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Secure quantum key distribution using squeezed states
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We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum
states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-
dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against
errors that shift the canonical variablesp andq. If the noise in the quantum channel is weak, squeezing signal
states by 2.51 dB~a squeeze factorer51.34) is sufficient in principle to ensure the security of a protocol that
is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be
achieved over distances comparable to the attenuation length of the quantum channel.
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I. INTRODUCTION

Two of the most important ideas to emerge from rec
studies of quantum information are the concepts of quan
error correction and quantum key distribution~QKD!. Quan-
tum error correction allows us to protect unknown quant
states from the ravages of the environment. Quantum
distribution allows us to conceal our private discourse fr
potential eavesdroppers.

In fact these two concepts are more closely related tha
commonly appreciated. A quantum error correction proto
must be able to reverse the effects of both bit flip erro
which reflect the polarization state of a qubit about thex
axis, and phase errors, which reflect the polarization ab
the z axis. By reversing both types of errors, the protoc
removes any entanglement between the protected state
the environment, thus restoring the purity of the state.

In a quantum key distribution protocol, two communica
ing parties verify that qubits polarized along both thex axis
and thez axis can be transmitted with an acceptably sm
probability of error. An eavesdropper who monitors t
x-polarized qubits would necessarily disturb thez-polarized
qubits, while an eavesdropper who monitors thez-polarized
qubits would necessarily disturb thex-polarized qubits.
Therefore, a successful verification test can show that
communication is reasonably private, and the privacy
then be amplified via classical protocols.

In quantum key distribution, the eavesdropper collects
formation by entangling her probe with the transmitted q
bits. Thus both error correction and key distribution share
goal of protecting quantum states against entanglement
the outside world.

Recently, this analogy between quantum error correc
and quantum key distribution has been sharpened into a
cise connection, and used as the basis of a new proo
security against all possible eavesdropping strategies@1#.
Earlier proofs of security~first by Mayers@2#, and later by
Bihamet al. @3#! made no explicit reference to quantum err
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correction; nevertheless, the connection between quantum
ror correction and quantum key distribution is a power
tool, enabling us to invoke the sophisticated formalism
quantum error-correcting codes in an analysis of the secu
of quantum key distribution protocols.

Also recently, new quantum error-correcting codes ha
been proposed that encode a finite-dimensional quantum
tem in the infinite-dimensional Hilbert space of a quantu
system described by continuous variables@4#. In this paper,
we will apply these new codes to the analysis of the secu
of quantum key distribution protocols. By this method, w
prove the security of a protocol that is based on the tra
mission of squeezed quantum states of an oscillator.
protocol is secure against all eavesdropping strategies
lowed by the principles of quantum mechanics.

In our protocol, the sending party, Alice, chooses at ra
dom to send either a state with a well defined positionq or
momentump. Then Alice chooses a value ofq or p by sam-
pling a probability distribution, prepares a narrow wa
packet centered at that value, and sends the wave pack
the receiving party, Bob. Bob decides at random to meas
eitherq or p. Through public discussion, Alice and Bob di
card their data for the cases in which Bob measured i
different basis than Alice used for her preparation, and re
the rest. To correct for possible errors, which could be due
eavesdropping, to noise in the channel, or to intrinsic imp
fections in Alice’s preparation and Bob’s measurement,
ice and Bob apply a classical error correction and priva
amplification scheme, extracting from the raw data forn os-
cillators a numberk,n of key bits.

Alice and Bob also sacrifice some of their data to perfo
a verification test to detect potential eavesdroppers. W
verification succeeds, the probability is exponentially sm
in n that any eavesdropper has more than an exponent
small amount of information about the key. Intuitively, th
protocol is secure because an eavesdropper who monitor
observableq necessarily causes a detectable disturbanc
the complementary observablep ~and vice versa!.

Since preparing squeezed states is technically challe
ing, it is important to know how much squeezing is need
©2001 The American Physical Society09-1
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to ensure the security of the protocol. The answer depend
how heavily the wave packets are damaged during trans
sion. When the noise in the channel is weak, we show th
suffices in principle for the squeezed state to have a w
smaller by the factore2r50.749 than the natural width of
coherent state~corresponding to an improvement by 2.51 d
in the noise power for the squeezed observable, relativ
vacuum noise!. It is also important to know that security ca
be maintained under realistic assumptions about the n
and loss in the channel. Our proof of security applies if
protocol is imperfectly implemented, and shows that sec
key distribution can be achieved over distances compar
to the attenuation length of the channel. Squeezed-state
distribution protocols may have some practical advanta
over single-qubit protocols, in that neither single-phot
sources nor very efficient photodetectors are needed.

Key distribution protocols using continuous variab
quantum systems have been described previously by ot
@5–7#, but ours is the first complete discussion of error c
rection and privacy amplification, and the first proof of s
curity against arbitrary attacks.

In Sec. II we review continuous variable quantum err
correcting codes@4# and in Sec. III we review the argumen
@1# exploiting quantum error-correcting codes to demonstr
the security of the BB84 quantum key distribution sche
@8#. This argument is extended to apply to continuous va
able key distribution schemes in Secs. IV and V. Estima
of how much squeezing is required to ensure security of
protocol are presented in Sec. VI. The effects on security
losses due to photon absorption are analyzed in Sec. VII,
Sec. VIII contains conclusions.

