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A theory for concentration fluctuations in binary polymer blends is developed using field-theoretic
techniques. The theory provides a simple, unified framework for addressing a number of important
issues. First, consideration of the fluctuation and correlation effects on different length scales leads
to a clarification of three differeny parameters and their interrelationship. By incorporating
interaction(modeled by the barg®) and packing effects up to the polymer size, an effecjife
emerges as the natural parameter for characterizing the molecular compatibility of the two polymer
species. The measured quantity in small-angle neutron scatt€BAYlS) experiments is an
apparenty? that includes long wavelength critical and spinodal fluctuations, and is relatgfl to
through a self-consistent equationy® exhibits the typical upward parabolic composition
dependence observed in experiments and computer simulations. Second, a unified Ginzburg
criterion involving both the composition and temperat(we temperaturelike variablaés derived

that is applicable to both the critical and the off-critical spinodal regimes. The common
characterization of the Ginzburg criterion in terms of a range of temper&auremperaturelike
variable alone is generally inadequate. The molecular weight scaling proposed by de Gennes and
Binder in the respective critical and off-critical spinodal regimes are recovered as speciaihcases
the limit of large molecular weightsFor typical molecular weights used in experiments the
Ginzburg region is larger than commonly believed. Finally, the nature oftlieemodynamic
spinodal is examined. It is shown that a true off-critical thermodynamic spinodal does not exist in
spatial dimensions less than 4. In its place, a pseudo-spinodal can be defined where the susceptibility
reaches a finite maximum. The pseudo-spinodal precedes the mean-field spinodal but approaches the
latter in the limit of infinite molecular weights. The pseudo-spinodal correlates strongly with the free
energy barrier for nucleation becoming orddr. Thus it provides a kinetic limit for the physically
accessible metastable state, beyond which phase separation may exhibit features characteristic of
spinodal decomposition. The calculated location of the pseudo-spinodal for two samples used in a
recent experiment of Balsara and co-workers agrees with the onset of spinodal-decomposition-like
nucleation observed in the experiement. 2002 American Institute of Physics.
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I. INTRODUCTION (NBUB)UZ
¢C:(N v )1/2+(N v )1/2! (12)
Much of our understanding of the thermodynamic—and ATA BB
indeed dynamic—behaviors of binary polymer blends is [(Nava) Y2+ (Ngvg)*2)?
based on the Flory—Huggins theory, epitomized in the fol-  Xc™ 2NANgv v . 1.3

lowing simple equation for the free energy of mixing per unit _ o N
volume?l The spinodal curve, the limit of metastability of the one-

phase state, is given by

froix() & 1-¢ _1 #Nava+(1—¢)Ngvg
T N M N (= @)+ xd(1- ), X™3 (1= $)Nw Navs -
(1.9

(1.9

In addition to predicting the thermodynamic state of a
binary polymer blend, the mean-field phase diagram can be
whereN,, v, («=A,B) are respectively the degree of po- used to infer the kinetic mechanisms of phase separatin.
lymerization and the monomer volume of thespeciesg is  Inside the spinodal curve, the binary mixture is unstable with
the volume fraction of the A-polymer, and the blend is as-respect to infinitesimal, long wavelength perturbations and
sumed incompressibleg is a phenomenological paraméter phase separation occurs spontaneously through spinodal de-
that accounts for the interaction between the two polymerscomposition. Between the coexistence cufilee binodal
From this free energy, the phase diagram can be easily comnd the spinodal, a one-phase state is metastable, and the
structed with a critical point located at formation of a new phase occurs via nucleation. Thus, within
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mean-field theory, the spinodal plays a crucial role in demareff-critical spinodal regimes is still lacking. In addition, it is
cating the two distinct kinetic mechanisms of phase separaiot clear how large the molecular weights need to be in order
tion. to reach the scaling behavior predicted by de Gennes and
The Flory—Huggins theory is a mean-field approxima-Binder. Furthermore, these RPA-based Ginzburg criteria
tion based on the assumption of random mixing. In this arleave ambiguity in the interpretation of the parameters that
ticle, we consider the effects of concentration fluctuation orenter the criteria because the critical temperature predicted
the thermodynamics of binary polymer blends and their ki-by the RPA theory is generally quite different from the true
netic implications. Three interrelated issues will be ad-critical temperature.
dressed: the validity of the mean-field description; the nature  While fluctuation results in significant modification in
of the thermodynamic spinodal; and the meaning of thehe thermodynamic behavior of a binary fluid mixture near
Flory—Huggins parametey. the critical point, theexistenceof a critical point is unaf-
The validity of mean-field theory is determined by the fected in three-dimension. The situation is different for the
so-called Ginzburg criterion—first proposed by Ginzburgspinodal. There is general recognition that the spinodal is a
and Levanyuk as a measure of the proximity to the critical mean-field concept. Experimental &% and computer
point where mean-field theory breaks down because of longimulation resul8*>* do not show a physically accessible
wavelength fluctuations. For binary polymer blends, desingularity. The lack of a sharp spinodal is usually explained
Genneéderived a Ginzburg criterion by comparing the mag-in kinetic terms?>?®near the spinodal the free energy barrier
nitude of the concentration fluctuation on the coexistencdor homogeneous nucleation becomes comparablelfoso
curve with the width of the miscibility gap. He demonstratedthat the lifetime of the metastable state becomes comparable
that the non-mean-field region—hereafter referred to as thto the diffusive relaxation time in the system. Thermody-
Ginzburg region—is limited to a small temperature window namically, Lebowitz and PenroSeestablished the conditions
very close to the critical temperatufie.: |1—T./T|~1/N; under which a metastable state could exist in the gas-liquid
thus mean-field theory is expected to be a valid descriptioftransition by relating to the range of interactions in a van der
of polymer blends over a wide temperature range. This imWaals fluid. A renormalization group study by S&fttasing
portant insight provides the theoretical basis for the applicae-expansion(with e=6—d) based on a phenomenological
tion of mean-field[random phase approximatio(RPA)]  Ginzburg—Laudau free energy functional showed that the
theory to the interpretation of scattering experiments in poly-spinodal fixed-point is unstable in spatial dimensions less
mer blend$ Bates et al® and Hair et all° extended de than six, suggesting the nonexistence of a tiuermody-
Gennes’ derivation to include molecular asymmetry betweemamic spinodal in three-dimension. For symmetric diblock
the two polymers in the blends. Belyakov and Kiséteand  copolymers, it was first demonstrated by Fredrickson and
Anisimov et al1? proposed an expression that involves criti- Helfand?® based on the work of BrazovsKfl,and later by
cal amplitudes and exponents using the renormalizationthers®*2and is now widely accepted in the block copoly-
group approach. Several experiments have been performader community, that the large concentration fluctuations near
to test the Ginzburg criteria for polymer blends near the criti-the order-disorder-transitiofODT) destroy the mean-field
cal point?1913-15The Ginzburg criterion was also examined spinodal. However, the existence otkermodynamicspin-
extensively by Dudowiczt al® and Lifschitzet al}” using  odal in binary polymer blends has not been questioned in the
input from the lattice cluster theol§.Most of these studies polymer physics literature. In this work we will show that a
show large discrepancies with de Gennes’ prediction anttue, off-critical thermodynamic spinodal does not exist in
with the generalized expressions given in Refs. 9 and 10. spatial dimensions less than four. We will explore the ther-
Binder generalized the concept of the Ginzburg criterionmodynamic and kinetic consequences of this conclusion.
to the study of nucleationBy comparing the magnitude of The issue of the Flory—Huggins parameter is inextrica-
the concentration fluctuation at a metastable composition bly linked to the other fluctuation-related issues discussed
with the distance to the spinodal compositign, as well as  above. Originally introduced as a composition independent
by examining the free energy barrier for nucleation, he deparameter to account for the enthalpic effect due to mixing, it
termined that, ind-dimension, the Ginzburg region is given is now well-known that the parameter includes both enthal-
by (¢ ps— 1)~ 92~N~92(1—T/T.)%¥>72; thus in three- pic and entropic effects, with significant compositiin®®
dimension, ¢/¢$s—1)~N"Y3(1-T/T,) Y2 We are not pressuré® and often non-simple temperattifelependence
aware of experiments specifically designed to test this Ginfor most polymers. Clearly, construction of the phase dia-
zburg criterion, although we recently suggestethat the gram and application of the Ginzburg criteria requires know-
anomalous findings in the nucleation behavior observed bing the temperature and composition dependence ofythe
Lefebvreet al?° may be related to the onset of the Ginzburgparameter and specifyingrhich y parameter is to be used
region. since there are several possible definitiong @ince fluctua-
Because the Ginzburg criteria given by de Gennes antlons are included. Beyond this obvious need, it is the task of
Binder were derived using different arguments, their expresany statistical mechanical theory of polymer blends to ex-
sions do not allow a crossover from one to the other as welain a phenomenalogical parameter in terms of more funda-
move from the critical regime to near an off-critical spinodal, mental properties. From both theoretical and experimental
and neither arguments can be used to derive the Ginzbungpints of view, an understanding of how fluctuations on the
criterion above the critical temperature. A unified derivationdifferent length scales contribute to this all-important param-
of the Ginzburg criterion that covers both the critical andeter is highly desirable.
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A large body of theoretical literature exists on the blends by incorporating concentration fluctuations to one-
x-parameter issut:*8-4®Most work focuses on the effects loop order using a field-theoretic formulation. The zeroth-
of monomer structure, local liquid structure, and finite com-order terms yield the Flory—Huggins free energy Ehl),
pressibility. Statistical mechanical approaches, such as theith the barey® introduced in the model playing the role of
PRISM theory*!*? the lattice cluster theor§f**® and other the Flory—Huggins parameter. The first-order terms contain
lattice approache®;*> have yielded many important insights corrections due to both enthalpic and entropic effects. A
into these effects. We emphasize here that the purpose of otenormalized theory is obtained by considering fluctuation
work is not to develop a new quantitative theory for the corrections on different length scales. The renormalization
parameter, but rather a simple and clear elucidation of th@rocedure leads naturally to the definition of an effecfie
essential physical effects on tlyeparameter due to concen- that incorporates the local molecular effects and an apparent
tration fluctuations. While our coarse-grained field-theoreticy? that includes long wavelength critical and spinodal fluc-
approach is not best suited to address certain effects arisirigations. In Sec. lll, we examine the issues mentioned in this
from the microscopic details of the polymers, it provides alntroduction. First, we discuss the meaning of the different
convenient and unified framework for studying both the localy’s and their interrelationship. Our theory yields a simple
(beyond some microscopic cut-pfand long wavelength interpretation of the physical content of the differgfg and
fluctuations, with the molecular characteristics included in ssuggestsy® as the true characterization of molecular misci-
few easily interpretable parameters. Previous studies usingjlity between two polymers. The SANS measurgdl in-
field-theoretical approaches focused either on the local paclcludes renormalization due to long wavelength critical and
ing effect4’” or on long wavelength fluctuatiorid*® De la  spinodal fluctuations and is related j& through a self-
Cruzet al*® incorporated fluctuations on both short and longconsistent equation. The renormalizedl exhibits the char-
length scales for symmetric blends using a field-theoreti@cteristic upward parabolic composition dependence ob-
approach similar to ours. But the work did not focus onthe served in experiments and computer simulations. In Sec.
parameter issue and instead predicted a shift in the spinodHl B, we derive a unified Ginzburg criteriofexpressed as a
as a result of using an unrenormalized version of theGinzburg number based on the inverse susceptibility by
theory™® A rather comprehensive study of fluctuation effectsconsidering the relative importance of the long wavelength
in symmetric binary polymer blends was conducted by SingHluctuation correction to thérenormalizedl mean-field term.
et al®! using a closure condition for the integral equationsOur result provides a smooth crossover between the critical
developed by Yethiraj and Schweiz8This work included  and off-critical spinodal regimes. The molecular weight scal-
both local and long wavelength fluctuations and took intoing proposed by de Gennes and that by Binder are recovered
account the renormalization effects due to long wavelengtlior very large molecular weightShe nature of the spinodal
fluctuations. However, as commented by the authors themis discussed in Sec. Ill C. We first show that a ttbermo-
selves, any atomic-based closure is prone to qualitatively indynamicspinodal does not exist in three-dimension. We then
correct description of long wavelength fluctuaticAs>and  examine the effects of spatial dimension, demonstrating that
we believe their theory indeed missed some qualitative efthe lower critical dimension for the existence of an off-
fects due to fluctuations near the off-critical spinodal. critical thermodynamicspinodal is four and that mean-field

