d53. As in three-dimension, the firs
term in the bracket of the above equation is due to criti
fluctuation and the second term arises from spinodal fluc
tion off the critical composition.

Equation~3.21! allows us to examine the importance
spatial dimension in determining the effects of long wav
length fluctuation. Criticality or the spinodal is defined b
S21(0)50. Clearly, forxa5xs , the first term in the bracke
diverges ford,2; this is a well-known result indicating tha
critical point does not exist in spatial dimensions less th
two in a binary fluid mixture.66 The second term diverges fo
d,4. Therefore, a true off-critical thermodynamic spinod
does not exist in spatial dimensions less than four; lo
wavelength fluctuations destroy the spinodal predicted
mean-field theory. Thus two and four represent the low
critical dimensions for the existence of the critical point a
of the off-critical spinodal, respectively. Further examinati
of the Ginzburg criteria near the critical point and in th
off-critical region near the spinodal shows that the upp
critical dimensions~above which mean-field behavior pre
vails! for the critical point and off-critical spinodal are re
spectively four and six, in agreement with know
results.5,26,28 The demonstration is fairly straightforward, s
we shall not engage in such an effort. Here we simply su
marize the effects of long wavelength fluctuation in differe
spatial dimensions. Ford,2, critical point does not exist
For 2,d,4, critical point exists but near the critical poin
determined by the Ginzburg criterion, the blend shows n
mean-field behavior; off-critical spinodal does not exist. F
4,d,6, critical behavior is mean-field-like, off-critica
spinodal can exist in thethermodynamicsense~note that this
conclusion is different from that suggested by the renorm
ization group study in Ref. 28!, but fluctuation effects be-
come important near the spinodal, which makes it kinetica
inaccessible. Constrained Monte Carlo techniques that s
press the unstable fluctuations leading to nucleation67 may
offer a possible means for observing the thermodyna
spinodal by extending the range of the metastable state
yond the kinetically possible. Finally, ford.6, mean-field
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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theory becomes an exact description of the full thermo
namic behavior of the blend with a well-defined spinodal

We now return to the three-dimension world. Becaus
true spinodal does not exist, the inverse susceptibility can
reach zero, except at the critical point. To accurately desc
the behavior of the susceptibility near the~nominal! spinodal
would require going beyond the simple one-loop theory,
cause well inside the Ginzburg region, higher-loop corr
tions can no longer be considered small. Nevertheless, s
interesting insights can be obtained if we take the one-l
theory as a complete self-consistent theory, which is not
tirely groundless, since the one-loop theory is indeed ex
for the O(n) model of phase transition in the limit ofn
→`.55

The approach to the~nominal! spinodal is controlled by
xe. However, the proximity of the system to the spinodal
reflected inxa. Physically, these twox’s should follow a
monotonic dependence. The relationship betweenxe andxa

is shown in Fig. 3. For smallxe/xs , xe andxa are equal to
each other, but begin to deviate from each other noticeabl
xe→xs . The monotonic increase ofxa with xe terminates at
the point shown by the ‘‘3’’ in the figure. This point thus
signals the physical limit of the one-loop theory, beyo
which a stable thermodynamic state is physically impossi
Mathematically, this point corresponds to]xe/]xa50. We
will term this point the pseudo-spinodal.68 An analytical ex-
pression can be obtained far off the critical composition
large molecular weights, with the result that

xps
e 5xsH 12

27

2~4p!2/3S l Al B

l̄
D

3S VAVB

V̄2 D 1/3

V̄21/3F ~~12f!2VB2f2VA!2

f~12f!VAVB
G 2/3J .

~3.22!

At the pseudo-spinodal, the correlation length reaches a fi
limiting value given by

j5j0~r ps
a !21/2, ~3.23!

where

r ps
a [12

xps
a

xs

5
9

2~4p!2/3S l Al B

l̄
D S VAVB

V̄2 D 1/3

3V̄21/3F ~~12f!2VB2f2VA!2

f~12f!VAVB
G 2/3

. ~3.24!

Sincer ps
a represents the closest possible distance ph

cally allowed in the one-loop theory, a minimum Ginzbu
number Gimin512xps

e /xs can be defined for the spinoda
which sets a lower bound for the Ginzburg number given
Eq. ~3.16!. This lower bound corresponds toc52 or Dk21

5(2/3)k0
21. In the next section, we examine the connect

between the pseudo-spinodal and the free energy barrie
nucleation.
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D. Implications for homogeneous nucleation

In this section, we explore the relationship between
pseudo-spinodal and the free energy barrier for homo
neous nucleation. An analytical expression for the free
ergy barrier for a binary fluid mixture close to the spinod
was derived by Cahn and Hilliard69 based on a mean-field
square-gradient free energy functional. Using a Flor
Huggins–de Gennes free energy functional for a weakly
homogenous binary polymer blend, we can transcribe
Cahn–Hilliard result into an expression in terms of the p
rameters of the polymer system. This transcription is done
Appendix D; the resulting free energy barrier is

DFnucl'2.23S l̄

l Al B
D 3/2S V̄2

VAVB
D 1/2

3
f~12f!VAVB

@~12f!2VB2f2VA#2 V̄1/2S 12
xe

xs
D 3/2

. ~3.25!

The use ofxe in the above equation is based on consid
ations given in Secs. II C and III A.