II. CODES FOR CONTINUOUS QUANTUM VARIABLES

We begin by describing codes for continuous quant
variables@4#. The two-dimensional Hilbert space of an e
coded qubit embedded in the infinite-dimensional Hilb
space of a system described by canonical variablesq andp
can be characterized as the simultaneous eigenspace o
two commuting operators

Sq5ei (2Ap)q,Sp5e2 i (2Ap)p, ~1!

the code’s ‘‘stabilizer generators.’’ If the eigenvalues a
Sq5Sp51, then the allowed values ofq and p in the code
space are integer multiples ofAp, and the codewords ar
invariant under shifts inq or p by integer multiples of 2Ap.
Thus an orthogonal basis for the encoded qubit can be
sen as

u0̄&} (
s52`

`

uq5~2s!Ap&

} (
s52`

`

up5sAp&,
02230
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u1̄&} (
s52`

`

uq5~2s11!Ap&

~2!

} (
s52`

`

~21!sup5sAp&.

The operators

Z̄[ei (Ap)q, X̄[e2 i (Ap)p, ~3!

commute with the stabilizer generators and so preserve
code subspace; they act on the basis Eq.~2! according to

Z̄:u0̄&→u0̄&, u1̄&→2u1̄&,
~4!

X̄:u0̄&→u1̄&, u1̄&→u0̄&.

This code is designed to protect against errors that ind
shifts in the values ofq and p. To correct such errors, we
measure the values of the stabilizer generators to determ
the values ofq and p modulo Ap, and then apply a shift
transformation to adjustq andp to the nearest integer mul
tiples of Ap. If the errors induce shiftsDq, Dp that satisfy

uDqu,Ap/2, uDpu,Ap/2, ~5!

then the encoded state can be perfectly restored.
A code that protects against shifts is obtained for a

choice of the eigenvalues of the stabilizer generators.
code with

Sq5e2p ifq, Sp5e22p ifp, ~6!

can be obtained from thefq5fp50 code by applying the
phase-space translation operator

eiAp(qfp)e2 iAp(pfq); ~7!

the angular variablesfq andfpP(21/2,1/2# denote the al-
lowed values ofq/Ap andp/Ap modulo an integer. In this
code space, the encoded operationsZ̄ andX̄ ~which square to
the identity! can be chosen to be

Z̄~fq!5eiAp(q2fqAp), X̄~fp!5e2 iAp(p2fpAp). ~8!

The code with stabilizer Eq.~1! can be generalized in a
variety of ways@4#. For example, we can increase the dime
sion of the protected code space, and we can modify the c
to protect against shifts that are asymmetric inq and inp. If
we choose the stabilizer to be

Sq~n,a!5exp@ i ~A2pd!~q/a!#,
~9!

Sp~n,a!5exp@2 i ~A2pd!~pa!#,

whered is a positive integer anda is a positive real number
then the code has dimensiond and protects against shifts tha
satisfy
9-2
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uDqu,S a

2 DA2p

d
, uDpu,

1

2a
A2p

d
. ~10!

The codewords Eq.~2! are nonnormalizable states, infi
nitely ‘‘squeezed’’ inq and p. In practice, we must alway
work with normalizable finitely squeezed states. For e
ample, a Gaussian approximationu0̃& to the ideal codeword
u0̄& of the d52, a51 code, characterized by squeezing p
rametersDq ,Dp!1, is

u0̃&'S 4

p D 1/4E
2`

`

dquq&e2
1
2(Dp

2)q2

(
s52`

`

e2
1
2(q22sAp)2/Dq

2

'
1

p1/4E2`

`

dpup&e2
1
2(Dq

2)p2

(
s52`

`

e2
1
2(p2sAp)2/Dp

2
; ~11!

the approximate codewordu0̃& can be obtained by subjectin
u0̄& to shifts in q and p governed by Gaussian distribution
with widthsDq andDp, respectively. IfDq andDp are small,
then in principle these shifts can be corrected with high pr
ability: e.g., forDq5Dp[D, the probability that a shift inq
or p causes an uncorrectable error is no worse than the p
ability that the size of the shift exceedsAp/2, or

Pe<
2

ApD2EAp/2

`

dq e2q2/D2
<

2D

p
exp~2p/4D2!.

~12!

For thed52 code withaÞ1, this same estimate of the erro
probability applies if we rescale the widths appropriately,

Dq5Da, Dp5D/a. ~13!

We can concatenate a shift-resistant code with
@@n,k,d## stabilizer quantum code. That is, first we enco
~say! a qubit in each ofn oscillators; thenk better protected
qubits are embedded in the block ofn. If the typical shifts are
small, then the qubit error rate will be small in each of then
oscillators, and the error rate in thek protected qubits will be
much smaller. The quantum key distribution protocols t
we propose are based on such concatenated codes.