In this article, we attempt a systematic examination ofbehavior prevails in spatial dimensions greater than six, the
concentration fluctuations in binary polymer blends, whichlatter result being consistent with earlier conclusions reached
simultaneously addresses th@arameter issue, the nature of through examination of the nucleation barti#tand renor-
the spinodal and the Ginzburg criterion. Besides the motivamalization group stud§? By considering the physical limit
tions mentioned above, our effort is particularly motivatedof the inverse susceptibility, we identify a pseudo-spinodal
by recent experimental results of Balsara and co-wofRers where the susceptibility reaches a finite miximum. The rela-
on the early stages of nucleation in a metastable binaryionship between this pseudo-spinodal and the free energy
blend. The experiment used a binary blend made of partiallyparrier for homogeneous nucleation is established in Sec.
deuterated polymethylbutylené) and hydrogeneous poly- [l C, where we show that at the pseudo-spinodal the free
ethylbutylene B), with degrees of polymerizatioN,  energy barrier becomes of ordef. On this basis, we pro-
=3357 andNg=4260, respectively. These authors foundpose that the pseudo-spinodal be taken as the physical or
that the critical length scales for nucleation, instead of dikinetic spinodal separating the physically accessible meta-
verging asy is increased towards the mean-field spinodal,stable state from the unstable state. For the two samples stud-
decrease with increasing and seem to show extrapolated ied in the experiments of Ref. 20, we find that the predicted
divergence in the metastable part of the phase diagram welbcation of the pseudo-spinodal is very close to the onset of
before the spinodal. A recent self-consistent field calculatioranomalous nucleation behavior. This strongly suggests that
by Wood and Wanlj estimates that most of their data lie the findings in that work are manifestations of the kinetic
within or near the Ginzburg region as determined from thespinodal effects. Finally, in Sec. Il E, we recast our results
free energy barrier for homogeneous nucleation. The issudsr the simplified case of symmetric blends in order to high-
of spinodal and Ginzburg criterion are both clearly relevantight the scaling dependence of various properties on the
here. degree of polymerization. We present a generalized phase

We summarize our results through a description of thediagram and discuss its thermodynamic and kinetic implica-
organization of the article. In the next section, we derive theions. In Sec. IV, we recapitulate the main points of this work
free energy of mixing for incompressible binary polymerand briefly discuss the approximations and assumptions in
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our theory. Several appendices are provided that contaiwheref is the Helmholtz free energy density of the system
technical details of the calculations omitted in the main bodyand w is a chemical potential-like field that is conjugate to

of the article. the volume fractionp defined as
of
Il. FREE ENERGY OF MIXING m=—. (2.2
BEYOND THE FLORY-HUGGINS THEORY I
A. Model Onceg is obtained as a function gk, the Helmholtz

) ) _ ) free energy density is calculated from Ef.1), with ¢ given
We consider an incompressible binaA/B polymer |

blend in a large volumé&’. We use a coarse-grained model
where the polymer chains are represented as continuous B
threads obeying Gaussian statistics in the absence of interac- ou’
tions. Interactions in the blend are assumed to be of tw%nd the free energy of mixing is then obtained from
types: the hard-core short-ranged repulsion between the

monomers is modeled by local incompressibility of the bi- fmix(P)=T(p)—[df(0)+(1—P)f(1)]. (2.9
nary liquid mixture, and the enthalpic interaction between

the A and B polymers is modeled by a local pseudo- nigues. First, the grand partition function corresponding to

potential, . . G(uw,V) is transformed into a multi-fold functional integral
Before we proceed to the mathematical expression of our , . . . .
of field variables through a serious of identity

model, we briefly comment on the parametrization of thetransformatior’f’.4 The functional integral is then evaluated

model. In the theoretical literature, a polymer chain in the X . .
. . . through a systematic loop expansion. In this work, we per-
melt and blend is usually charaterized by its degree of poly; .
form the expansion to the one-loop order.

merizationN, the monomer volume and the Kuhn length We start with the grand partition function for an open,

b. The monomer is understood as effectivemonomer of a . . !
. T . incompressible system of a two-component polymer blend in
Kuhn unit and the degree of polymerization is similiarly in- o . ) . ;
quilibrium with a reservoir at chemical potentjal

terpreted. In relating to the true monomer size, bond Iengtﬁ
and degree of polymerization, the characteristic r&ipis  E(u,V)=exp[—G(u,V)]
required® Such a characterization is inconvenient when com-

99

= 2.3

We calculateG(u,V) by using field-theoretical tech-

© ]

paring theory with experiments. _ 1 1 exp( naV)
In this work, we adopt a different parametrization that is na=0 ng=0 Na!Ng! (V4)"A(Vg)"8 HEAYA
free from such an inconvenience. We characterize a polymer

by its volumeV,, (i.e., the partial molar volume of the poly- Xf DnA{fA}f D"B{VB}H S(Pa(r)
mer « divided by the Avogadro numbeand its root-mean- r

square end-to-end distanRe (a=A,B). Aflexible polymer na ng

in the melt and blendwith neglibible volume change upon n %B(f)— 1)exy{ _ 2 hA_ 2 hB
mixing) is completely specified by, andR,, both easily = =
determined experimentally.

The primary quantity we seek to obtain is the Helmholtz _ bf drfb (r)fﬁ (1
free energy of mixing per unit volume as a function of the X A B
composition.(We shall not distinguish between the Helm—I thi ionh® is the single-chain G ian Hamil-
holtz free energy and the Gibbs free energy here since the IS expre_sswnhi IS € single-chain aussian Hami
system is assumed incompressiplor most of our discus- tonlgn for theth_ polymer of species that accounts for the
sions, we are concerned with spatially homogeneous statggam connectivity
where the average concentration is uniform. Because the 3 (1 (dr,(7) 2
blend is assumed incompressible, the average volume frac- hi :ﬁf T( dr )
tion of one of the polymers, sak, uniquely characterizes R “
the composition of the system. Henceforth, we dsto de- and ¢,(r) is the instantaneous concentratiouolume frac-
note the volume fraction of th& polymers; the volume frac- tion) of « atr defined as
tion of theB polymers is simply - ¢. Here and in the rest n,
of the article,¢ denotes the bulk homogeneous composition. (‘l)a(r)zvaz Jldré[r— ro(m)]. 2.7)
When the context is clear, we also ugefor the spatially i=1Jo
varying concentration for notational simplicity; when a dis-
tinction needs to be made explicitly, the latter will be de

noted by¢(r). (2.5 enforces the incompressibility and the last term in the

For studying fluctuation, it is convenient to consider an . ’ ; o .
. L . exponential represents the “bare” enthalpic interaction be-
open system in equilibrium with a large, homogeneous res;

. . . __tween the two polymers. The notatigib"={r ,} denotes in-
ervoir. The appropriate free energy is the grand potential . Il chai i ) £ 00l f
defined as tegration over all chain configurations of polymers of type

The use of the chain volumé, instead of the cube of the
G(uV)=V9(u)=V[f($)— ud], (2.1)  thermal de Broglie wavelength as the volume scale in the

. (2.5

(2.6
0

_Hereris an internal index along the chain contour that runs
from O at one end to 1 at the other end. Thtinction in Eq.
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partition function is a matter of convenience; the effect is atematic approximations, we rewrite the partition function in

composition-independent shift in the chemical potential thathe form of a multi-fold functional integral through the in-

has no consequences on the thermodynamics of interest. Th®duction of collective variables. The details are provided in

unit of energy is chosen to HeT. Appendix A; the result igaside from some unimportant nor-
Before we proceed to the evaluation of the partitionmalization factoy

function, a few remarks about the coarse-grained continuum

model are in order. Clearly, the coarse-grained description of E(M,v):J D¢f DWAf DWg exp(—K), (2.8

a polymer chain as a Gaussian thread breaks down at length

scales approaching the monomer size. Similarly, both the inwhere

compressibility condition and the enthalpic pseudo-potential

interaction term should be understood to imply a local spatial K=XbJ drp(l—¢)—i J dr [Wap+Wg(1—¢)]

averaging of the instantaneous monomer densities over some

length scale larger than the monomer size. Therefore, the +1(u, Wy, Wpg). (2.9

coarse-grained continuum description implicitly involves a

microscopic cut-off lengthn, roughly of the order of the

Kuhn length. In a lattice model, the lattice spacing serves a

the natural cut-off length. In off-lattice molecular models, theinteracting Gaussian chains in these effective external fields

microscopic cut-off is contained in the local liquid-structure given by Eq.(A4) in Appendix A. Thus, the interacting-chain
which in principle can be extracted from the integral equa-

i hes. In thi K Il take dditional problem is transformed into a single-chain problem in fluc-
lon approaches. In this work, we will tareas an additiona tuating fields; the initial difficulty due to interaction is now
parameter in the model without pursuing its detailed molecu

. L i o shifted to integration over these fluctuating fields.
lar origin. From its interpretation as the minimum length We evaluate the functional integral by a systematic loop
scale for the applicability of the coarse-grained modeis

. " expansiort® To this end, we introduce a smallness parameter
expected to be independent of the composition. (the loop parametera for keeping track of the order of the
expansion; this parameter will be eventually set to urify
ternatively but equivalently, a true smallness parameter can

The partition function Eq(2.5 cannot be calculated ex- be identified in terms of the molecular weight by nondimen-
actly because of the interacting nature of the probleoth  sionlizing the variables?) Inserting the loop parametexr
incompressibility and enthalpicTo make it amenable to sys- into Eq.(2.8), we have

In the above equation$W,(r), iWg(r) can be considered
effective external fields for th& andB chains, respectively,
ﬁndl[,u,WA(r),WB(r)] is the grand “free energy” of non-

B. Free energy to the one-loop order

E(M,V)=9Xp[—a71G(M,V)]=f D¢f DWAJ DWg exp{—a ™ "K[ x; ¢(r),Wa(r),Wa(r)1}. (2.10

G(um,V) is evaluated perturbatively as an expansion in 1 (2, dVaDa+(1— ¢)VgDg
the loop parametea. The zeroth-order approximation corre- Afpack:m JO k“dk| ¢ In VDA )
sponds simply to the saddle-point value Kf this is the
self-consistent field approximation. The first-, second- and dVaDa+(1— ¢)VgDpg
higher-order terms correspond to the one-loop, two-loop, and +(1=4¢)in VgDg . (212
higher-loop corrections. The expansion G{u,)) is then
converted into an expansion of the Helmholtz free energy 1 2ah &(1— $)VAVDADg
using Egs.(2.1) and (2.3 and the free energy of mixing is Afimszo kzdkl”(1_2Xb¢VADA+(1—¢)VBDB)'

obtained from(2.4). In this work, the various quantities will
be calculated only to the one-loop order, as this order suffices (213
for addressing the relevant issues. The details of the calculgy Egs.(2.12 and(2.13, D, is the Debye function

tions are provided in Appendix B; the final result for the

Helmholtz free energy of mixing is D o (Xo)=2X [ X, +exp(—X,) —1] (2.149

with xa=k2R§/6. \ is the microscopic cut-off length.