Binder first suggested the relevance of the Ginzburg
terion to nucleation and indeed used the nucleation free
ergy barrier as one way to derive the Ginzburg criterion
can be easily shown that Eq.~3.16! can be obtained by equa
ing this free energy barrier to some multiples of the therm
energy. However, for smallc in Eq. ~3.16!, the Ginzburg
criterion would correspond to a large multiple~of order 100
or more! of kT in the nucleation free energy barrier. Thu
conceptually, it is preferrable to distinguish between the
set of the Ginzburg region which simply signals noticea
deviation from mean-field behavior, and the condition o
small nucleation barrier. The pseudo-spinodal, on the o
hand, is more strongly correlated with the nucleation fr

FIG. 3. Relationship betweenxa andxe at a fixed compositionf50.1 for
symmetric blends atN51000 andN510 000. The parameterb3/v is cho-
sen to be 3.N is related to the polymer volumeV via Nb6/v25V/ l 3. The
dashed portion of the curve for each case denotes the unphysical sol
and the cross3 represents the limit of validity of the theory; this limit is
defined as the pseudo-spinodal. The pseudo-spinodal is located axe

50.618xs , xa50.832xs for N51000 and atxe50.807xs , xa50.927xs for
N510 000.
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energy barrier becoming of orderkT. At the pseudo-
spinodal, the free energy barrier is estimated to be 8.8kT
~recall thatkT is our unit of energy in this work!. This esti-
mate is close to the 10kT suggested by Binder4,5 and used in
our recent work.19 Since fluctuation at the pseudo-spinodal
quite significant, the actual free energy barrier is likely to
lower.

The conditionDFnucl;kT has been suggested by seve
researchers as defining the intrinsic limit
metastability.5,26,70,71 The phenomenalogical theories fo
nucleation rate developed by Langer72 and by Patashinski
and Shumilo70 indicate that whenDFnucl;kT, the lifetime of
the metastable state becomes comparable to the relax
time for local equilibrium.~Because of the Ginzburg crite
rion, the quantitative validity of these theories is questio
able very close to the spinodal.! The work of Müller et al.64

on homogeneous nucleation and growth in a binary polym
blend in the metastable critical regime reports that the
served nucleation and growth mechanism showed feat
that resemble spinodal decomposition even for very shal
quenches, suggesting the significant effects of fluctuation
the mechanims of phase separation kinetics.

In light of these considerations, we propose that
pseudo-spinodal defined in Sec. III C be identified as the
netic spinodal that delineates the boundary between
physically accessible metastable state and the inacces
~hence presumably unstable! state. We now provide a nu
merical estimate of the location of the pseudo-spinodal
the experimental systems studied by Lefebvreet al.20 Their
experiment used a binary blend of partially deuterated po
methylbutylene (A) and hydrogeneous polyethylbutylen
(B), with degrees of polymerizationNA53357 and NB

54260. Two compositions were studied:f50.161~sample
B1! and f50.099 ~sample B2!. The work reports unusua
behavior in the early stage of nucleation in the ranges 0
,x/xs'1 for sample B1~including one data point atx/xs

.1! and 0.7,x/xs,1 for sample B2. In particular, the
found that the critical length scale for nucleation—identifi
as the inverse of the wavenumber at which the scatte
intensity remains unchanged—decreases~rather than in-
crease! as x increases towards the mean-field spinodal. F
their system, VA5335 700 Å3, VA5426 000 Å3, l A

52.19 Å, andl B52.77 Å. Using these parameters, the l
cation of the pseudo-spinodal is numerically calculated to
at x/xs50.81 and 0.71, respectively, for samples B1 and B
@The approximate equation for the pseudo-spinodal
~3.22! yields 0.81 and 0.69, repsectively.# These numbers ar
very close to the corresponding experimental values at
onset of the anomalous nucleation behavior at these
compositions. Based on this agreement, it is reasonabl
conjecture that the pseudo-spinodal identified through
one-loop theory provides a good estimate of the kinetic sp
odal. Both the behavior of the critical length scale and
time evolution of the structure factor73 in the experiments of
Lefebvre et al. show features resembling spinod
decomposition.74 We thus suggest that the experimental co
ditions of Ref. 20 were such that the system was alre
beyond the kinetic spinodal.
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E. Simplified results for symmetric blends

The results in the previous sections are presented
general, conformationally asymmetric blends, because~1!
most experimental polymer blends are not molecularly sy
metric, and~2! conformation asymmetry leads to importa
local effects that do not exist in symmetric blends. Howev
the introduction of additional parameters to characterize
asymmetric blend complicates the appearance of the m
ematical results and obscures their simple scaling dep
dence on the degree of polymerization. In order to highlig
this scaling dependence, we consider the special case of
metric ~i.e., VA5VB andRA5RB! blends, and recast the re
sults using parameters that are more commonly employe
the theoretical literature, namely the degree of polymeri
tion N, the Kuhn lengthb and the monomer volumev. We
present a generalized phase diagram for the symmetric
and discuss the thermodynamic behavior and the kinetic
plications based on this phase diagram.

For a symmetric blend, the entropic contribution due
conformation asymmetry in Eq.~2.24! vanishes, and the re
lationship between the bare and renormalizedx assumes the
simple form

xe5xbS 11
18

p

v
lb2D 21

. ~3.26!

We note that, unlike the conformationally asymmetric ca
where the barexb and the cut-off lengthl can appear sepa
rately, here by expressingxb in terms ofxe, it is possible to
eliminate the appearance ofxb and l, so that only one pa-
rameter,xe, remains in the renormalized theory.

The self-consistent equation relating the apparentxa to
the real~effective! xe, Eq. ~2.30!, simplifies to

xa5xe1
27

A2p

v
b3 xaN21/2S 12

xa

xs
D 1/2

3F11
1

4

xa

xs

~122f!2

f~12f! S 12
xa

xs
D 21G ~3.27!

where now

xs5
1

2

1

Nvf~12f!
~3.28!

Equation~3.8! for the Ginzburg number in the limit o
largeN is

Gi1/25
27~11c!1/2

A2cp

v
b3 N21/2

3F11
~11c!

4

~122f!2

f~12f!
Gi21G . ~3.29!

At the critical composition forxe,xc (xc52/Nv), the
aymptotic scaling result is

Gi[12
xG

e

xc
5

729~11c!