We note quantum codes for continuous quantum varia
with an infinite-dimensionalcode space were described ea
lier by Braunstein@9#, and by Lloyd and Slotine@10#. En-
tanglement distillation protocols for continuous variable s
tems have also been proposed@11,12#

III. QUANTUM KEY DISTRIBUTION AND QUANTUM
ERROR-CORRECTING CODES

Now let us recall the connection between stabilizer qu
tum codes and quantum key distribution schemes@1#.

We say that a protocol for quantum key distribution
secure if ~1! the eavesdropper Eve is unable to collec
significant amount of information about the key without b
ing detected,~2! the communicating parties Alice and Bo
receive the same key bits with high probability, and~3! the
key generated is essentially random. Then if the key is in
02230
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cepted, Alice and Bob will know it is unsafe to use the k
and can make further attempts to establish a secure ke
eavesdropping is not detected, the key can be safely use
a one-time pad for encoding and decoding.1

Establishing that a protocol is secure is tricky, becau
there inevitably will be some noise in the quantum chan
used to distribute the key, and the effects of eavesdropp
could be confused with the effects of the noise. Hence
protocol must incorporate error correction to establish
shared key despite the noise, and privacy amplification
control the amount of information about the key that can
collected by the eavesdropper.

In the case of the BB84 key distribution invented by Be
nett and Brassard@8#, the necessary error correction and p
vacy amplification are entirely classical. Nevertheless,
formalism of quantum error correction can be usefully
voked to show that the error correction and privacy ampl
cation work effectively@1#. The key point is that if Alice and
Bob carry out the BB84 protocol, we can show that t
eavesdropper is no better off than if they had execute
protocol that applies quantum error correction to the tra
mitted quantum states. Appealing to the observation that
ice and Bobcould haveapplied quantum error correctio
~even though they didn’t really apply it!, we place limits on
what Eve can know about the key.

A. Entanglement distillation

First we will describe a key distribution protocol that us
a quantum error-correcting code to purify entanglement,
will explain why the protocol is secure. The connection b
tween quantum error correction and entanglement purifi
tion was first emphasized by Bennettet al. @13#; our proof of
security follows a proof by Lo and Chau@14# for a similar
key distribution protocol. Later, following Ref.@1#, we will
see how the entanglement-purification protocol is related
the BB84 protocol.

A stabilizer code can be used as the basis of
entanglement-purification protocol with one-way classi
communication@13,14#. Two parties, both equipped with
quantum computers, can use this protocol to extract fr
their initial shared supply of noisy Bell pairs a smaller num
ber of Bell pairs with very high fidelity. These purified Be
pairs can then be employed for Einstein-Podolsky-Ro
~EPR! quantum key distribution. Because the distilled pa
are very nearly pure, the quantum state of the pairs has
ligible entanglement with the quantum state of the probe
any potential eavesdropper; therefore no measurement o
probe can reveal any useful information about the secret k

1We implicitly assume that Eve uses a strategy that passes
verification test with nonnegligible probability, so that the rate
key generation is not exponentially small. If, for example, Eve w
to intercept all qubits sent by Alice and resend them to Bob, th
she would almost certainly be detected, and key bits would no
likely to be generated. But in the rare event that she is not dete
and some key bits are generated, Eve would know a lot about th
9-3



il

se
b
u

r

th

th

-

th

ly
n

t d
t

d
;
of
t

g
om
e-

that
.

ion.

high
.

e
the

ed
on
-

ir

om-
,
se
t

an

t
ell
ous

this
hey
ro-
e

ll
h

hat
a

o-
e
e

ility

DANIEL GOTTESMAN AND JOHN PRESKILL PHYSICAL REVIEW A63 022309
Let us examine the distillation protocol in greater deta
Suppose that Alice and Bob start out withn shared EPR
pairs. Ideally, these pairs should be in the state

uF (n)&[uf1& ^ n, ~14!

whereuf1& is the Bell state (u00&1u11&)/A2; however, the
pairs are noisy, approximatinguF (n)& with imperfect fidelity.
They wish to extractk,n pairs that are less noisy.

For this purpose, they have agreed in advance to u
particular@@n,k,d## stabilizer code. The code space can
characterized as a simultaneous eigenspace of a set of m
ally commuting stabilizer generators$Mi ,i 51,2, . . . ,n
2k%. EachMi is a ‘‘Pauli operator,’’ a tensor product ofn
single-qubit operators, where each single-qubit operato
one of$I ,X,Y,Z% defined by

I 5S 1 0

0 1D , X5S 0 1

1 0D ,

~15!

Y5S 0 2 i

i 0 D , Z5S 1 0

0 21D .

The operations$X̄a ,Z̄a ,a51,2, . . . ,k% acting on the en-
coded qubits are Pauli operators that commute with all of
Mi .

The Bell stateuf1& is the simultaneous eigenstate wi
eigenvalue one of the two commuting operatorsXA^ XB and
ZA^ ZB ~where subscriptsA andB indicate whether the op
erator acts on Alice’s or Bob’s qubit!. Thus the stateuF (n)&
is the simultaneous eigenstate with eigenvalue one of
commuting operators

Mi ,A^ Mi ,B , i 51,2, . . . ,n2k,

X̄a,A^ X̄a,B , a51,2, . . . ,k, ~16!

Z̄a,A^ Z̄a,B , a51,2, . . . ,k.