¢ 1-¢ ) The zeroth-order terms in Eq2.11) amount to the
fmix=V—A|n P+ V—B“"'(l_ &)+ x"H(1—¢) Flory—Huggins approximation. The correction terms are
separated into a packing contribution and an interaction con-
+Afpackt Afint, (2.1)  tribution. The former reflects the effects of molecular asym-

metry: Af =0 if VAo=Vg andR,=Rg. The leading con-
tribution to Af,, is due to conformation asymmetry
where manifested through the difference in the “packing length”
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defined aslaEVa/Fei.56 This term was obtained previously Following Eq.(2.2), a chemical potential corresponding to
by Bates and Fredricksd¥i. Mathematically, this leading the free energy of mixingemix=df mix/d¢ can be defined
contribution comes from the lardebehavior of the Debye

, - - - 1
functions. Differences in molecular architecttirandV,, or s =—(nd+1)— —(In(1— $)+ 1)+ x°(1—2¢)
R, give rise to correction terms due to chain ends that are a Va Vg
factor)\/R smaller than the leading term. Here, we only ex-
plicitly keep the leading term due to conformation asymme- L2 2m InI—B+ Ia—1g
try; the packing correction to the free energy is thus N3], T
Ao 27 i+ (1- gyl 2.1 ale
paCk_3)\3 ¢ n|A ( ¢) nIA ) ( . 5) — ((1_¢)2|B_¢2|A)Xb
. w2
where | =@l +(1— @)l is the volume fraction-averaged b\ 112
packing length. N 1 2x°Vav 2XVaVe (0 giove— grval 1- X
The interaction contribution to the free energy correction 8wl 2 B 7 VA XYs
Afi reflects the effects due to the enthalpic interaction be-
tween the two polymer speciéis the bare theory To evalu- (2.21

ate Afj,, we note that tL‘? logarithm in Ed2.13 has a  Finally, the inverse susceptibilityosmotic compressibility
singularity atk=0 whenx® is at its mean-field spinodals  or the inverse structure factor at zero scattering angle, is

where obtained from the second derivative of the free energy, which
111 } 11V yields
== =_ ) 2

Y2 Vi T 1 9)Ve] T 2 (1= 9) VaVi SR _2Xb_2_w('r's) JBIME ,

_ _ 3 0
with V=gV ,+(1— ¢)Vs. The factor multiplying Z° in Vad Ve(1=¢) ML ™ \I®
Eq. (2.13 can be easily recognized as the RPA structure 1 by/2\/2 b\ 1/2
factor Sy(k) for a noninteracting binary polymer blefie- _ X VaVB [, _ X_)
cause the main effects due to long wavelength critical or 27758 V3 Xs

spinodal fluctuations arise from the smklbehavior, we ap-

-1
proximateS,(k) by the Ornstein—Zernike form: 1 x° X°
|1+ = X (1- g2V g2V 1- 5
So(K) - (2.17 v *
 2xs(1+E5KP) ' (2.22
where In calculating the chemical potential and the inverse sus-
ceptibility, the weak composition dependence g is ig-
, 1 1T VAVB nored, which becomes exact falh=Vz andR,=Rg
&= Eﬁ v (2.18 We note that for symmetric blends, E®.19 is essen-
A'B

tially the same as the expression derived by de la Cruz

This approximation y|e|ds the correct smklbehavior up to et a|.49 The difference is Only in the numerical factors which

k2 (which is all that is required to capture the leading singu-results from their using a slightly different extrapolation

lar behavior near the spinodaind gives the correct &7 function for the noninteracting structure factor. On the other
behavior for largek with only a difference of in the pref-  hand, Eq.(2.19 differs from the corresponding equation in

actor. Performing the fairly straightforward integration, andRef. 33.

keeping only the leading terms, we obtain

C. Renormalization

AlB b

X o(1=¢)+t ——3

b\ 3/2
1- (1_ );—) } Equation(2.22 forms the starting point for much of our
3(2.19) subsequent analysis and discussion. The inverse susceptibil-
ity is obtained through a one-loop expansion and is ex-
Thus, to the one-loop order, the free energy of mixing ispressed in terms of the bare parameters of the model. In
order to relate to physically measurable parameters and to
fmix:iln b+ 1- ¢In(1— )+ xPH(1— @) capture the_ full effect of summing over an infinite subs_et of
Va Vg one-loop diagram® the theory needs to be renormalized.
We do so in two steps based on a consideration of the length
[ I 18Alg | scales.
] ¢In|—+(1—¢)|n|— ———Xx ¢(1-¢) The terms nonsingular in-1 "/, reflect the packing
A B Al and interaction effects due to fluctuation and correlation on
( b) 3/2] molecular length scales. The terms containing the singuler
1_

Afipe=—

127€3

(2.20 1— x"/ xs arise from the long wavelength concentration fluc-
tuations due to proximity to the critical point and spinodal.

+ 3
12m&q Xs
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Focusing on the local molecular effects, we see that the This prescription for renormalization preserves the
fluctuation corrections lead to a finite shift in the spinodalFlory—Huggins or RPA form of the inverse susceptibility and
value of x from that given in Eq(2.16). Rather than defin- leaves the spinodal value unchanged from its mean-field
ing a new spinodal in terms of®, we absorb the shift value Eq.(2.16. The resulting theory can thus be considered

through the definition of an effectivg®: a fluctuation-renormalized mean-field theory, with re-
212 2 placed byy®.
e— b_ Eﬂ ey T la—ls 29 We now turn to the effects of long wavelength fluctua-
X"=x —X 3l =1 223 R ; . -
T \|3 3\ [ tions. Usingx®, we write the inverse susceptibility as

where, in the spirit of renormalization, we have replag@d
in the one-loop term by®. The above equation can be trivi-

ally solved to yield K1 =2xs—2x°— Ak H(x®), (2.29
181213\ " 7 [1a—1g\?
=xt 1+ == t-3 — (2.24
VE 3\ [ where
12 -1
1 x°V3V2 e\ ! e e
e A e (S DR/ SVAC S I (226
2w&y Ve Xs 2y Xs

where we have replacegP in Ax~* by x&, which is consistent to the one-loop order.
Because of the long wavelength fluctuation correction, the critical point or spinodal no longer ocgtisyat The true
critical point or spinodal is determined lay =0. We account for this further renormalization effect by definining an apparent
a
x® through

Kk t=2xs— 2%, (2.27
so that
1
X=X+ S AT () (2.28
with
1/2 1
_ 1 xVaVh X2 X2 X2
AT XN =—5 "= == |1+ - =((1- )=V 1-—| |, (2.29
27T§O V3 Xs 2y Xs

where, in the spirit of renormalization, we have replagédin Ax~ ! by x? since it is the latter that determines the true
proximity to spinodal. Our choice of the renormalization prescription once again preserves the RPA form of the structure factor
and leaves thénomina) spinodal value unaltered. Making use of the definitionggfEq. (2.18] andys [Eq. (2.16], we can

write the self-consistent equation fgr, as

27 [ 1alg)| ¥2(VaVp) 12 X2\ 1 x* (1—¢)?Vg— ¢?Vp)? X\ 71
a_ e — —
27\ | V32 Xs 4 xs  H(1-¢)VaVe Xs
It is instructive to write the above equation as a self-consistent equation for the renormalized structure fact@r at
1 & VW,V (* 92 1 *
S L(0)=Se(0) + | —— A8 f k) -~ — 2 (1 )2V 6,2 J K2dk(k) |, (2.31
T H(1-¢d) V2 [A(1—)]° Vv?
|
whereS;zéA(O) andS™1(0) are respectively given by short wavelength fluctuations have been absorbed into the
1 . definition of x©. By the same token, we only need the long
Srea(0)=2(xs=x°%) (2.32 wavelength part of the structure factg¢k) in the integrals,
and which we approximate with the Ornstein—Zernike form
SH0)=2(xs— x?). (2.33 _ 30

In Eq. (2.3, the superscript indicates that the integral is to
be evaluated using dimensional regularizafiosince the  with
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E=&o(1— o) Y2 (2.35  less, it isbreﬁss#ring .that our Isimplg coarse-grained modﬁl
_ _ captures both effects in a simple and transparent way at the
In Eq. (2.3, the first integral represents fluctuation ef- onz-loop order P P Y
fects near the critical point. The second integral accounts for The x© defi|:1ed in Eq(2.24) has the desired properties as
flﬁctua:::otnsEnt(e;;tj?e off-tc):ntlcal sp|gotdal.3ln ﬁ?pﬁjn:jr:x C. We e truey parameter for characterizing the molecular effects
s.tcr)]w ? ? -t' ca? esmap()jpe4 tﬁ? W .'E heorey on polymer blend compatibility. This parameter contains
Vi”o _\Il_ﬁr exhun;;i:]s ordj ar; v na vamsf wheny both enthalpic and entropic contributions and incorporates
e 'blusbtl ed _thstruqtutre atgtor '; ::‘xact (t)P: a:NmCOT'fluctuation and correlation effects up to the polymer length
pressible biend with no interactions between the W0 poly-geqjeg. By excluding long wavelength critical and spinodal

tion theories that start with the F Huaai de G oncentration fluctuations, the® so defined is insensitive to
lon thearies that start wi € Flory—huggins—de ennegy, o thermodynamic statee., proximity to criticality or spin-

fre_e energy or o_ther phenomenalogical free ene_rgies Wit%dab of the blend and hence is a reflection of thelecular
x-independent third- and fourth-order vertex functions. effects on blend compatibility. In the long-chain limjt¢ is

independent of the molecular weight and architecture. The
molecular weight dependence gf arises from ends effects
and leads to corrections @(1/N'?) or smaller relative to
A. The x parameter the leading molecular weight independent terms. These ad-