2c2p2

v2

b6

1

N
. ~3.30!

and the Ginzburg number Gi8 that determines the validity o
the binodal curve is
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Gi[
xG

e 8

xc
215

729~11c!

4c2p2 F11
3

2
~11c!G2 v2

b6

1

N
.

~3.31!

For the off-critical spinodal, the Ginzburg number is

Gi[12
xG

e

xs

5
9

2~2cp!2/3 ~11c!
v2/3

b2 N21/3F ~122f!2

f~12f! G2/3

. ~3.32!

Finally, the pseudo-spinodal occurs at

xps
e 5xsH 12

27

2~4p!2/3

v2/3

b2 N21/3F ~122f!2

f~12f! G2/3J .

~3.33!

We note that the same combinationN̄[Nb6v22 appears
in all the above expressions. This is the same parameter
determines the concentration fluctuation effects in diblo
copolymers identified by Fredrickson and Helfand.29 Apart
from the numerical prefactors, the scaling withN of the
Ginzburg number in the critical and off-critical spinodal r
gimes is identical with the earlier results of de Gennes7 and
Binder.5 However, these scaling results require quite la
degrees of polymerization as can be seen from Fig. 2.

The pseudo-spinodal differs from the mean-field sp
odal by;N21/3. In the limit of N→`, the pseudo-spinoda
becomes the same as the mean-field spinodal. Thus the
modynamic spinodal is recovered in the limit of infinite m
lecular weight. This is consistent with the result reached
renormalization group study of Gunton and Yalabik75 for
systems with infinitely long-ranged interactions. For mod
ately long polymers typically used in experiments, beca
of the slow N21/3 decrease and fairly large prefactor~for
systems well off the critical composition!, the pseudo-
spinodal can occur significantly before the mean-field sp
odal. We believe this to be the case for the system studie
Balsara and co-workers.

We summarize the phase behavior for symmetric po
mer blends by presenting a generalized phase diagram in
4. The thick and thin solid lines represent the binodal a
mean-field spinodal curves, respectively. Except for poss
ends effects, these two curves are independent ofN. The
pseudo-spinodal is indicated by the dash-dot curve76 and the
onset of the Ginzburg criterion~hereafter referred to as th
Ginzburg curve! is shown by the dash curve. These tw
curves depend onN and both move closer to the mean-fie
spinodal whenN increases. The onset of the Ginzburg cri
rion depends in addition on the choice ofc; a largerc moves
the curve closer to the spinodal. In the figure, we choseN
53000, b3/v53 andc50.1.

We now discuss the thermodynamic and kinetic beh
iors based on this phase diagram. Since the phase diagra
symmetric, we focus on the left half. Below the Ginzbu
curve~the dash line!, mean-field theory provides a good d
scription of the blend. For example, the structure factor
well described by the RPA form~with the effectivexe!. The
Ginzburg curve and the binodal intersect at a specialxG

e 8
with the correspondingfG8 . The portion of the binodal for
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f.fG8 and xe,xG
e 8 will be strongly altered to become

Ising-like by large concentration fluctuations. Nucleation
the metastable state of this region will be non-mean-fie
like and will involve nonclassical exponents.5 Above xG

e 8,
between the binodal and the Ginzburg curve, nucleat
should be well described by mean-field theory, such as
self-consistent field theory19 ~with the effectivexe!. In the
metastable region between the Ginzburg curve and
pseudo-spinodal, deviation from mean-field behavior sho
become significant. However, there can still be a la
enough nucleation free energy barrier for the metastable s
to be long-lived. When the system reaches the pseu
spinodal, the free energy barrier becomes of orderkT and the
lifetime of the metastable state becomes comparable to
local diffusive relaxation time. The essence of the describ
scenario was already discussed in the work of Binder.5 How-
ever, our study represents an improvement in several
spects. First, our new phase diagram uses a single un
Ginzburg criterion for both the critical and off-critical spin
odal regimes whereas two separate and discontinuous
zburg criteria were used in Ref. 5 Second, while the G
zburg criterion is related to the free energy barrier
nucleation, conceptually we suggest that a distinction
made between the kinetic limit of the metastable state
the Ginzburg criterion which simply signals the onset of s
nificant deviation from RPA-like behavior but does not ne
essarily imply a small free energy barrier for nucleation. T
pseudo-spinodal we introduced in the work is a better m
sure for the kinetic spinodal. Finally, our general results~al-
lowing conformation asymmetry and applicable for expe
mentally relevant molecular weights! can be used to make
quantitative predictions for specific systems.

FIG. 4. A generalized phase diagram for a symmetric blend withN53000
and b3/v53 showing the mean-field binodal~thick solid line!, the mean-
field spinodal~thin solid line!, the pseudo-spinodal~dash-dot line!, and the
loci of the condition~3.7! which defines the Ginzburg criterion~dash line!.
N is related to the polymer volumeV via Nb6/v25V/ l 3. One may notice
that the pseudo-spinodal goes slightly below the binodal in the immed
vicinity of the critical point. This artifact is due in part to the use of mea
field theory in calculating the binodal and in part to the breakdown of
one-loop theory near the critical point because of Ising-like fluctuations
can only be captured by renormalization group methods.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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IV. CONCLUSIONS

The field-theoretic loop expansion provides a system
technique for studying fluctuation effects in binary polym
blends. We have addressed a number of issues within
framework of a renormalized one-loop theory. By examini
the fluctuation effects on different length scales, the phys
significance of the various possible definitions ofx is clari-
fied. It is shown that the realx parameter that characterize
the molecular compatibility between two polymers isxe

which includes fluctuation and correlation effects up to
polymer size arising from both the enthapic interacti
~modeled by the barexb! effects and entropic packing effec
due to conformation asymmetry. SANS measurement of
structure factor defines an apparentxa which is related toxe

by a nonlinear self-consistent equation that includes ren
malization effects due to long wavelength critical and o
critical spinodal fluctuations. While these qualitative insigh
are not new, our theory provides a simple and transpa
relationship among these differentx parameters and the sel
consistent equation betweenxa and xe includes effects not
captured in previous theories.