Now suppose that Alice and Bob both measure then2k
commuting Mi ’s. If the state they measure is precise
uF (n)&, then Alice and Bob obtain identical measureme
outcomes. Furthermore, since their measurements do no
turb the encoded operationsX̄a and Z̄a , their measuremen
would prepare the encoded stateuF̄ (k)&[uf̄1& ^ k, the en-
coded state with

X̄a,A^ X̄a,B5Z̄a,A^ Z̄a,B51,
~17!

a51,2, . . . ,k,

in the code subspace with the specified values ofMi561.
However, since the initial pairs are noisy, Alice’s an

Bob’s measurement of theMi ’s need not match perfectly
they should apply error correction to improve the fidelity
their encoded pairs. Thus Alice broadcasts the values of
Mi ,A’s that she obtained in her measurements. Comparin
his own measurements, Bob computes the relative syndr
Mi ,AMi ,B . From this relative syndrome, he infers what r
02230
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covery operation he should apply to his qubits to ensure
the Mi ,B’s match theMi ,A’s, and he performs this operation
Now Alice and Bob are in possession ofk encoded pairs with
improved fidelity.

These encoded pairs can be used for EPR key distribut
For eacha51,2, . . . ,k, Alice and Bob measureZ̄a , obtain-
ing outcomes that are essentially random and agree with
probability. These outcomes are their shared private key

B. Verification

If the initial pairs aretoo noisy, either because of th
intervention of an eavesdropper or for other reasons, then
purification protocol might not succeed. Alice and Bob ne
to sacrifice some of their EPR pairs to verify that purificati
is likely to work. If verification fails, they can abort the pro
tocol.

Under what conditions will purification succeed? If the
pairs were perfect, each would be in the stateuf1&, the
simultaneous eigenstate with eigenvalue one of the two c
muting observablesX^ X andZ^ Z. Suppose for a moment
that each of the pairsis a simultaneous eigenstate of the
observables~a Bell state!, but not necessarily with the righ
eigenvalues: in fact no more thantX of the n pairs haveX
^ X521, and no more thantZ of the n pairs haveZ^ Z5
21. Then, if Alice and Bob use a stabilizer code that c
correct up totZ bit flip errors and up totX phase errors, the
purification protocol will work perfectly—it will yield the
encoded stateuF̄ (k)&5uf̄1& ^ k with fidelity F51.

Now, the initialn pairs might not all be in Bell states. Bu
suppose that Alice and Bob were able to perform a B
measurement on each pair, projecting it onto a simultane
eigenstate ofX^ X and Z^ Z. Of course, since Alice and
Bob are far apart from one another, they cannot really do
Bell measurement. But let’s nevertheless imagine that t
first perform a Bell measurement on each pair, and then p
ceed with the purification protocol. Purification works if th
Bell measurement yields no more thantX pairs with X^ X
521 and no more thantZ pairs withZ^ Z521. Therefore,
if the initial state of then pairs has the property that Be
measurement applied to all the pairs will, with very hig
probability, produce pairs with no more thantZ bit flip errors
and no more thantX phase errors, then we are assured t
Bell measurement followed by purification will produce
very high fidelity approximation to the encoded stateuF̄ (k)&.

But what if Alice and Bob execute the purification prot
col without first performing the Bell measurement? W
know that the purification works perfectly applied to th
spaceHgood spanned by Bell pairs that differ fromuf1& ^ n

by no more thantZ bit flip errors and no more thantX phase
errors. LetP denote the projection ontoHgood. Then if the
protocol is applied to an initial density operatorr of the n

pairs, the final density operatorr8 approximatesuF̄ (k)& with
fidelity

F[^F̄ (k)ur8uF̄ (k)&>tr~Pr!. ~18!

Therefore, the fidelity is at least as large as the probab
9-4
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that tZ or fewer bit flip errors andtX or fewer phase errors
would have been found if Bell measurement had been
formed on alln pairs.

To derive the inequality Eq.~18!, we representr as a pure
stateuC&SE of the n pairs ~the ‘‘system’’ S) and an ancilla
~the ‘‘environment’’E, which might be under Eve’s control!.
The recovery superoperator can be represented as a un
operatorUSR that is applied toSand an auxiliary system~the
‘‘reservoir’’ R) that serves as a repository for the entro
drawn from the pairs by error correction. Denote the init
pure state of the reservoir byu0&R . Then the state of system
environment, and reservoir to which the recovery operat
is applied can be resolved into a ‘‘good’’ component

uCgood&SER5~PS^ I ER!uC&SE^ u0&R , ~19!

and an orthogonal component

uCbad&SER5@~ I S2PS! ^ I ER#uC&SE^ u0&R . ~20!

Since the statesuCgood&SERanduCbad&SERare orthogonal, the
unitary recovery operationUSR^ I E maps them to state
uCgood8 &SER and uCbad8 &SER that are also orthogonal to on
another. Furthermore, since recovery works perfectly on
spaceHgood, we have

uCgood8 &SER5uF̄ (k)&S^ u junk&ER , ~21!

where the stateu junk&ER of environment and reservoir ha
norm

ER^ junku junk&ER5 SER̂ Cgood8 uCgood8 &SER

5 SER̂ CgooduCgood&SER5tr~Pr!.

~22!