The renormalization procedure discussed in Sec. IIij't'ot?]al t?rm? can ?fhmil#ded ”\]NEQ‘ZLD \(leIthOfot rtnod|fy-t K
lends itself naturally to the clarification of the meaning ang'nd the struc uere ot the theory. en ends efiects are taken
interpretation of they parameter into account,y® will generally depend on the molecular ar-

Clearly one must distinguish among thre@arameters, chitecture and may acquire additional composition depen-

each reflecting effects on different length scales. The fére dence. For example, aA/B binary blend and the corre-

; . ) o
is the “microscopic” interaction parameter introduced in the Sﬁo?d'n%fi‘f'B d'blocfl(() clt;lﬁ)loh;mer W'"hhat\;]e)gg ?I_hw'th ?
model. In an incompressible lattice model, this parameteFea've ifference ofO(1/N) from each other.’ Theoreti-

would correspond to the (1/2)exn+ egg—2€xg) Which is cally speaking, from the monomer design point of view, the

the y parameter envisioned in the Flory—Huggins theory, Fre{erredl F(;org—lHuggllns rl)aramek‘)tlerxj W'tfh the endtsh ef- q
where z is the lattice coordination number ang; is the ects excluded. In real polymer biends, of course, the ends

nearest neighbor interaction energy betweeratl@d 3 spe- effetl:tstrellrel.tuna;/mdagle.d b ft fused with h
cies (o,8=A,B). In the free energy resulting from a “bare” n the literature,y= andy" are often confused with eac

mean-field approximatioricorresponding to the zero-loop other. This confusion is the basis for the widely but errone-

ordey, such as RPA or self-consistent field theog, is the ously accepted notion that RPA theory represents a good ap-
Flory;Huggins parameter ’ proximation for very long polymers or far away from the

However, even if we ignore long wavelength fluctua- critical point or spinodal. It should become clear from the
' discussions above that even in the absence of long wave-

tions, the local correlation and fluctuation effects due toI th fluctuai RPA i istent field th h
chain connectivity and interaction modifies the thermody—_eng uctuations, ¥ or sefl-consistent fie cory, when
interpreted literally, is a poor description of polymer blends

namics so thay®, rather thany®, determines the thermody- block | E le. RPA i istont
namic statgthe miscibility) of the blend. The main effects or Dblock copolymers. or €xample, or sefi-consisten

are twofold: first, thgenthalpig interaction effect is reduced field predicts a mean-field spinodal located at
by a factor that depends on the cut-off length, and, second, 1 V;
entropy loss due to packing of conformationally asymmetric XEZE W
polymers makes the two polymer species less miscible; see ATB
Eqg.(2.24). The first effect is consistent with the Guggenheimwhereas when local correlation and fluctuation effects are
argument¥’ that each interior unit in a polymer chain is taken into account, thénean-field spinodal is shifted to

bonded to two neighboring units, so that the effective coor-

Ill. DISCUSSION OF ISSUES

(3.0

N/ 212 2
dination number is reduced fromto z—2; this effect was b L v e R
observed in Monte Carlo simulation using lattice motfels Xs 2 ¢(1— p)VaVp NE a7 '
and was also captured in the PRISM study by Sieghl>* 3.2

for symmetric polymer blends. The effect of conformation
asymmetry was first elucidated by Bates and FredricKson

using a field-theoretic approach. The lattice cluster theory of 1 V2
Freed and DudowiéZ predicts both effects as the leading X§=§ PYEESTYRVEE
terms in the Flory—Huggins parameter for incompressible $(1=¢)VaVe
binary blends in the long chain limit. A detailed comparisonThus theapparentagreement between these two predictions
between the result of the lattice cluster theory or of theis a result of mistakingy® for x°. All comparisons in the
PRISM theory on one hand, and E&.24) on the other, can literature between experiments and RPA or self-consistent
in principle yield an estimate of the cut-off length. However, field calculations have in fact beéawaredly or unawaredly
since our focus here is the qualitative clarification of theusing a renormalized version of the mean-field theory; this is
various physical effects rather than a quantitative theory fothe reason for the reasonable agreement between experi-
the y parameter, we will not make such an effort. Neverthe-ments and mean-field predictions. Indeed, had a literal RPA

However, in terms of¢€, the latter theory still yields

(3.3
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1.25 ' - ' ' composition—and seemingly divergent behavior ¢at0

and ¢ =1 for some isotopic blends. The most recent theoret-
ical work®® that examines these unexplained features at-
tributes the observed behavior to experimental errors or to
some unknown intrinsic composition dependence in the bare
x®. While long wavelength concentration fluctuations are un-

1.150 i i
O able to account for the magnitude of the increase of the ex-
a; perimentally measureg at the extreme compositions, the

predicted upward increase is not insignificant for moderately
long polymers, and the effect can be made more pronounced
when density fluctuations are taken into accolrthus con-

1.05¢ N=10000— | centration fluctuations could be partially responsible for the
experimentally observed behavior. For the parabolic compo-
\_/“/ sition dependence observed in computer simulations by
10 02 04 oie 0.8 1 Binder and co-worker® concentration fluctuations
(0] (enhanced by coupling with density fluctuatipragpear to

FIG. 1. © o depend ¢ the ratio of th 8110 the ¢ be a reasonable explanation.
. 1. Composition dependence of the ratio of the appay e true . . . _
(effective x® for symmetric blends at a fixe®=0.9,. The param- We close this section by a comparison between our fluc

eter b%v is chosen to be 3N is related to the polymer volume via  tuation theory ofy for binary blends and the corresponding

Nb8/v2=V/I3, field-theoretically based theory for diblock copolymers. Con-
centration fluctuations near the order-disorder-transition of
diblock copolymers were treated in a seminal work by Fre-

or self-consistent field theory been used, predictions for thélfickson  and Helfand using methods developed
phase diagram would be far off. When we discuss the validBrazovskii®® The Fredrickson-Helfand-BrazovskiiFHB)
ity of mean-field theory in the next section, it is understoodtheory provides important insight to the nature of the ODT in
that we will be referring to the renormalized mean-field block copolymers and forms the theoretical basis for the in-
theory that has already taken into account the local correlderpretation of experimental SANS data for diblock copoly-
tion and fluctuation effects; in no parts of the phase diagraniners. The theory predicts a significant deviation from the
is the bare mean-field theory valid quantitatively, even forRPA structure in the disordered phase near the ODT which
infinitely long polymers. has since been confirmed experimentally. In spite of its many
Although the effectivey® is the truey parameter for successes, however, the theory has several flaws. First, the
characterizing the molecular miscibility of two polymers, its theory is essentially phenomenalogical, which used the
experimental determination is by SANS measurements fitteti€ibler mean-field free energy functional in which the order
using the RPA form of the structure factor. The full structureparameter was allowed to fluctuate. While such an approach
factor inevitably includes long wavelength fluctuations thatcaptures the essential physics in a qualitative and even semi-
become important near the critical point or spinodal. Clearlyguantitative way, treating fluctuations by allowing the order
an RPA fitting yields the apparent®, not x&. x? is deter- parameter to fluctuate in a mean-field free energy functional
mined by through the self-consisten equatith30. The is theoretically unjustified® This point is shown explicitly
apparenty® is always larger than the effectivg®, with a  for the case of binary polymer blends in Appendix C. Sec-
difference that varies inversely with the square-root of theond, the FHB theory is an asymptotic theory where the free
molecular weights. Thus for infinitely long polymeyd and  energy and its parameters are expanded aroundntiean-
x° become identical. For polymers with moderate moleculafield) critical point. The theory would predict a finijg even
weights, the two can differ from each other visibly, with a if x©is zero. Finally, the Brazovskii method for treating fluc-
larger difference the further away from the critical composi-tuation used a simple Hartree renormalization where only
tion. Figure 1 shows the composition dependence of the ratifluctuation effects due to the quartic nonlinearity are in-
of x® to x® at a fixedy®=0.9y, for a symmetric Yo=Vg  cluded. The method is incapable of including fluctuation ef-
=V,l,=Ig=I) blend for three polymer length§The more fects due to the cubic term in the free energy that accounts
common characterization in terms of the degree of polymerfor the asymmetry of the diblock. Just as in the case of
ization N, monomer volume and Kuhn lengttb is used in  blends where renormalization due to the cubic term is almost
the figure;Nb®/v2=V/I3.) The figure exhibits the upward always as important as or more important than that due to the
parabolic shape as observed in experiméritsand com- quartic term, except in the small vicinity of the critical com-
puter simulations® Similar behavior was also predicted by position (see next sectionso we expect that the cubic term
Singhet al®! in the case of diblock copolymers will have similarly impor-
The parabolic composition dependence of the measuretnt effects. Thus, strictly speaking, the FHB theory is only
x parameter in isotopic'®® and certain polyolefit? blends  applicable to diblock copolymers with a composition very
has been an unsolved puzzle. The main features that defycdose to the mean-field critical compositiqwhere mean-
satisfactory explanation are the large magnitude of the infield theory would predict a direct transition from the disor-
crease of the measurgdat extreme compositions—typically dered phase to the lamellar phaseecently, Maureet al 5!
50% or larger compared to the value at the criticalexamined the consistency in using a singlgparameter to
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characterize the phase behavior for binary blends and then ambiguity as to which of thg parameters is to be used,
corresponding diblock copolymers, and found discrepancgince the critical temperatures determined from usih@nd
between the SANS measurgd,z for the blend andya_g  x© can be far off from each other.
for the diblock data, with the latter obtained using the FHB ~ Amit proposed a rational Ginzburg criterion based on
theory. Earlier studies by KrishnamoG&ftalso suggested that comparing the first-order fluctuation correction to the inverse
the y parameter obtained for a binary blend does not alwaysusceptibility to the mean-field susceptibility using renormal-
predict the correct phase behavior in the correspondinized parameter® Similar strategy was used in the work of
diblock. Reference 61 attributes this discrepancy to chairtifschitz et all’ Both studies considered only the critical
stretching of the diblock near the ODT that was not ac-regime. However, the idea is equally applicable to the off-
counted for in the FHB theory, but some or all of the othercritical near-spinodal region.
limitations we have just mentioned may also be responsible. We now derive a unified expression for the Ginzburg
number valid both in the critical and off-critical spinodal
regimes. To this end, we write the inverse susceptibility as
The Ginzburg criterion yields an estimate of the range of
temperature in which mean-field theory is valid. From our K‘1=2(XS—X3)=K51—AK‘1, (3.5
discussions in Sec. Il A, it should be clear that mean-field
theory here refers to the renormalized theory in which thevherex, * is the fluctuation-renormalized mean-field part
local correlation and fluctuation effects have been taken into . .
account. Physically the criterion requires that the fluctuation  Xo =2(xs=Xx°) (3.6
correction to a physical quantity be much smaller than the 1 .
quantity itself. The Ginzburg criterion is often expressed inandAK_ IS th_e on(_a-loop correction dge to long \_Na\(eler)gth
terms of the Ginzburg number 61— T./Tg|, so that fluctuations given in Fﬁ(zgg) The G|.nzburg CrlteI’IOTlIS
mean-field theory is valid forl — T./T|> Gi. Because of the therllexpresseq alk '<xy or, equivalently, asAx
entropic contribution to thg parameter, a Ginzburg number <K. ' Opﬁelratloniallly_, we 9ffme the (.E|lnzburg number by
expressed in terms of temperature requires knowledge of tHeetiNGA K “=Ck 7, i€, ko =(1+C)x = or
temperature dependence of thearameter. Indeed some of e
the discrepancies between the Gi obtained in experiments 1—X—=(1+c)
and the theoretical Gi given by de Gennes can be attributed Xs