Our fluctuation theory provides a natural framework f
identifying the range of validity of mean-field theory in d
scribing the thermodynamic behavior of a binary polym
blend. By considering the relative importance of the fluctu
tion correction to the inverse susceptibility, a unifie
Ginzburg criterion is derived that is applicable to both t
critical and the off-critical spinodal regimes and provides
smooth crossover between these two regimes. The com
Ginzburg criterion is shown to always involve the compo
tion, in addition to temperature orxe. While the Ginzburg
number we derived exhibits the same scaling with molecu
weight in the respective limiting cases as studied earlier
de Gennes and Binder, very long polymers are required
reach the scaling regime. For moderately long polymers,
nonclassical regions are significantly wider than commo
believed.

An important result of this work concerns the nature
the spinodal. Long wavelength composition fluctuation n
the off-critical spinodal produces a stronger singular con
bution to the inverse susceptibility than the normal critic
fluctuation, resulting in the destruction of the mean-fie
spinodal in three-dimension. Consequently, even in
purely thermodynamic sense, there is no true divergenc
the susceptibility in binary fluid mixtures with a finite spati
range of interactions, except at the critical point. Nevert
less, the distance to the mean-field spinodal when expre
either in terms of the apparentxa or the truexe ~but not the
bare xb!! provides a meaningful measure of the width
fluctuation-dominant region. By examining the physical lim
of the one-loop theory, we identify a pseudo-spinodal
which the correlation length or susceptibility reaches a fin
maximum. The pseudo-spinodal precedes the mean-
spinodal by an amount;N21/3 and merges with the latter in
the limit of infinitely long chains. The pseudo-spinodal
shown to be strongly correlated with the free energy bar
for nucleation becoming orderkT. Therefore we suggest tha
the pseudo-spinodal be taken as the physical or kinetic s
odal separating the physically accessible metastable state
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the unstable state. The calculated location of the pseu
spinodal for the two samples used in the recent experime
work of Lefebvreet al.20 on nucleation in a binary polyme
blend agrees with the onset of the anomalous, spino
decomposition-like nucleation behavior found in the expe
ment, thus strongly suggesting that the system in the exp
ment was beyond the kinetic spinodal.

We conclude by commenting on the approximations a
assumptions in our theory. In this work, we use a coar
grained model of the polymer blend where the polymers
assumed to be continuous Gaussian chains interacting w
two-body local pseudo-potential subject to a constant lo
overall density~incompressibility! constraint. In doing so,
we have chosen to focus on the effects of concentration fl
tuation at length scales larger than the Kuhn lengths of
polymers. Thus we have neglected effects due to local liq
structure and finite compressibility; these effects have b
shown to be important contributing factors to the compo
tion, temperature and pressure dependence of the Flo
Huggins parameter and have been amply studied by o
approaches. These effects generally give rise to a much m
involved expression than Eq.~2.24! for the effectivexe pa-
rameter in terms of the molecular parameters. Strong c
position dependence inxe and the coupling between densi
and composition fluctuations may add to additional terms
our self-consistent equation~2.30!, but the form of the lead-
ing singular terms will be unaltered, and most of the qua
tative conclusions, such as the nonexistence of a thermo
namic spinodal, will remain valid. It is possible to includ
the equation of state effects explicitly into the coarse-grain
field-theoretic model;77,78 in future work we plan to examine
such additional effects.

Our one-loop theory represents the lowest-order corr
tion beyond mean-field theory. Renormalization of the p
rameters in the fluctuation correction terms in effect su
over a subset of an infinite number of terms in the pertur
tion expansion, thus extending the range of applicability
the theory from its bare form and allowing some importa
effects~such as the nonexistence of a thermodynamic sp
odal! to be captured. However, a loop expansion is ina
equate for describing the full effects of long waveleng
critical or spinodal fluctuations, such as nonclassical ex
nents; the renormalization group theory is required. Inde
Belyakov and Kiselev derived the Ginzburg criterion ne
the critical point by using the renormalization grou
method.11 However, a renormalization group treatment of t
crossover from the critical regime to the off-critical spinod
regime is technically challenging, because these two regi
are governed by two different upper critical dimensions~four
and six, respectively!. Even for the off-critical spinodal
alone, since our physical dimensiond53 is far off the upper
critical dimension six and is below the lower critical dime
sion four, the validity of ane-expansion (e[62d) approach
is questionable. The one-loop theory, in spite of its limi
tions, provides a simple, unified theoretical framework
capturing a number of fluctuation effects including the cro
over from the critical point to the off-critical spinodal.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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APPENDIX A: TRANSFORMATION
OF THE PARTITION FUNCTION
INTO A FUNCTIONAL INTEGRAL

In this appendix, we briefly sketch the transformation
the partition function Eq.~2.5! into a functional integral.54,79

Introducing collective variablesfa(r ) through the iden-
tity

)
r
E Dfa~r !d~fa~r !2f̂a~r !!51 ~A1!

and using the Fourier representation of thed-function, we
can rewrite the partition function as a multi-fold function
integral

J~m,V!5E DfAE DfBE DWAE DWB)
r

d~fA~r !

1fB~r !21!exp$2K@fA~r !,fB~r !,

WA~r !,WB~r !#%, ~A2!

where

K5xE drfAfB2 i E dr ~WAfA1WBfB!

1I @m,WA ,WB#. ~A3!