Thus the fidelity of the recovered state can be expres
as

F5 SER̂ C8u~ uF̄ (k)&S Ŝ F̄ (k)u! ^ I ERuC8&SER

5 SER̂ Cgood8 u~ uF̄ (k)&S Ŝ F̄ (k)u! ^ I ERuCgood8 &SER

1 SER̂ Cbad8 u~ uF̄ (k)&S Ŝ F̄ (k)u! ^ I ERuCbad8 &SER

5tr~Pr!1^F̄ (k)urbad8 uF̄ (k)&>tr~Pr!, ~23!

where

rbad8 5trER~ uCbad8 &SER SER̂Cbad8 u!; ~24!

Eq. ~18! then follows. The key point is that, because of E
~21!, and becauseuCgood8 &SER and uCbad8 &SER are orthogonal,
there is no ‘‘good-bad’’ cross term in Eq.~23!.

Our arguments so far show that Alice and Bob can
assured that entanglement purification will work very well
they know that it is highly unlikely that more thantZ bit flip
errors or more thantX phase errors would have been found
they had projected their pairs onto the Bell basis. While th
have no way of directly checking whether this condition
satisfied, they can conduct a test that, if successful, will p
02230
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vide them with high statistical confidence. We must no
suppose that Alice and Bob start out with more thann pairs;
to be definite, suppose they have about 2n to start, and that
they are willing to sacrifice about half of them to condu
their verification test. Alice randomly decides which pa
are for verification~the ‘‘check pairs’’! and which are for
key distribution~the ‘‘key pairs’’!, and for each of her check
qubits, she randomly decides to measure eitherX or Z. Then
Alice publicly announces which are the check pairs, whet
she measuredX or Z on her half of each check pair, and th
results of those measurements~in addition to the results of
her measurements of the stabilizer generators!.

Upon hearing of Alice’s choices, Bob measuresX or Z on
his half of each of the check pairs; thus Alice and Bob a
able to measureX^ X on about half of their check pairs, an
they measureZ^ Z on the remaining check pairs. Now sinc
the check pairs were randomly chosen, the eavesdropper
has no way of knowing which are the check pairs, and
cannot treat them any differently than the key pairs; he
the measured error rate found for the check pairs will
representative of the error rate that would have been fo
on the key pairs if Alice and Bob had projected the key pa
onto the Bell basis. Therefore, Alice and Bob can use th
check data and classical sampling theory to estimate h
many bit flip and phase errors would have been expecte
they had measured the key pairs.

For example, in a sample ofN pairs, suppose thatif Alice
and Bob both measuredZ for all the pairs, a fractionp of
their measurements would disagree, indicating bit flip erro
Then if they randomly sampleM,N of the pairs, the prob-
ability distribution for the numberM (p2«) of errors found
would be2

P~«!,exp@2M«2/2p~12p!#. ~25!

If Alice and Bob have noa priori knowledge of the value of
p, then by Bayes’ theorem, the conditional probability th
the total number of errors in the population ispN, given that
there arepZM errors in the sample, is the same as the pr
ability that there arepZM errors in the sample given tha
there arepN errors in the total population. Writingp5pZ
1«, the number of errors on theN2M untested pairs is
Np2MpZ5(N2M )pZ1N«5(N2M )(pZ1«8), where«8
5N«/(N2M ). ExpressingP(«) in terms of«8 we find

P~«8!,expS 2
M ~N2M !2«82

2N2pZ~12pZ!
D , ~26!

a bound on the probability that the fraction of the untes
pairs with errors is larger thanpZ1«8. In particular, if they
test aboutM5n/2 pairs for bit flip errors out of a total o
about N5n1n/2 pairs, the probability that a fractionpZ
1«8 of the remainingN2M5n pairs have bit flip errors is

2This bound is not tight. It applies if the sample ofM pairs is
chosen from the population ofN with replacement. In fact, the
sample is chosen without replacement, which suppresses the
tuations. A better bound was quoted in Ref.@1#.
9-5
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P~«8!,exp@2n«82/9pZ~12pZ!#. ~27!

A similar argument applies to the probability of phase erro
We conclude that by conducting the verification test, Ali
and Bob can be very confident that, if they had measureZ
^ Z ~or X^ X) on then key pairs, no more than (pZ1«8)n
@or (pX1«8)n# errors would have been found. By choosing
quantum error-correcting code that can correct this many
rors with high probability, they can be confident that t
encoded state they prepare approximatesuF̄ (k)& with fidelity
exponentially close to one.

It is important to emphasize that this argument requires
assumption about how the errors on different pairs may
correlated with one another. Rather the argument is app
to a hypothetical situation in which the value ofZ^ Z ~or
X^ X) already has been measured and recorded for all of
check pairs and all of the key pairs. Sampling theory is th
used to address the question: how reliably does a ‘‘poll’’
M bits randomly chosen from amongN allow us to predict
the behavior of the rest of the population. Classical samp
theory can be applied to the values of bothZ^ Z andX^ X
for the key pairs, because the operators commute and s
simultaneously measurable in principle@14#.

