Iyer, Shankar and Oganesyan, Vadim and Refael, Gil and Huse, David A. (2013) Many-body localization in a quasiperiodic system. Physical Review B, 87 (13). Art. No. 134202. ISSN 1098-0121. doi:10.1103/PhysRevB.87.134202. https://resolver.caltech.edu/CaltechAUTHORS:20130510-141525888
|
PDF
- Published Version
See Usage Policy. 1MB | |
|
PDF
- Submitted Version
See Usage Policy. 3MB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20130510-141525888
Abstract
Recent theoretical and numerical evidence suggests that localization can survive in disordered many-body systems with very high energy density, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in extended quantum systems far from the zero-temperature limit. It separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present numerical evidence that many-body localization also occurs in models without disorder but rather a quasiperiodic potential. In one dimension, these systems already have a single-particle localization transition, and we show that this transition becomes a many-body localization transition upon the introduction of interactions. We also comment on possible relevance of our results to experimental studies of many-body dynamics of cold atoms and nonlinear light in quasiperiodic potentials.
Item Type: | Article | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||||||
Additional Information: | © 2013 American Physical Society. Received 21 December 2012; revised 8 February 2013; published 8 April 2013. We thank E. Altman, M. Babadi, E. Berg, S.-B. Chung, K. Damle, D. Fisher, M. Haque, Y. Lahini, A. Lazarides, M. Moeckel, J. Moore, A. Pal, S. Parameswaran, D. Pekker, S. Raghu, A. Rey, and J. Simon for helpful discussions. This research was supported, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants No. CNS-0855217 and No. CNS-0958379. S.I. thanks the organizers of the 2010 Boulder School for Condensed Matter and Materials Physics. S.I. and V.O. thank the organizers of the Cargesè School on Disordered Systems. S.I. and G.R. acknowledge the hospitality of the Free University of Berlin. V.O. and D.A.H are grateful to KITP (Santa Barbara), where this research was supported in part by the National Science Foundation under Grant No.NSF PHY11-25915. V.O. thanks NSF for support through Award No. DMR-0955714, and also CNRS and Institute Henri Poincaré (Paris, France) for hospitality.D.A.H. thanks NSF for support through Award No. DMR-0819860. | ||||||||||||||||
Funders: |
| ||||||||||||||||
Issue or Number: | 13 | ||||||||||||||||
Classification Code: | PACS: 72.15.Rn, 05.30.-d, 64.70.Tg | ||||||||||||||||
DOI: | 10.1103/PhysRevB.87.134202 | ||||||||||||||||
Record Number: | CaltechAUTHORS:20130510-141525888 | ||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20130510-141525888 | ||||||||||||||||
Official Citation: | Many-body localization in a quasiperiodic system Shankar Iyer, Vadim Oganesyan, Gil Refael, and David A. Huse Published 8 April 2013 (15 pages) 134202 | ||||||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||
ID Code: | 38429 | ||||||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||||||
Deposited By: | Ruth Sustaita | ||||||||||||||||
Deposited On: | 10 May 2013 21:37 | ||||||||||||||||
Last Modified: | 09 Nov 2021 23:37 |
Repository Staff Only: item control page