The integration over the auxiliary fieldsWA(r ) and WB(r )
results from the Fourier representation of thed-function in
Eq. ~A1!. In arriving at Eq.~A2!, we have replacedf̂a(r ) by
fa(r ) using the identity Eq.~A1! and have exchanged th
order of integration over the functional variablesfa(r ),
Wa(r ) with integration over the configuration of the polym
chains.I is the result of the latter integration and is given

exp~2I !

5 (
nA50

`

(
nB50

`
1

nA!nB!

3
1

~VA!nA~VB!nB
exp~mnAVA!ZA

nAZB
nB

3expFexp~mVA!ZA~WA~r !!

VA
1

ZB~WB~r !!

VB
G , ~A4!

whereZA and ZB are the single-chain configurational int
grals in the presence of external fieldsWA(r ) and WB(r ),
respectively.Za can be obtained from

Za~Wa!5E drqa~r ,1!, ~A5!
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,
-

f

whereqa(r ,1) is a reduced partition function for a chain wit
one end atr and the other end free that satisfies the followi
diffusion equation

S ]

]t
2

Ra
2

6
¹ r

21 iVaWa~r ! Dq~r ;t!50 ~A6!

with initial condition q(r ;0)51. Because the system is in
compressible, the local composition is uniquely specified
eitherfA(r ) or fB(r )512fA(r ). We denotefA(r ) simply
by f(r ); the integration overfB(r ) in Eq. ~A2! can be trivi-
ally performed to yield Eq.~2.8!.

APPENDIX B: FREE ENERGY CALCULATION
THROUGH A LOOP EXPANSION

We start with the representation of the grand partiti
function Eq. ~2.10! and develop an expansion in the loo
parametera to first order ina.

The zeroth-order approximation for evaluating the fun
tional integral is the steepest descent or saddle point appr
mation. This involves finding the stationary point of th
functional K with respect to its variables and equating t
grand free energyG with the stationary value ofK. Setting
the functional derivatives ofK with respect to the field vari-
ables to zero and noting that the saddle-point values ofWa

lie on the imaginary axis, we obtain

wA,0~r !2wB,0~r !5xb~122f0~r !!, ~B1!

f0~r !5exp~mVA!E
0

1

dtqA~r ,12t!qA~r ,t!, ~B2!

12f0~r !5E
0

1

dtqB~r ,12t!qB~r ,t!, ~B3!

where we have definedwa,05 iWa,0 so that all the variables
are now real and theqa(r ,1)’s are solved from Eq.~A6!. The
subscript 0 refers to the saddle-point or zeroth-order appr
mation.

Equations~B1!–~B3! are nothing but the self-consisten
field equations for an inhomogeneous binary polymer ble
They can be easily solved for the case of a homogenous
with uniform composition, with the results

wA,02wB,05xb~122f0!, ~B4!

f05exp~mVA2wA,0VA!, ~B5!

12f05exp~2wB,0VB!, ~B6!

It is more convenient to write the solutions in terms
wA,0 , wB,0 andm as functions of the compositionf0 ; doing
so we obtain

wA,05xb~12f0!2
1

VB
ln~12f0!, ~B7!

wB,052
1

VB
ln~12f0!, ~B8!

and

m5
1

VA
ln f02

1

VB
ln~12f0!1xb~122f0!. ~B9!
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These results can be substituted into Eq.~A3! to yield the
grand potential per unit volume as

g05
1

VA
ln~12f0!2

f0

VA
2

12f0

VB
1xbf0

2, ~B10!

from which we obtain the Helmholtz free energy density

f 0~f0!5
f0

VA
@ ln f021#1

12f0

VB
@ ln~12f0!21#

1xbf0~12f0!. ~B11!

The free energy of mixing can be easily obtained with
result

f mix,0~f0!5
f0

VA
ln f01

12f0

VB
ln~12f0!

1xbf0~12f0!. ~B12!

This is just the Flory–Huggins free energy.
To calculate corrections to the mean-field~self-

consistent field! result, we expand the field variables arou
their saddle-point values:

f~r !5f01df~r !, ~B13!

iWA~r !5wA,01 idWA~r !, ~B14!

iWB~r !5wB,01 idWB~r !. ~B15!

To order a, only the quadratic terms indf(r ) and
dWa(r ) are required; higher order terms contribute to ord
a2 or higher.55 Performing the straightforward Gaussian i
tegrals, we obtain, to ordera, the grand free energy

G~m,V!5Vg~m!

5V @g0~f0~m!!1ag1~f0~m!!1O~a2!#,

~B16!

where

g1~f0!5
1

2~2p!3 E dkH ln@f0VADA~xA!

1~12f0!VBDB~xB!#1 lnF122xb

3
f0~12f0!VAVBDA~xA!DB~xB!

f0VADA~xA!1~12f0!VBDB~xB!G J , ~B17!

whereDa(xa) is the Debye function

Da~xa!52xa
22@xa1exp~2xa!21# ~B18!

with xa5k2Ra
2/6. In writing Eq.~B17! we have made use o

the saddle-point solution, Eqs.~B7!–~B9!.
To ordera, the volume fractionf is obtained by

f52
]g

]m
5f01af11O~a2!. ~B19!

Now the Helmholtz free energy is obtained by an inve
Legendre transform:
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e

r

e

f ~f!5g~m!1mf

5g0~f0~m!!1ag1~f0~m!!1O~a2!1mf

5g0~f!1mf1g0~f0!2g0~f!1ag1~f0!1O~a2!.

~B20!

Due to the stationarity of theg0 at f0 , the difference
g0(f0)2g0(f) is O(a2). Also, to ordera, we can replace
the argumentf0 by f in g1 . Therefore,

f ~f!5 f 0~f!1ag1~f!1O~a2!, ~B21!

where f 0(f) is the same function as Eq.~B11! with f0 re-
placed byf. Equation~2.11! follows from the definition of
the free energy of mixing Eq.~2.4!.