to the complex temperature, composition and pressure de- . . . .
P P P P wherec is a numerical coefficient of order one. The choice

pendence iny> and do not by themselves necessarily reflect f the numerical coefficient is somewhat arbitragy=0.1

the inadequacy of de Gennes Ginzburg criterion. We avoig; . seq in the work of Schwahn and co-workérs:®*here
this problem by defining the Ginzburg number in terms ofWe leave it free

the Flory—Huggins paramete® as The above equation, together with the self-consistent
. equation(2.30 determinesyg, the onset of the Ginzburg
Gi=|1-Xx&/x- 3.4 region, and the Ginzburg number is then given by B).
The loci of the points determined by E.7) are shown in
Note that we have defined the Ginzburg number withFig. 4 for a symmetric blend/Other features of the figure
respect to the spinodal valyg, since we are interested in will be discussed in Sec. Ill ENote that the Ginzburg cri-
both the critical region and the region near an off-criticalterion is represented by a cureereafter referred to as the
spinodal; the critical point is just a special point on the spin-Ginzburg curve in the phase diagram. Thus, specifiying the
odal at the critical composition. We usg® because this validity of the mean-field theory requires specifying bgth
quantity is the controlling variable for the thermodynamic (or T) and ¢. Mean-field theory is valid below this cura.
behavior of the blend, and we use the mean-field expressiofhe usual interpretation of the Ginzburg criterion as a tem-
Xs [EQ. (2.16)] because this is the only measurable quantityperature range is inaccurate. The need for an additional vari-
free from intepretational ambiguity. able than the temperature gwas suggested earlier by Ref.
In the critical region abovgg (or below the critical tem-  16. A few points are worth commenting. First, we note that
peratureT, in a UCST system the Ginzburg criterion is the minimum of the Ginzburg curve does not occur at the
commonly derived by comparing the mean-square composkritical compositiong.=0.5. Rather a small maximum ap-
tion fluctuation{(8¢)?) with the square of the miscibility pears there. However, overall the portion near the critical
gap (@M — ¢(?)?, the former quantity being evaluated using composition is fairly flat. Second, part of the binodal curve
the mean-fieldRPA) structure factor. In the metastable re- lies within the Ginzburg region and intersects the Ginzburg
gion, Binder replaced the latter quantity by the square of theurve. The location of the intersection corresponds to a par-
difference between the metastable bulk composition and thecular xg’, so that the portion of the binodal beloyg’ is
spinodal composition. As alluded to in the Introduction, thisno longer correctly described by mean-field theory. This in-
derivation does not provide a crossover between the criticalersection is the one used by de Gennes in deriving his
and off-critical spinodal regimes, nor can it be easily ex-Ginzburg criterior.
tended to the critical region below? (aboveT,). Further- If the Ginzburg number is small, i.e., &il, which cor-
more, in light of our discussions on theparameter issue, a responds to the case of very long polymers, the Ginzburg
Ginzburg criterion derived within a mean-field theory leavesnumber can be shown to satisfiy the following equation:

B. The Ginzburg criterion

1- X—), 3.7)

Xs
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27(1+¢)*2 10l 3

T
_ 2 42 2

X{l+(l+c) (1—$)Vg— ¢?V,) Gil}_

VAVB 1/2

Gil2= V-2
VZ

2cT

4 d(1—¢)VaVp
(3.9
We now examine several limiting cases of E8.9).
Near the critical point, Eq(3.8) simplifies to
1/2 3/2
Gill2= 2i1+0) (ﬁ) V-2
\/EC’ZT |_
X[1+(1+c)(84)2Gi™1], (3.9

FIG. 2. Dependence of the Ginzburg number on the degree of polymeriza-
where 8¢ is the relative deviation from the critical compo- tion for symmetric polymer blends with®/v =3. ¢ is chosen to be 0.1. The

sition defined as dash and dash-dot lines are the asymptotic scaling behaviors given by Egs.
(3.30 and (3.32, respectivelyN is related to the polymer volum¥ via
o - NbS/v2=V/I3.
Sp=————1p (3.10
P o1 doT"
and where we have made use of the fact that at the critical 3
composition, VaVg /V2=1 [cf. Eq. (1.2]. At the critical |p— ¢c|— V¢c(1 do)| 1+ §(1+ C))
composition 6(;5 0) x.=xs- As x® approaches the critical
x. from below, the Ginzburg number is easily solved to be Ll 32
L2 v (3.19
e 3 |_
] X 7291+c 1
GIEl——qu—) - —. (31]) . .
Xe 2¢272 | v In terms of the Ginzburg number defined by E8.4),

except very close to the critical composition, the bracket on
Above y., the mean-field composition of the two coex- the rhs of Eq(3.8) is dominated by the second term. In fact,

isting phases can be obtained using the renormalized FlorySiNce Gi=0 in the limit of infinite molecular weights, the

Huggins theory. Near the critical point, the coexistence comSecend term will always dominate over the first term at any
positions are given by noncritical composition for sufficiently long polymers. Ne-

glecting the subdominant term, we obtain

Rl e/, _ 1|12 1/3
8p== 3| xe—1*2 (3.12 Gl X Ils) [ VaVs
Substituting this result into Eq3.9), we obtainyg' at the Xs 2(2cm)?3 1 V2
intersection between the mean-field binodal curve and the 213
. . . . 2 2 2
Ginzburg curveyd' thus defines a special Ginzburg number. V13 (1= ¢)Vg—=9¢“Vp) (3.16
Thi_s Ginzburg number is_usually expressed in terms _o_f the d(1—p)VaVp ’
critical (rather than the spinodatemperaturghere the criti- . o .
cal x.). On the coexistence curve, it can be shown that Equations(3.14) and(3.16 recover the limiting scaling
expressions near the critical point and near an off-critical
1—x% xs=2(x% xc—1) (3.13 spinodal, as first derived by de Gennes and Binder, respec-

tively. However, very large molecular weights are required to
so that the Ginzburg number in terms of the distance to théeach these scaling results. In Fig. 2, we show the Ginzburg
critical . becomes numbers ap=0.5 and¢=0.15 as a function of the degree
of polymerization for symmetric blendgRecall that for

X3 symmetric blendsNb®v2=V/I3.) The dash line and the

Gi'=—~-1 dash-dot line are the analytical predictions given by Egs.
Xc (3.1) and (3.16), respectively[or more directly by Egs.
7291+ ¢) 3 200 1 (3.30 and(3.32]. For ¢=0.5, N>10" is required to reach
=" 11+ 1+0)| [ 28] = (3.14  the scaling limit. For¢=0.15, we need\>10. Lattice
4c?m? 2 \% cluster theory calculations in Ref. 17 showed that, in com-
pressible blends, the N/scaling for the critical Ginzburg
The corresponding range of composition is number requires very largd.
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*
d-1
In this section, we discuss the nature of the thermody- K™ dkS"(k)

namic spinodal for a binary polymer blend.

Thermodynamic spinodal is defined By =0, i.e., x? 1 I'(d/2)T' (m—d/2)
= xs. At the composition such that (1¢)?Vg— ¢?V,=0, Y T(m)
the second term i« ! [Eq. (2.29] vanishes identically, "
and the conditionc =0 yields - m a) ~m*
Y x<—¢(l @VAVB §0d< 1— X—) . (320
. 1 (Vi/2+ Vé/Z 2 vV Xs
Xc:Xczz W (3.17 S L . . .
ubstituting this result into Ed3.18), we obtain
This is just the critical poinfcf. Eq. (1.3)]. _ a2y /2 a\ d2-1
For (1— ¢)?Vg— ¢?V,+#0, however, the second term in x2=x°+ I d/2)d X \EVB X ! -~
At diverges ay®— xs, and no physical solution fog® is 297 g B d—2 Xs
possible that satisfies 1=0. Thus a true thermodynamic a 5 o A\ d2-2
spinodal does not exist! We note that a similar argument was LI A= Vem VT X 1
used in demonstrating the disappearance of the spinodal in 4 s d(1— p)VaVp Xs '
symmetric diblock copolymer meltg:*
Because fluctuation effects usually depend on spatial di- (3.29

mension, it is of interest to extend our theory to general |t can be easily checked that the above equation reduces
spatial dimensior. The generalization is fairly straightfor- to Eq. (2.30 when d=3. As in three-dimension, the first
ward with the following result for the inverse structure factor term in the bracket of the above equation is due to critical

at zero wavenumber: fluctuation and the second term arises from spinodal fluctua-

tion off the critical composition.