Furthermore, if the state of the encoded pairs that Al
and Bob use for key distribution is exponentially close
being a pure state, it follows from Holevo’s theorem th
Eve’s mutual information with the distributed key is exp
nentially small@14,1#. In the worst case, the imperfect fide
ity of Alice’s and Bob’s pairs is entirely due to Eve’s inte
vention; then the complete state consisting of the pairs
Eve’s probe is pure, and the Von Neumann entropyS(rE)
[2tr rElogrE of the staterE of the probe equals the en
tropy of the staterAB of the pairs. By extracting a key from
their pairs, Alice and Bob in effect prepare a state for E
governed by an ensemble with density matrixrE . According
to Holevo’s theorem, the mutual informationI (AB;E) of
this state preparation with any measurement that Eve
carry out on her probe satisfies

I ~AB;E!<S~rE!5S~rAB!, ~28!

and sincerAB is very nearly pure,S(rAB) and I (AB;E) are
very close to zero. Specifically, if the fidelity ofrAB is F
512d, then the largest eigenvalue ofrAB is at least 12d.
For a system with dimensionD, the density matrix with larg-
est eigenvalue 12d that has the maximal Von Neuman
entropy is

rmax5diagS 12d,
d

D21
,

d

D21
,•••,

d

D21D , ~29!

for which

S~rmax!52~12d!log2~12d!2d log2@d/~D21!#

5dS 1

loge2
1 log2~D21!2 log2d D1O~d2!.

~30!
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Taking D522k ~the total dimension of Alice’s and Bob’s
code spaces!, we conclude that

S~rAB!<dS 1

loge2
12k1 log2~1/d! D1O~d2!. ~31!

Finally, we have shown that if the verification test su
ceeds, then with probability exponentially close to one~the
probability that the error rate inferred from the check sam
is not seriously misleading!, Eve’s mutual information with
the key is exponentially small~because the state of the ke
bits approximatesuF̄ (k)& with fidelity exponentially close to
one!. This proof of security applies to any conceivable eav
dropping strategy adopted by Eve.

The proof relies on the ability of quantum error-correcti
codes to reverse the errors caused by interactions betw
the key pairs and Eve’s probe. Hence it may seem odd
the proof works for arbitrary attacks by Eve, since quant
error correction works effectively only for a restricted cla
of error superoperators. Specifically, the error superoper
acting on a block ofn qubits can be expanded in terms of
basis of ‘‘Pauli error operators,’’ where in each term of t
expansion bit flip errors and/or phase errors are inflicted
specified qubits within the block. The encoded quantum
formation is well protected only if the error superopera
has nearly all of its support on Pauli operators that can
corrected by the code, e.g., those with no more thantZ bit
flip errors andtX phase errors.

If Eve’s probe interacts collectively with many qubits,
may cause more bit flip or phase errors than the code
correct. But the crucial point is that, with high probability, a
attack that causes many errors on the key bits will also ca
many errors on the check bits, and Alice and Bob will det
Eve’s presence.

C. Reduction to the BB84 protocol

Since the entanglement distillation protocol requires o
one-way classical communication, this protocol is actua
equivalent to one in which Alice, rather than preparing B
pairs and sending half of each pair to Bob, instead prepa
an encoded quantum state that she sends to Bob. Using
of stabilizer generators on which she and Bob have agree
advance, Alice chooses a random eigenvalue for each s
lizer generator Mi ; then employing the correspondin
@@n,k,d## quantum code, she prepares one of 2k mutually
orthogonal codewords.

Alice also decides at random which of her qubits will b
used for key distribution and which will be used for verifi
cation. For each of the check bits, she decides at rand
whether to send anX eigenstate~with random eigenvalue! or
a Z eigenstate~with random eigenvalue!.

Bob receives the qubits sent by Alice, carefully depos
them in his quantum memory, and publicly announces t
the qubits have been received. Alice then publicly reve
which qubits were used for the key, and which qubits are
check qubits. She announces the stabilizer eigenvalues
she chose to encode her state, and for each check qubit
9-6
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announces whether it was prepared as anX or Z eigenstate,
and with what eigenvalue.

Once Bob learns which qubits carry the encoded key
formation, he measures the stabilizer operators and comp
his results with Alice’s to obtain a relative error syndrom
He then performs error recovery and measures the enc
state to decipher the key.

Bob also measures the check qubits and compares
outcomes to the values announced by Alice, to obtain
estimate of the error rate. If the error rate is low enou
error recovery applied to the encoded key bits will succe
with high probability, and Alice and Bob can be confident
the security of the key. If the error rate is too high, B
informs Alice and they abort the protocol.

As described so far, the protocol requires that Alice a
Bob have quantum memories and quantum computers
are used to store the qubits, measure stabilizer genera
and correct errors. But if they use a stabilizer code of
CSS~Calderbank-Shor-Steane! type @15,16#, then the proto-
col can be simplified further. The crucial property of the C
codes is that there is a clean separation between the
drome information needed to correct bit flip errors and
syndrome information needed to correct phase errors.