APPENDIX C: RELATIONSHIP
TO PHENOMENALOGICAL FIELD THEORY

In this appendix, we~1! show that the self-consisten
equation for the inverse structure factor Eq.~3.18! corre-
sponds to a one-loop expansion of ac3-c4 field theory,~2!
comment on the validity of using the Flory–Huggins–
Gennes free energy for study fluctuation in polymer blen
and ~3! conjecture the possible structure of a one-loop flu
tuation theory for diblock copolymers.

Consider the following Lagrangian functional:

L5E dr H 1

2
@~2xs22xe!c2~r !12xsj0

2~¹c~r !!2#

1
1

3!
g3,0c

3~r !1
1

4!
g4,0c

4~r !J . ~C1!

Obviously, the RPA structure factor is simply

SRPA~k!5
1

2xs22xe12xsj0
2k2 . ~C2!

Including fluctuations due to thec3 andc4 nonlinearity
to one-loop order, we obtain

S21~0!5SRPA
21 ~0!1

1

2

Ad

~2p!d g4,0E kd21dkSRPA~k!

2
1

2

Ad

~2p!d ~g3,0!
2E kd21dkSRPA

2 ~k!. ~C3!

Replacing SRPA(k) by S(k) in the fluctuation correction
terms by substitutingxa for xe, and similarly ing3,0 and
g4,0, we obtain a renormalized self-consistent equation
S(0):

S21~0!5SRPA
21 ~0!1

1

2

Ad

~2p!d g4E kd21dkS~k!

2
1

2

Ad

~2p!d g3
2E kd21dkS2~k!, ~C4!

whereg3 andg4 are the same functions as the correspond
g3,0 andg4,0 with xe replaced byxa.

Comparing the above equation with Eq.~3.18! and re-
calling the substitution ofxe by xa in the renormalized equa
tion, we identify
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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g3,05
2xe

f~12f!

1

V̄
@~12f!2VB2f2VA# ~C5!

and

g4,05
4xe

f~12f!

VAVB

V̄2
. ~C6!

We note that the functional Eq.~C1! with the above ver-
tex functions cannot be obtained from an expansion using
Flory–Huggins de Gennes theory. Therefore, previous w
that treats fluctuation in binary polymer blends using
Flory–Huggins–de Gennes free energy is not justified fr
first principles and should be considered phenomenalogi

For the case of diblock copolymer, an equation similar
Eq. ~C4! is expected. In general the last term is nonvanish
except for the symmetric case~where mean-field theory pre
dicts a direct transition from the disordered phase to
lamellar phase! and will contribute significantly to the renor
malization equation betweenxa and xe near the ODT. In-
deed, by simple power counting, one can show that theg3

term results in a stronger singularity (12xa/xs)
23/2 than the

(12xa/xs)
21/2 term due tog4 included in the work of Fre-

drickson and Helfand.29 At the phenomenalogical level, th
effects due to nonvanishingg3 can be addressed starting wi
the Leibler free energy, a task that remains to be done. H
ever, it should be clear from the discussions in this appen
that the Leibler free energy~the analog of the Flory–
Huggins–de Gennes free energy! would not yield the correct
vertex functions for studying fluctuations.

APPENDIX D: NUCLEATION BARRIER
NEAR THE MEAN-FIELD SPINODAL

In this appendix, we provide an expression for the fr
energy barrier for homogeneous nucleation near the spino
A general theory for nucleation in binary fluid mixture ne
the spinodal was developed some time ago by Cahn
Hilliard69 based on a square-gradient density functional f
mulation. Near the spinodal, the excess free energy for
inhomogenous system can be expanded as a functional
lor expansion around the uniform densityf of the homoge-
neous metastable state, as

DF5E dr F1

2
f (2)c2~r !1

1

3!
f (3)c3~r !1z~¹c2~r !!2G ,

~D1!

wherec(r )5f(r )2f. f (2) and f (3) are respectively the sec
ond and third derivatives of the free energy and it should
understood that these derivatives are evaluated at the
composition. The absence of the linear term reflects the
that a metastable state corresponds to a local free en
minimum. Following Cahn and Hilliard, we rewrite th
above equation as

DF5E dr @h~3tc2~r !2c3~r !!1z~¹c~r !!2#, ~D2!

where
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h52
1

3!
f (3) ~D3!

and

t52
f (2)

f (3) . ~D4!

By identifying an inhomogenous saddle point of the abo
free energy, Cahn and Hilliard obtained the following fr
energy barrier for the formation of the critical nucleus:

DFnucl'197h21/2z3/2t3/2. ~D5!

Using the free energy Eq.~B11!, and the de Gennes ex
pression for the coefficient of the square gradient of a po
mer blend,3 we have

h5
1

6

~12f!2VB2f2VA

f2~12f!2VAVB
, ~D6!

t5
f~12f!V̄

~12f!2VB2f2VA
S 12

x

xs
D , ~D7!

and

z5
1

36

l̄

f~12f!l Al B
. ~D8!

The free energy barrier is then

DFnucl'2.23S l̄

l Al B
D 3/2S V̄2

VAVB
D 1/2

3
f~12f!VAVB

@~12f!2VB2f2VA#2 V̄1/2S 12
x

xs
D 3/2

. ~D9!

The x appearing in the above equations should be in
preted as thexe, in accordance with our discussions on t
x-parameter issue.
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the x parameter has the dimension of 1/volume.

3P.-G. de Gennes, J. Chem. Phys.72, 4756~1980!; P. Pincus,ibid. 75, 1996
~1981!.

4K. Binder, J. Chem. Phys.79, 6387~1983!.
5K. Binder, Phys. Rev. A29, 341 ~1984!.
6V. L. Ginzburg, Sov. Phys. Solid State2, 1824 ~1960!; A. P. Levanyuk,
Sov. Phys. JETP36, 571 ~1959!.