S 1(0)=Szp(0) Equation(3.21) allows us to examine the importance of

spatial dimension in determining the effects of long wave-

+ 1 1 A 4x%  VaVs f*kdfldkak) length fluctuation. Criticality or the spinodal is defined by
2 (2m)¢ ¢ d(l—¢p) V2 S 1(0)=0. Clearly, fory®= x5, the first term in the bracket
diverges ford<<2; this is a well-known result indicating that
4x)% 1 ) critical point does not exist in spatial dimensions less than
B m ﬁ((l_ $)*Vs two in a binary fluid mixturé® The second term diverges for

d<4. Therefore, a true off-critical thermodynamic spinodal

« does not exist in spatial dimensions less than four; long
—¢>2VA)2J kd‘ldksz(k)], (3.18  wavelength fluctuations destroy the spinodal predicted by
mean-field theory. Thus two and four represent the lower

critical dimensions for the existence of the critical point and

whereA, is the area of al-dimension sphere of unit length, f the off-critical spinodal, respectively. Further examination

Ag=27%T(d/2), with T'(x) the usual gamma-function

+ of the Ginzburg criteria near the critical point and in the

and the superscript again indicates that the integral is to be y._critical region near the spinodal shows that the upper

evaluated using dimensional regularization. In the aboVgyitical dimensions(above which mean-field behavior pre-
equation, the short wavelength fluctuations are understood tPails) for the critical point and off-critical spinodal are re-

have been incorporated through the definitiony®fusing an

spectively four and six, in agreement with known

equation similar to Eq(2.24). Sgen and S ' are given re-  results>?%?The demonstration is fairly straightforward, so
spectively by Egs.(2.32 and (2.33, and the Ornstein— \ye shall not engage in such an effort. Here we simply sum-
Zernike form of the structure fact@(k) [Eq.(2.34]is used  marize the effects of long wavelength fluctuation in different

in the integrals. .  spatial dimensions. Fod<2, critical point does not exist.
The integrals in Eq(3.18 can be easily evaluated using por 2<d<4, critical point exists but near the critical point
standard techniquesto yield determined by the Ginzburg criterion, the blend shows non-
. mean-field behavior; off-critical spinodal does not exist. For
f k9~ 1dkS"(k) 4<d<6, critical behavior is mean-field-like, off-critical
spinodal can exist in thitnermodynamisensgnote that this
* xd71gx conclusion is different from that suggested by the renormal-
=Sm(0)§_dj aAxm ization group study in Ref. 28 but fluctuation effects be-
come important near the spinodal, which makes it kinetically
1. _dF(d/Z)F(m—dIZ) B inaccessible. Constrained Monte Carlo techniques that sup-
- §S (0)¢ r'(m) , (m=12. (319 press the unstable fluctuations leading to nucleffiomay

offer a possible means for observing the thermodynamic

Using Eqgs.(2.33 and(2.35 for S(0) andé, and noting that  spinodal by extending the range of the metastable state be-
Xs IS given by Eq.(2.16), the above result becomes yond the kinetically possible. Finally, fat>6, mean-field

Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 1, 1 July 2002 Concentration fluctuation in binary polymer blends 493

theory becomes an exact description of the full thermody- le====== T = ' =
namic behavior of the blend with a well-defined spinodal. S~ -
We now return to the three-dimension world. Because a Y N1/

true spinodal does not exist, the inverse susceptibility canno  * e
reach zero, except at the critical point. To accurately describe N=10°
the behavior of the susceptibility near tfr@mina) spinodal 06l |
would require going beyond the simple one-loop theory, be- xw'

cause well inside the Ginzburg region, higher-loop correc-c> 4
tions can no longer be considered small. Nevertheless, som x0_4_ _
interesting insights can be obtained if we take the one-loop d
theory as a complete self-consistent theory, which is not en-
tirely groundless, since the one-loop theory is indeed exact  0.2f ]
for the O(n) model of phase transition in the limit of

0 55

The approach to thenomina) spinodal is controlled by % 02 04 o, 06 0.8 1
x&. However, the proximity of the system to the spinodal is X /XS
reflected iny?. Physically, these two’s should follow a
monotonic dependence. The relationship betwg®and y®  FIG. 3. Relationship betweeg and x© at a fixed compositiory=0.1 for
is shown in Fig. 3. For smajte/)( Xe and Xa are equal to symmetric blends a=1000 andN =210 000. The parametdr®/v is cho-
. . S

h other. but bedin to deviate f h oth i bly 28N to be 3N is related to the polymer volumé via Nb%v2=V/I3. The
each other, but begin 1o deviate from each other noticeably gg,qpeq portion of the curve for each case denotes the unphysical solution

Xx°— xs. The monotonic increase af with x® terminates at  and the cross< represents the limit of validity of the theory; this limit is
the point shown by the X” in the figure. This point thus defined as the pseudo-spinodal. The pseudo-spinodal is locatgd at
signals the physical limit of the one-loop theory, beyond=0-618s, x*=0.832 for N=1000 and a°=0.807xs, x*=0.927s for
which a stable thermodynamic state is physically impossible’.\l=10 000.
Mathematically, this point corresponds #y® dx?=0. We

will term this point the pseudo-spinod&An analytical ex-
pression can be obtained far off the critical composition forD. Implications for homogeneous nucleation

large molecular weights, with the result that

In this section, we explore the relationship between the

pseudo-spinodal and the free energy barrier for homoge-

e 27 [lalg neous nucleation. An analytical expression for the free en-
Xps™ XS[ 1- 2(477)2/3(?) ergy barrier for a binary fluid mixture close to the spinodal
was derived by Cahn and Hillisfdbased on a mean-field

2’3] square-gradient free energy functional. Using a Flory—

VAV
X # Huggins—de Gennes free energy functional for a weakly in-
V2 homogenous binary polymer blend, we can transcribe the
(3.22  Cahn-—Hilliard result into an expression in terms of the pa-
rameters of the polymer system. This transcription is done in

At the pseudo-spinodal, the correlation length reaches a finitdppendix D; the resulting free energy barrier is

o 1,3[ (1= $)Vg— p?V,)?
$(1— $)VaVe

limiting value given by w2 o\ L2
sFo-22d | [
E=bo(rpd 2, (3.23 e NYRAT
H(1=¢)VaVe  — x°© 3
where vi1-= 3.2
(1= Vg~ GV o 8
X35 9 Ldg) [ Vavg| ™ The use ofy® in the above equation is based on consider-
ra=1-""= ations given in Secs. IIC and Il A.

Pe Xs 2(4m\ T

% Binder first suggested the relevance of the Ginzburg cri-
2/3 terion to nucleation and indeed used the nucleation free en-
(3.24) ergy barrier as one way to derive the Ginzburg criterion. It
can be easily shown that E(®.16 can be obtained by equat-
ing this free energy barrier to some multiples of the thermal
Sincerg‘s represents the closest possible distance physienergy. However, for smalt in Eq. (3.16, the Ginzburg
cally allowed in the one-loop theory, a minimum Ginzburg criterion would correspond to a large multiglef order 100
number Grimn=1—XSs/Xs can be defined for the spinodal, or more of kT in the nucleation free energy barrier. Thus,
which sets a lower bound for the Ginzburg number given byconceptually, it is preferrable to distinguish between the on-
Eq. (3.16. This lower bound corresponds ta=2 or Ax~*  set of the Ginzburg region which simply signals noticeable
=(2/3)ky 1. In the next section, we examine the connectiondeviation from mean-field behavior, and the condition of a
between the pseudo-spinodal and the free energy barrier femall nucleation barrier. The pseudo-spinodal, on the other
nucleation. hand, is more strongly correlated with the nucleation free

va[«l— $)2Vg— $2Vp)?
$(1— $)VaVg
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energy barrier becoming of ordekT. At the pseudo- E. Simplified results for symmetric blends
spinodal, the free energy barrier is estimated to b&B.8

(recall thatkT is our unit of energy in this Vggbk This esti-  goneral, conformationally asymmetric blends, beca(ise
mate is close to the KT suggested by Binder and used in 1,56t experimental polymer blends are not molecularly sym-

our recent ‘_Norkl'g Since fluctuation at the pseudo-spinodal is meric, and(2) conformation asymmetry leads to important
quite significant, the actual free energy barrier is likely to bejocq) effects that do not exist in symmetric blends. However,
lower. the introduction of additional parameters to characterize an

The conditionAF ;KT has been suggested by severalasymmetric blend complicates the appearance of the math-
researchers ~as  defining the intrinsic limit  of ematical results and obscures their simple scaling depen-
metastability*>’*"* The phenomenalogical theories for dence on the degree of polymerization. In order to highlight
nucleation rate developed by Lanffeand by Patashinskii this scaling dependence, we consider the special case of sym-
and Shumil@ indicate that wher\ F o~ KT, the lifetime of  metric (i.e., V4= Vg andR,=Rg) blends, and recast the re-
the metastable state becomes comparable to the relaxatigglts using parameters that are more commonly employed in
time for local equilibrium.(Because of the Ginzburg crite- the theoretical literature, namely the degree of polymeriza-
rion, the quantitative validity of these theories is question-tion N, the Kuhn lengthb and the monomer volume. We
able very close to the spinodalhe work of Miller et al®®  present a generalized phase diagram for the symmetric case
on homogeneous nucleation and growth in a binary polymeand discuss the thermodynamic behavior and the kinetic im-
blend in the metastable critical regime reports that the obplications based on this phase diagram.
served nucleation and growth mechanism showed features For a symmetric blend, the entropic contribution due to
that resemble spinodal decomposition even for very shalloveonformation asymmetry in Eq2.24 vanishes, and the re-
quenches, suggesting the significant effects of fluctuation olationship between the bare and renormalizealssumes the
the mechanims of phase separation kinetics. simple form

In light of these considerations, we propose that the 18 p |1
pseudo-spinodal defined in Sec. 11l C be identified as the ki- Xesz( 1+ — —2>
netic spinodal that delineates the boundary between the 7 Ab
physically accessible metastable state and the inaccessibige note that, unlike the conformationally asymmetric case
(hence presumably unstaplstate. We now provide a nu- where the barg® and the cut-off lengtt can appear sepa-
merical estimate of the location of the pseudo-spinodal forately, here by expressing’ in terms ofx®, it is possible to
the experimental systems studied by Lefebstal?° Their  eliminate the appearance gP and\, so that only one pa-
experiment used a binary blend of partially deuterated polyrameter,x®, remains in the renormalized theory.
methylbutylene Q) and hydrogeneous polyethylbutylene The self-consistent equation relating the appagéhto
(B), with degrees of polymerizatioN,=3357 andNg the real(effective x®, Eq.(2.30, simplifies to
=4260. Two compositions were studiegi=0.161 (sample

The results in the previous sections are presented for

(3.26

B1) and ¢=0.099 (sample B2. The work reports unusual Yo=xo+ ﬂi aNllz(l_ X_a> 1z

behavior in the early stage of nucleation in the ranges 0.84 2 b* Xs

<x/xs~1 for sample Bl(including one data point at/ xs 118 (1—24)2 a1

>1) and 0.K y/ys<1 for sample B2. In particular, they v 1+_X_ﬂ(1_x_) } (3.27)
found that the critical length scale for nucleation—identified 4 xs ¢(1—¢) Xs

as the inverse of the wavenumber at which the scattering,here now

intensity remains unchanged—decreagesther than in-

creasg as y increases towards the mean-field spinodal. For _E 1

their system, V,=335700 &, V,=426000 &, I, XsT2 Nop(1— o)
22.'19 A, andlg=2.77 A US'T‘g these.parameters, the lo- Equation(3.8) for the Ginzburg number in the limit of
cation of the pseudo-spinodal is numerically calculated to b‘?argeN is

at x/xs=0.81 and 0.71, respectively, for samples B1 and B2.