A CSS quantum stabilizer code is associated with a c
sical binary linear codeC1 on n bits, and a subcodeC2,C1.
Let H1 denote the parity check matrix ofC1 and H2 the
generator matrix for the codeC2 ~and hence the parity chec
matrix of the dual codeC2

'). The stabilizer generators of th
code are of two types. Associated with thei th row of the
matrix H1 is a ‘‘Z generator,’’ the tensor product ofI ’s and
Z’s

MZ,i5 ^ j 51
n ~Zj !

(H1) i j , ~32!

and associated with thei th row of H2 is an ‘‘X generator,’’
the tensor product ofI ’s andX’s

MX,i5 ^ j 51
n ~Xj !

(H2) i j . ~33!

SinceH1 hasn2k1 rows, wherek15dim(C1), andH2 has
k2 rows, wherek25dim(C2), there are all togethern2k1
1k2 stabilizer generators, and the dimension of the co
space~the number of encoded qubits! is k5k12k2. From
measurements of theZ generators, bit flip errors can be d
agnosed, and from measurement of theX generators, phas
errors can be diagnosed.

The elements of a basis for the code space with eigen
ues of stabilizer generators

MZ,i5~21!si, MX,i5~21! t i ~34!

are in one-to-one correspondence with thek cosets ofC2 in
C1; they can be chosen as

uc~v !&x,z5
1

uC2u1/2 (
wPC2

~21!z•wuv1w1x&; ~35!

here vPC1 is a representative of aC2 coset, andx, z are
n-bit strings satisfying
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H1x5s, H2z5t. ~36!

Thus, to distribute the key, Alice choosesx andz at random,
encodes one of theuc(v)&x,z’s, and sends the state to Bo
After Bob confirms receipt, Alice broadcasts the values ox
and z. Bob compares Alice’s values to his own measu
ments of the stabilizer generators to infer a relative s
drome, and he performs error correction. Then Bob meas
Z of each of hisn qubits, obtaining a bit stringv1w1x.
Finally, he subtractsx and appliesH2 to computeH2v, from
which he can infer the coset represented byv and hence the
key.

Now notice that Bob extracts the encoded key informat
by measuringZ of each of the qubits that Alice sends. Thu
Bob can correctly decipher the key information by correcti
any bit flip errors that occur during transmission. Bob do
not need to correct phase errors, and therefore he has no
for the phase syndrome information; hence there is no n
for Alice to send it.

Without in any way weakening the effectiveness of t
protocol, Alice can prepare the encoded stateuc(v)&x,z , but
discard her value ofz, rather then transmitting it; thus we ca
consider the state sent by Alice to be averaged over the v
of z. Averaging over the phase (21)z•w destroys the coher
ence of the sum overwPC2 in uc(v)&x,z ; in effect, then,
Alice is preparingn qubits asZ eigenstates, in the stateuv
1w1x&, sending the state to Bob, and later broadcasting
value ofx. We can just as well say that Alice sends a rand
stringu, and later broadcasts the value ofu1v. Bob receives
u1e ~wheree has support on the bits that flip due to error!
extractsv1e, corrects it to the nearestC1 codeword, and
infers the key, the cosetv1C2.

Alice and Bob can carry out this protocol even if Bob h
no quantum memory. Alice decides at random to prepare
qubits asX or Z eigenstates, with random eigenvalues, a
Bob decides at random to measure in theX or Z basis. After
public discussion, Alice and Bob discard the results in
cases where they used different bases and retain the re
where they used the same basis. Thus the protocol we h
described is just the BB84 protocol invented by Bennett a
Brassard@8#, accompanied by classical error correction~ad-
justing v1e to a C1 codeword! and privacy amplification
~extracting the cosetv1C2).

What error rate is acceptable? In a random CSS co
about half of then2k generators correct bit flips, and abo
half correct phase flips. Suppose that the verification
finds that bit flip errors (ZA^ ZB521) occur with probabil-
ity pZ and phase errors (XA^ XB521) occur with probabil-
ity pX . Classical coding theory shows that a random C
code can correct the bit flips with high probability if th
number of typical errors onn bits is much smaller than the
number of possible bit flip error syndromes, which hol
provided that

S n
npZ

D22(n2k)/2;2nH2(pZ)2(n2k)/2!1, ~37!

whereH2(x)52x log2x2(12x)log2(12x) is the binary en-
tropy function. Similarly, the phase errors can be correc
9-7
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with high probability provided the same relation holds w
pZ replaced bypX . Therefore, asymptotically asn→`, se-
cure key bits can be extracted from transmitted key bits
any rateR satisfying

R5
k

n
,122H2~pZ!,

~38!

R5
k

n
,122H2~pX!.

This upper bound onR crosses zero atpZ(or pX)50.1100.
We conclude that secure key distribution is possible ifpX,Z
,11%.

The random coding argument applies if the errors in
key qubits are randomly distributed. To assure that this is
we can direct Alice to perform a random permutation of t
qubits before sending them to Bob. After Bob confirms
ceipt, Alice can broadcast the permutation she perform
and Bob can invert it.

Again, the essence of this argument is that the amoun
information that an eavesdropper could acquire is limited
how successfully we could have carried out quantum e
correction if we had chosen to—and that this relation ho
irrespective of whether we really implemented the quant
error correction or not.