7P.-G. de Gennes, J. Phys. Lett.~Paris! 38, L-441 ~1977!; see also J.-F.
Joanny, J. Phys. A11, 117 ~1978!.

8P.-G. de Gennes,Scaling Concepts in Polymer Physics~Cornell University
Press, Ithaca, NY, 1979!.

9F. S. Bates, J. Rosedale, P. Stepanik, T. P. Lodge, P. Wiltzius, G
Fredrickson, and R. P. Hjelm, Phys. Rev. Lett.65, 1893~1990!.

10D. W. Hair, E. K. Hobbie, A. I. Nakatani, and C. C. Han, J. Chem. Ph
96, 9133~1992!.

11M. Y. Belyakov and S. B. Kiselev, Physica A190, 75 ~1992!.
12M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Physica A188,

487 ~1992!.
13B. Chu, Q. Ying, K. Linliu, P. Xie, T. Gao, Y. Li, T. Nose, and M. Okada

Macromolecules25, 7382~1992!.
14D. Schwahn, S. Janssen, and T. Springer, J. Chem. Phys.97, 8775~1992!;

D. Schwahn, G. Meir, K. Mortensen, and S. Janssen, J. Phys. II4, 837
~1994!; D. Schwahn, T. Schmackers, and K. Mortensen, Phys. Rev. E52,
R1288~1995!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



re

y

em

em

da

,

cu

,

.

ev
r,

ac
.

.

as

.

ory

ms,

e-

h,

H.

ac-

sion

use
e

.

ced

n

500 J. Chem. Phys., Vol. 117, No. 1, 1 July 2002 Zhen-Gang Wang
15H. Frielinghaus, D. Schwahn, J. Dudowicz, K. F. Freed, and K. W. Fo
man, J. Chem. Phys.114, 5016~2001!.

16J. Dudowicz, M. Lifschitz, K. F. Freed, and J. F. Douglas, J. Chem. Ph
99, 4804~1993!.

17M. Lifschitz, J. Dudowicz, and K. F. Freed, J. Chem. Phys.100, 3957
~1994!.

18A. M. Nemirovsky, M. G. Bawendi, and K. F. Freed, J. Chem. Phys.87,
7272 ~1987!; J. Dudowicz and K. F. Freed, Macromolecules24, 5076,
5096, 5112~1991!; K. F. Freed and J. Dudowicz,ibid. 29, 625 ~1996!.

19S. M. Wood and Z.-G. Wang, J. Chem. Phys.116, 2289~2002!.
20A. A. Lefebvre, J. H. Lee, N. P. Balsara, and B. Hammouda, J. Ch

Phys.116, 4777~2002!.
21B. Chu, F. J. Schoenes, and M. E. Fisher, Phys. Rev.185, 219 ~1969!.
22R. J. Speedy and C. A. Angell, J. Chem. Phys.65, 851 ~1976!.
23K. Binder, Ann. Phys.~N.Y.! 98, 390 ~1976!.
24D. W. Heermann, W. Klein, and D. Stauffer, Phys. Rev. Lett.49, 1262

~1982!.
25P. G. Debenedetti,Metastable Liquids: Concepts and Principles~Princ-

eton University Press, Princeton, 1996!.
26W. Klein and C. Unger, Phys. Rev. B28, 445 ~1983!; C. Unger and W.

Klein, ibid. 29, 2698~1984!.
27J. L. Lebowitz and O. Penrose, J. Math. Phys.7, 98 ~1966!; O. Penrose

and Lebowitz, J. Stat. Phys.3, 211 ~1971!.
28Y. Saito, Prog. Theor. Phys.59, 375 ~1978!.
29G. H. Fredrickson and E. Helfand, J. Chem. Phys.87, 697 ~1987!.
30S. A. Brazovskii, Sov. Phys. JETP41, 85 ~1975!.
31A. M. Mayes and M. O. de la Cruz, J. Chem. Phys.95, 4670~1991!.
32E. F. David and K. S. Schweizer, J. Chem. Phys.100, 7767~1994!; 100,

7784 ~1994!.
33F. S. Bates, M. Muthukumar, G. D. Wignall, and L. J. Fetters, J. Ch

Phys.89, 535 ~1988!.
34C. C. Han, B. J. Bauer, J. C. Clark, V. Muroga, Y. Matsushita, M. Oka

Q. Tran-Cong, T. Chang, and I. C. Sanchez, Polymer29, 2002~1988!.
35R. Krishnamoorti, W. W. Graessley, N. P. Balsara, and D. J. Lohse

Chem. Phys.100, 3894~1994!.
36S. Janssen, D. Schwahn, K. Mortensen, and T. Springer, Macromole

26, 5589~1993!; B. Hammouda and B. Bauer,ibid. 28, 4505~1995!.
37T. P. Russell, T. E. Karis, Y. Gallot, and A. M. Mayes, Nature~London!

368, 729 ~1994!; T. E. Karis, T. P. Russell, Y. Gallot, and A. M. Mayes
Macromolecules28, 1129~1995!.

38I. C. Sanchez and R. H. Lacombe, J. Phys. Chem.80, 2352~1976!; R. H.
Lacombe and I. C. Sanchez,ibid. 80, 2568~1976!; I. C. Sanchez and R. H
Lacombe, Macromolecules11, 1145~1978!.

39S. K. Kumar, B. A. Veytsman, J. K. Maranas, and B. Crist, Phys. R
Lett. 79, 2265 ~1997!; M. Beiner, G. Fytas, G. Meier, and S. K. Kuma
ibid. 81, 594 ~1998!; S. K. Kumar, Macromolecules33, 5285~2000!.