[The approximate equation for the pseudo-spinodal Eq. L 27(1+c)*
(3.22 yields 0.81 and 0.69, repsectivglfhese numbers are Gi =\/§— N
very close to the corresponding experimental values at the cm

onset of the anomalous nucleation behavior at these two (1+c) (1-2¢)? _

compositions. Based on this agreement, it is reasonable to 4 H(1-¢) G (329
conjecture that the pseudo-spinodal identified through our

one-loop theory provides a good estimate of the kinetic spin- At the critical composition fo*<xc (xc=2/Nv), the
odal. Both the behavior of the critical length scale and the2ymptotic scaling result is

(3.28

—1/2

time evolution of the structure factdrin the experiments of e 79 2

d X . XG ql‘f' C) v° 1l
Lefebvre etal. show features resembling spinodal Gi=l-—= 277 N (3.30
decompositior We thus suggest that the experimental con- Xe 7
ditions of Ref. 20 were such that the system was alreadwynd the Ginzburg number Gthat determines the validity of
beyond the kinetic spinodal. the binodal curve is
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e 2.2 2
_Xe . 7291+¢) 3 v 1
Gi= o =422 1+§(1+C) N
(3.31 1.8r
For the off-critical spinodal, the Ginzburg number is 6
. .
Gi=1- ¢ %8
Xs o= 14f
9 02/3 (1_2¢)2 2/3 =
= NI T L
W(1+C) b2 N 3[(;3(1_(!))} . (3.32 1.2
Finally, the pseudo-spinodal occurs at i
27 v2/3 - (1_2¢)2 2/3
Xps=Xs| 1= 57 —om e N | (. 08 ' : : :
P 2(4m)°° b d(1-¢) o 0.2 0.4 0.6 0.8 1
(3.33 )

AN 6 —2
We note that the same Comt?ln?lthr‘aE Nb® ~“ appears riG. 4. A generalized phase diagram for a symmetric blend Ni#3000
in all the above expressions. This is the same parameter thaidb3/v =3 showing the mean-field binodéhick solid ling, the mean-
determines the concentration fluctuation effects in diblocKield spinodal(thin solid ling, the pseudo-spinodatiash-dot ling and the

. e . loci of the condition(3.7) which defines the Ginzburg criteriddash line.
copolymers identified by Fredrickson and Helfa?ﬁdé\part N is related to the polymer volum¥ via Nb®/v?=V/I3. One may notice

erm the numerical prefaqtprs, the scaling with _Of the  that the pseudo-spinodal goes slightly below the binodal in the immediate
Ginzburg number in the critical and off-critical spinodal re- vicinity of the critical point. This artifact is due in part to the use of mean-

gimes is identical with the earlier results of de Geﬁmmj field theory in calculating tr_u_e bino<_jal and in part tq the_ breakdow_n of the
Binder® However, these scaling results require quite Iargegzrf'goncl’s :)Zeg)&?ggtgs rcé'rt]'(‘;f‘r:]gﬁ"zr:tizicgfsfpor;':t'ﬂga"s'fe fluctuations that
degrees of polymerization as can be seen from Fig. 2.

The pseudo-spinodal differs from the mean-field spin-
odal by ~N~3. In the limit of N—, the pseudo-spinodal
becomes the same as the mean-field spinodal. Thus the thes=> ¢ and x*<xg' will be strongly altered to become
modynamic spinodal is recovered in the limit of infinite mo- Ising-like by large concentration fluctuations. Nucleation in
lecular weight. This is consistent with the result reached bythe metastable state of this region will be non-mean-field-
renormalization group study of Gunton and YaldBikor  like and will involve nonclassical exponeritébove x&',
systems with infinitely long-ranged interactions. For moder-between the binodal and the Ginzburg curve, nucleation
ately long polymers typically used in experiments, becausshould be well described by mean-field theory, such as the
of the slow N~ %2 decrease and fairly large prefacttior  self-consistent field theoty (with the effectivey®). In the
systems well off the critical compositignthe pseudo- metastable region between the Ginzburg curve and the
spinodal can occur significantly before the mean-field spinpseudo-spinodal, deviation from mean-field behavior should
odal. We believe this to be the case for the system studied byecome significant. However, there can still be a large
Balsara and co-workers. enough nucleation free energy barrier for the metastable state

We summarize the phase behavior for symmetric polyto be long-lived. When the system reaches the pseudo-
mer blends by presenting a generalized phase diagram in Figpinodal, the free energy barrier becomes of okdeand the
4. The thick and thin solid lines represent the binodal andifetime of the metastable state becomes comparable to the
mean-field spinodal curves, respectively. Except for possibléocal diffusive relaxation time. The essence of the described
ends effects, these two curves are independer.ofhe  scenario was already discussed in the work of BiRdéow-
pseudo-spinodal is indicated by the dash-dot c{fraad the  ever, our study represents an improvement in several re-
onset of the Ginzburg criteriothereafter referred to as the spects. First, our new phase diagram uses a single unified
Ginzburg curve is shown by the dash curve. These two Ginzburg criterion for both the critical and off-critical spin-
curves depend oN and both move closer to the mean-field odal regimes whereas two separate and discontinuous Gin-
spinodal wherN increases. The onset of the Ginzburg crite-zburg criteria were used in Ref. 5 Second, while the Gin-
rion depends in addition on the choicemfa largerc moves  zburg criterion is related to the free energy barrier for
the curve closer to the spinodal. In the figure, we chse nucleation, conceptually we suggest that a distinction be
=3000, b%*/v=3 andc=0.1. made between the kinetic limit of the metastable state and

We now discuss the thermodynamic and kinetic behavthe Ginzburg criterion which simply signals the onset of sig-
iors based on this phase diagram. Since the phase diagramnigicant deviation from RPA-like behavior but does not nec-
symmetric, we focus on the left half. Below the Ginzburg essarily imply a small free energy barrier for nucleation. The
curve (the dash ling mean-field theory provides a good de- pseudo-spinodal we introduced in the work is a better mea-
scription of the blend. For example, the structure factor issure for the kinetic spinodal. Finally, our general res(dts
well described by the RPA forrtwith the effectivex®). The  lowing conformation asymmetry and applicable for experi-
Ginzburg curve and the binodal intersect at a spegfl mentally relevant molecular weightsan be used to make
with the correspondingbg. The portion of the binodal for quantitative predictions for specific systems.
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IV. CONCLUSIONS the unstable state. The calculated location of the pseudo-

The field-theoretic loop expansion provides a systematiPinodal for the two s%nples used in the recent experimental
technique for studying fluctuation effects in binary polymerWork of Lefebvreet al™ on nucleation in a binary polymer
blends. We have addressed a number of issues within tHdend agrees with the onset of the anomalous, spinodal-
framework of a renormalized one-loop theory. By examiningdecomposition-like nucleation behavior found in the experi-
the fluctuation effects on different length scales, the physicament, thus strongly suggesting that the system in the experi-
significance of the various possible definitionsyofs clari- ~ ment was beyond the kinetic spinodal.
fied. It is shown that the rea}l parameter that characterizes We conclude by commenting on the approximations and
the molecular compatibility between two polymers y§  assumptions in our theory. In this work, we use a coarse-
which includes fluctuation and correlation effects up to thegrained model of the polymer blend where the polymers are
polymer size arising from both the enthapic interactionassumed to be continuous Gaussian chains interacting with a
(modeled by the barg®) effects and entropic packing effects two-body local pseudo-potential subject to a constant local
due to conformation asymmetry. SANS measurement of th@yverall density(incompressibility constraint. In doing so,
structure factor defines an appargfitwhich is related tor® e have chosen to focus on the effects of concentration fluc-
by a n(_)nlinear self-consistent equation that i_n_cludes renoiyation at length scales larger than the Kuhn lengths of the
malization effects due to long wavelength critical and off- ,o\ymers. Thus we have neglected effects due to local liquid
critical spinodal fluctuations. While these qualitative insightsg.\cture and finite compressibility: these effects have been

are not new, our theory pr_owdes a simple and transparent,,,n 1o pe important contributing factors to the composi-
relationship among these differeptparameters and the self- tion, temperature and pressure dependence of the Flory—

. . o -
con5|sten_t equat_lon betwe_eﬁ and x* includes effects not Huggins parameter and have been amply studied by other
captured in previous theories. Lo

approaches. These effects generally give rise to a much more

Our fluctuation theory provides a natural framework for . ) N
identifying the range of validity of mean-field theory in de- involved .expressmn than EqR.24) for the effectivey” pa-
rameter in terms of the molecular parameters. Strong com-

scribing the thermodynamic behavior of a binary polymer ="~ o ) .
blend. By considering the relative importance of the fluctuaPoSItion depgr\dence L .and the coupling bety\{een density
tion correction to the inverse susceptibility, a unified and composmon fluctuatllons may add to additional terms to
Ginzburg criterion is derived that is applicable to both theQUr Self-consistent equatid@.30), but the form of the lead-
critical and the off-critical spinodal regimes and provides aind singular terms will be unaltered, and most of the quali-
smooth crossover between these two regimes. The complet@tive conclusions, such as the nonexistence of a thermody-
Ginzburg criterion is shown to a|WayS involve the Composi_namiC spinodal, will remain valid. It is possible to include
tion, in addition to temperature o¢. While the Ginzburg the equation of state effects explicitly into the coarse-grained
number we derived exhibits the same scaling with moleculafield-theoretic modef?-"®in future work we plan to examine
weight in the respective limiting cases as studied earlier byuch additional effects.
de Gennes and Binder, very long polymers are required to  Our one-loop theory represents the lowest-order correc-
reach the scaling regime. For moderately long polymers, théon beyond mean-field theory. Renormalization of the pa-
nonclassical regions are significantly wider than commonlyameters in the fluctuation correction terms in effect sums
believed. over a subset of an infinite number of terms in the perturba-
An important result of this work concerns the nature oftion expansion, thus extending the range of applicability of
the spinodal. Long wavelength composition fluctuation neaghe theory from its bare form and allowing some important
the off-critical spinodal produces a stronger singular Contri'efrects(such as the nonexistence of a thermodynamic spin-
bution to the inverse susceptibility than the normal criticalodab to be captured. However, a loop expansion is inad-
fluptuation_, resulting_ in th_e destruction of the mear?-fieldequate for describing the full effects of long wavelength
spinodal in three-dimension. Consequently, even in th&iical or spinodal fluctuations, such as nonclassical expo-
purely thermodynamic sense, there is no true divergence IHents; the renormalization group theory is required. Indeed,

the suscelptlbmty.ln binary fluid mlxture.s.wnh a.f|n|te spatial Belyakov and Kiselev derived the Ginzburg criterion near
range of interactions, except at the critical point. Neverthe—,[h critical point by using the renormalization arou
less, the distance to the mean-field spinodal when expresse P y 9 group

either in terms of the apparet or the truex® (but not the method*! However, a renormalization group treatment of the
bare x"!) provides a meaningful measure of the width of crossover from the critical regime to the off-critical spinodal

fluctuation-dominant region. By examining the physical limit regime is technically challenging, because these two regimes

of the one-loop theory, we identify a pseudo-spinodal af'® governed by two different upper critical dimensigiosir

which the correlation length or susceptibility reaches a finite?nd Six, respectively Even for the off-critical spinodal
maximum. The pseudo-spinodal precedes the mean-fief@lone, since our physical dimensids-3 is far off the upper
spinodal by an amount N~ and merges with the latter in critical dimension six and is below the lower critical dimen-
the limit of infinitely long chains. The pseudo-spinodal is sion four, the validity of are-expansion é=6—d) approach
shown to be strongly correlated with the free energy barriets questionable. The one-loop theory, in spite of its limita-
for nucleation becoming ordé&T. Therefore we suggest that tions, provides a simple, unified theoretical framework for
the pseudo-spinodal be taken as the physical or kinetic spirsapturing a number of fluctuation effects including the cross-
odal separating the physically accessible metastable state ander from the critical point to the off-critical spinodal.
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VZ+iV W, (r) |q(r;7)=0 (A6)

with initial condition q(r;0)=1. Because the system is in-
compressible, the local composition is uniquely specified by
eitherpa(r) or ¢pg(r)=1— pa(r). We denotep,(r) simply
APPENDIX A: TRANSFORMATION by ¢(r); the integration ovegpg(r) in Eq.(A2) can be trivi-