40J. K. Taylor, P. G. Debenedetti, W. W. Graessley, and S. K. Kumar, M
romolecules29, 764 ~1996!; J. K. Taylor-Maranas, P. G. Debenedetti, W
W. Graessley, and S. K. Kumar,ibid. 30, 6943~1997!.

41K. S. Schweizer and J. G. Curro, Phys. Rev. Lett.58, 246 ~1987!; J. G.
Curro and K. S. Schweizer, J. Chem. Phys.87, 1842~1987!.

42K. S. Schweizer, Macromolecules26, 6033, 6050~1993;!.
43K. F. Freed and J. Dudowicz, Macromolecules31, 6681~1998!.
44J. E. G. Lipson, J. Chem. Phys.96, 1418~1992!; J. E. G. Lipson and S. S

Andrew, ibid. 96, 1426~1992!; J. E. G. Lipson and P. K. Brazhnik,ibid.
98, 8178~1993!; J. Luettmer-Strathmann and J. E. G. Lipson, Fluid Ph
Equilib. 151, 649 ~1998!.

45P. D. Gujrati, Phys. Rev. E54, 2723 ~1996!; J. Chem. Phys.108, 5104
~1998!.

46J. Melenkevitz, B. Crist, and S. K. Kumar, Macromolecules33, 6869
~2000!.
Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AI
-

s.

.

.

,

J.

les

.

-

e

47F. S. Bates and G. H. Fredrickson, Macromolecules27, 1065 ~1994!; G.
H. Fredrickson, A. J. Liu, and F. S. Bates,ibid. 27, 2503~1994!.

48G. E. Garas and M. K. Kosmas, J. Chem. Phys.103, 10790~1995!.
49M. O. de la Cruz, S. F. Edwards, and I. C. Sanchez, J. Chem. Phys89,

1704 ~1988!.
50However, with some proper modification and reinterpretation, the the

in Ref. 49 would yield results identical to ours for symmetric blends.
51C. Singh, K. S. Schweizer, and A. Yethiraj, J. Chem. Phys.102, 2187

~1995!.
52A. Yethiraj and K. S. Schweizer, J. Chem. Phys.97, 5927~1992!; 98, 9080

~1993!.
53D. Chandler, Phys. Rev. E48, 2898~1993!.
54For a recent review of the field-theoretic methods in polymeric syste

see G. H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules35, 16
~2002!.

55D. J. Amit, Field Theory, the Renormalization Group, and Critical Ph
nomena~World Scientific, Singapore, 1984!.

56E. Helfand and A. M. Sapse, J. Chem. Phys.62, 1327~1975!.
57E. A. Guggenheim, Proc. R. Soc. London, Ser. A183, 203 ~1944!.
58A. Sariban and K. Binder, Macromolecules21, 711 ~1988!; H. P. Deutsch

and K. Binder,ibid. 25, 6214~1992!.
59J. Dudowicz and K. F. Freed, Macromolecules26, 213 ~1993!; J. Chem.

Phys.100, 4653~1994!.
60J. D. Londono, A. H. Narten, G. D. Wignall, K. G. Honnell, E. T. Hsie

T. W. Johnson, and F. S. Bates, Macromolecules27, 2864~1994!.
61W. W. Maurer, F. S. Bates, T. P. Lodge, K. Almdal, K. Mortesen, and G.

Fredrickson, J. Chem. Phys.108, 2989~1998!.
62R. Krishnamoorti, W. W. Graessley, N. P. Balsara, and D. J. Lohse, M

romolecules27, 3073~1984!.
63D. J. Amit, J. Phys. C7, 3369~1974!.
64G. Müller, D. Schwahn, and T. Springer, Phys. Rev. E55, 7267~1997!.
65We do not include the unstable part of the phase diagram in our discus

as this would require going beyond a thermodynamic treatment.
66In this discussion, we have deliberately avoided including the ‘‘5’’ in the

inequalities involving the upper and lower critical dimensions, beca
subtle ~often logarithmic! corrections complicate the situation in thes
critical dimensions.

67D. S. Corti and P. G. Debenedetti, Chem. Eng. Sci.49, 2717~1994!; Ind.
Eng. Chem. Res.34, 3573 ~1995!; D. S. Corti, P. G. Debenedetti, S
Sastry, and F. H. Stillinger, Phys. Rev. E55, 5522~1997!.

68This pseudo-spinodal is not to be confused with the same term introdu
in Ref. 21.

69J. W. Cahn and J. E. Hilliard, J. Chem. Phys.31, 688 ~1959!.
70A. Z. Patashinskii and B. I. Shumilo, Sov. Phys. Solid State22, 655

~1980!.
71S. B. Kiselev and I. G. Kostyukova, J. Chem. Phys.98, 6455~1993!; S. B.

Kiselev, Physica A269, 252~1999!; S. B. Kiselev and J. F. Ely,ibid. 299,
357 ~2000!.

72J. S. Langer, Ann. Phys.~N.Y.! 54, 258 ~1969!; J. S. Langer, inSystems
Far From Equilibrium, edited by L. Garrido~Springer Verlag, Heidelberg,
1980! pp. 12–47.

73N. P. Balsara, private communication.
74J. W. Cahn, Acta Metall.9, 795 ~1961!; H. E. Cook,ibid. 18, 297 ~1970!.
75J. D. Gunton and M. C. Yalabik, Phys. Rev. B18, 6199~1978!.
76N. P. Belsara~private communication! envisioned a similar curve based o

the extrapolated divergence of the critical size of the nuclei.
77H. Tang and K. F. Freed, J. Chem. Phys.94, 1572~1991!.
78C. Yeung, R. C. Desai, A.-C. Shi, and J. Noolandi, Phys. Rev. Lett.72,

1834 ~1994!.
79K. M. Hong and J. Noolandi, Macromolecules14, 727 ~1981!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