OF THE PARTITION FUNCTION a||y performed to y|e|d Eq(28)

INTO A FUNCTIONAL INTEGRAL

In this appendix, we briefly sketch the transformation of APPENDIX B: FREE ENERGY CALCULATION
the partition function Eq(2.5) into a functional integrai*’® ~ THROUGH A LOOP EXPANSION

Introducing collective variableg,(r) through the iden- We start with the representation of the grand partition
tity function Eq.(2.10 and develop an expansion in the loop
parametem to first order ina.
I1 f Do(r) 8(hu(r)— da(r))=1 (A1) The zeroth-order approximation for evaluating the func-
r

tional integral is the steepest descent or saddle point approxi-

and using the Fourier representation of théunction, we mation. This involves finding the stationary point of the

can rewrite the partition function as a multi-fold functional functional K- with respect to its variables and equating the
integral grand free energy with the stationary value of. Setting

the functional derivatives ok with respect to the field vari-

— B ables to zero and noting that the saddle-point valued/of
:(M,V)—f DQSAJ D¢BJ’ DWAJ DWBH A palr) lie on the imaginary axis, we obtain
+ da(r)—1)exp{— K[ da(r), ds(r), W o(F) = Wg o(F) = x°(1=24q(r)), (B1)
Wa(r), We(r)1}, (A2 Bo(r)=exp( V) J drgAr Lo naarn, (B2
where °

1
1—¢o(r)=f0quB(r,l—T)qB(r,T), (B3)

K:Xf drd’A(ﬁB_if dr(Wada+Wgdg)
where we have definew, o=iW, o so that all the variables
1L Wa Wa]. (A3) " are now real and the,(r,1)’s are solved from EqA6). The

The integration over the auxiliary field&/s(r) and Wg(r) ~ Subscript O refers to the saddle-point or zeroth-order approxi-
results from the Fourier representation of théunction in ~ mation.
Eq. (Al). In arriving at Eq.(A2), we have replacee,(r) by . Equatipns(Bl)—(Bg) are nothing but .the self-consistent
#,(r) using the identity Eq(A1) and have exchanged the field equations fqr an inhomogeneous binary polymer blend.
order of integration over the functional variables,(r), They can be easily solved for the case of a homogenous state

W,(r) with integration over the configuration of the polymer With uniform composition, with the results

chains.| is the result of the latter integration and is given by w, o—wg o= x(1—2¢y), (B4)
exp(—1) Po=exp(uVa—WaoVa), (BS)
v v 1 1— ¢po=exp(—Wg V), (B6)
na=0 ng—0 Na! Ng! It is more convenient to write the solutions in terms of
1 Wa 0, Wg o andu as functions of the compositiogy; doing
n n H
XWGXP(M”AVA)ZAAZBB so we obtain
1
exp uVa)Za(Wa(r)) = Zg(Wg(r)) Wa0=x"(1— o) — v IN(1= o), (B7)
ex + . (A4 B
Va Ve
1
whereZ, and Zg are the single-chain configurational inte- ~ Wgo=— —IN(1~ ¢o), (B8)
grals in the presence of external field&(r) and Wg(r), B
respectivelyZ,, can be obtained from and
1 1
za(wa)zf dra,(r.1), (A5) M=V—Aln ¢o—v—Bln(1—¢o)+xb(1—2¢o)- (B9)

Downloaded 14 Jul 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



498 J. Chem. Phys., Vol. 117, No. 1, 1 July 2002

These results can be substituted into E43) to yield the
grand potential per unit volume as

1 ¢ 1—dy
gO_V_Aln(l_d)O)_V_A_ Vg

+ X3, (B10)

from which we obtain the Helmholtz free energy density

l_
fo(¢o):%[|n¢o_1]+ Vj°

[IN(1—¢o)—1]

+XPho(1— o). (B11)

The free energy of mixing can be easily obtained with the

result

1o
Ve

fmix,O( o) = \(t;z In $ot

In(1— o)

+ XPo(1— ¢bo). (B12)

This is just the Flory—Huggins free energy.
To calculate corrections to the mean-fieltself-

Zhen-Gang Wang

f(¢)=9(n)+nd
=Jo( Po(u)) +ag(po(u))+0(a%) +ue
=Jo( }) + e+ do( bo) — Go( ¢) +agi( o) + O(a?).
(B20)

Due to the stationarity of they, at ¢y, the difference
9o(bo) —go( @) is O(a?). Also, to ordera, we can replace
the argumentp, by ¢ in g,. Therefore,

f(¢)=fo(#)+agi(¢)+0(a%), (B21)

wherefy( ) is the same function as E¢B11) with ¢, re-
placed by¢. Equation(2.11) follows from the definition of
the free energy of mixing Eq2.4).

APPENDIX C: RELATIONSHIP
TO PHENOMENALOGICAL FIELD THEORY

In this appendix, we(1) show that the self-consistent
equation for the inverse structure factor H8.18 corre-

consistent fieliresult, we expand the field variables aroundSponds to a one-loop expansion ofjé ¢ field theory,(2)

their saddle-point values:

H(r)= o+ 6(r), (B13)
iWA(r):WA’0+i5WA(r), (814)
iWg(r)=wg o+idWg(r). (B15)

To order a, only the quadratic terms i¢(r) and

SW,(r) are required; higher order terms contribute to order
a® or higher® Performing the straightforward Gaussian in-

tegrals, we obtain, to ordex, the grand free energy

G(u,V)=Vg(u)
=V[do( do( 1)) +ags(do(n))+0(a?d)],

(B16)
where
1
gl(d’o):mf dk{|n[¢oVADA(XA)
+(1— ¢o)VgDg(xg)]+In| 1—2x°
bo(1— ho)VaVDa(Xa)Dp(Xp) ] (B17)
doVaDA(Xa) +(1— o) VgDg(Xg)|]’
whereD ,(X,) is the Debye function
D o(Xa) = 2X,, [ X+ exp( —X,) — 1] (B19)

with x,= k2R§/6. In writing Eq.(B17) we have made use of
the saddle-point solution, Eq&7)—(B9).
To ordera, the volume fractionp is obtained by

_ 9 perag o B19
o= a—(bo a¢y+0(a’). (B19

comment on the validity of using the Flory—Huggins—de
Gennes free energy for study fluctuation in polymer blends,
and (3) conjecture the possible structure of a one-loop fluc-
tuation theory for diblock copolymers.

Consider the following Lagrangian functional:

1
L= f dr[z[(ZXs— 2X)YP(1) + 2xsE5(V ()]

1 3 1 4
METREC AR TRZE AR (CY
Obviously, the RPA structure factor is simply
Srea(k) = 2 (€2

Xs— 2X°+ 2xsE0K?

Including fluctuations due to th¢® and * nonlinearity
to one-loop order, we obtain

-1 -1 1 _Ad d-1
S0V =Seh(0)+ 5 (g3 a0 K HaKSeu(k)

1 A
-3 ra(1a0? | K k0. (€3

Replacing Sgpa(k) by S(k) in the fluctuation correction
terms by substitutinge® for x°, and similarly iny;4 and
Y40, We Obtain a renormalized self-consistent equation for
S(0):
_ _ 1 Aq _
S 1(O)=SRP1A(O)+§W)/4J k9~ tdkgk)
1 A, d-1
—vasf kI tdkS(k),

wherey; andvy, are the same functions as the corresponding
¥3,0 and y4 o With x© replaced byy?.
Comparing the above equation with E®.18 and re-

(C4

Now the Helmholtz free energy is obtained by an inversecalling the substitution of® by x? in the renormalized equa-

Legendre transform:

tion, we identify
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2x° 1 e
Y30=———— =[(1— $)*Vg— ¢*V,] (CH n="3f (D3)
$(1-) v 3
and and
£(2)
4% V,V ="y (D4)
74,021—_ A_2 = (Co) f
¢(1=¢) v By identifying an inhomogenous saddle point of the above

We note that the functional E¢C1) with the above ver- free energy, Cahn and Hilliard obtained the following free
tex functions cannot be obtained from an expansion using th@nergy barrier for the formation of the critical nucleus:
Flory—Huggins de _Gen_nes _theory. Therefore, previogs work AF o= 1977~ 12£3/2,312 (D5)
that treats fluctuation in binary polymer blends using the .

Flory—Huggins—de Gennes free energy is not justified from  USing the free energy E¢B11), and the de Gennes ex-
first principles and should be considered phenomenalogicaP"€SSION cfigr the coefficient of the square gradient of a poly-

For the case of diblock copolymer, an equation similar to™er blend, we have

Eq.(C4) is expected. In general the last term is nonvanishing 1(1—¢)2Vg— 2V,

except for the symmetric casehere mean-field theory pre- s P SCVAVRE (D6)
dicts a direct transition from the disordered phase to the

lamellar phaseand will contribute significantly to the renor- H(1— )V %

malization equation betweeg® and x® near the ODT. In- T= (l—¢)2VB—¢2VA( - X_) (D7)
deed, by simple power counting, one can show thatjthe S

term results in a stronger singularity {1y® xs) ~¥?than the ~ and

(1— x® xs) Y2 term due toy, included in the work of Fre- 1 T

drickson and Helfand&’ At the phenomenalogical level, the (== ———. (D8)
effects due to nonvanishing; can be addressed starting with 36 ¢(1=)lale

the Leibler free energy, a task that remains to be done. Howfhe free energy barrier is then
ever, it should be clear from the discussions in this appendix — 32— |12
that the Leibler free energythe analog of the Flory— AF. 2 2% |_) (V_)
Huggins—de Gennes free energyould not yield the correct nuct= < VaVg
vertex functions for studying fluctuations.

lalg

1— \VAY/ o 3/2
&( 2¢) Ve e 1_1) . (DY)
[(1— @) Vg— ¢Vl Xs
APPENDIX D: NUCLEATION BARRIER The y appearing in the above equations should be inter-
NEAR THE MEAN-FIELD SPINODAL preted as thege®, in accordance with our discussions on the

_ _ . . Xx-parameter issue.
In this appendix, we provide an expression for the free
energy barrier for homogeneous nucleation near the spinodal.
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th_e_ SpIQQOdal was developed Some time ago by Cahn andIn the literature,y is usually defined dimensionless by using a reference
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mulation. Near the spinodal, the excess free energy for ar;the x parameter has the dimension of 1/volume.
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