Other proofs of the security of the BB84 protocol ha
been presented@2,3#, which do not make direct use of thi
connection with quantum error-correcting codes. Howev
these proofs do use classical error correction and priv
amplification, and they implicitly exploit the structure of th
CSS codes.

D. Imperfect sources

Our objective in this paper is to analyze the security
key distribution schemes that use systems described by
tinuous quantum variables. The analysis will follow the str
egy we have just outlined, in which an entangleme
purification protocol is reduced to a protocol that does
require the distribution of entanglement. But first we need
discuss a more general version of the argument.

In the entanglement-purification protocol, whose red
tion to the BB84 protocol we have just described, there is
implicit limitation on the eavesdropper’s activity. We hav
assumed that Alice prepares perfect entangled pairs in
stateuf1&, and then sends half of each pair to Bob. Eve h
been permitted to tamper with the qubits that are sent to
in any way she chooses, but she has not been allowed
contact with Alice’s qubits. Therefore, if we imagine th
Alice measures her qubits before sending to Bob, we ob
a BB84 protocol in which Alice is equipped with a perfe
source of polarized qubits. When she sends aZ eigenstate,
the decision to emit au0& or a u1& is perfectly random, and
the state emerges from her source with perfect fidelity. Si
larly, when she sends anX eigenstate, the decision to sen
u6&[(u0&6u1&)/A2 is perfectly random, and the state
prepared with perfect fidelity. Furthermore, Eve has
knowledge of what Alice’s source does, other than what
02230
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is able to infer by probing the qubits as they travel to Bo
Security can be maintained in a more general scenario

the entanglement-purification protocol, we can allow Eve
cess to Alice’s qubits. As long as Eve has no way of kno
ing which pairs Alice and Bob will select for their verifica
tion test, and no way of knowing whether the check pa
will be measured in theZ or X basis, then the protocol stil
works: eavesdropping can be detected irrespective
whether Eve probes Alice’s qubits, Bob’s qubits, or both.

Now if we imagine that Alice measures her qubits befo
sending to Bob, we obtain a BB84-like protocol in whic
Alice’s source is imperfect and/or Eve is able to collect so
information about how Alice’s source behaves. Our pro
that the BB84-like protocol is secure still works as befo
However the proof applies only to a restricted type
source—it must be possible to simulate Alice’s source
actly by measuring half of a two-qubit state.

To be concrete, consider the following special case, wh
will suffice for our purposes: Alice has many identical copi
of the two-qubit staterAB . To prepare a ‘‘Z state’’ she mea-
sures qubitA in the basis$u0&A ,u1&A%. Thus she sends to
Bob one of the two states

r05
A^0urABu0&A

tr~ A^0urABu0&A!
,

~39!

r15
A^1urABu1&A

tr~ A^1urABu1&A!
,

chosen with respective probabilities

Prob~0!5tr~ A^0urABu0&A!,
~40!

Prob~1!5tr~ A^1urABu1&A!.

Similarly, to prepare anX state she measures in the ba
$u1&,u2&%, sending one of

r15
A^1urABu1&A

tr~ A^1urABu1&A!
,

~41!

r25
A^2urABu2&A

tr~ A^2urABu2&A!
,

chosen with respective probabilities

Prob~1 !5tr~ A^1urABu1&A!,
~42!

Prob~2 !5tr~ A^2urABu2&A!.

Unless the staterAB is precisely the pure stateuf1&, Alice’s
source isn’t doing exactly what it is supposed to do. Depe
ing on howrAB is chosen, the source might be biased;
example it might sendr0 with higher probability thanr1.
And the statesr0 andr1 need not be the perfectly prepare
u0& and u1& that the protocol calls for.

Now suppose that Alice’s source always emits one of
statesr0 ,r1 ,r1 ,r2 , and that after the qubits emerge fro
the source, Eve is free to probe them any way she plea
Even though Alice’s source is flawed, Alice and Bob c
9-8
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perform verification, error correction, and privacy amplific
tion just as in the BB84 protocol. To verify, Bob measuresZ
or X, as before; if he measuresZ, say, they check to se
whether Bob’s outcomeu0& or u1& agrees with whether Alice
sentr0 or r1 ~even though the state that Alice sent may n
have been aZ eigenstate!. Thereby, Alice and Bob estimat
error ratespZ and pX . If both error rates are below 11%
then the protocol is secure.

We emphasize again that the security criterionpX ,pZ
,11% applies not to all sources, but only to the restric
class of imperfect sources that can be simulated by mea
ing half of a ~possible noisy! entangled state. To give a
extreme example of a type of source to which the secu
proof does not apply, suppose that Alicealwayssends theZ
state u0& or the X state u1&. Clearly the key distribution
protocol will fail, even if Bob’s bits always agree wit
Alice’s! Indeed, a source with these properties cannot
obtained by measuring half of any two-qubit staterAB .
Rather, if the source is obtained by such a measurement,
a heavy bias when we send aZ state would require that th
error probability be large when we send anX state.

IV. DISTRIBUTING A KEY BIT
WITH CONTINUOUS VARIABLES

Now let us consider how the above ideas can be app
to continuous variable systems. We will first describe how
principle Alice and Bob can extract good encoded pairs
qubits from noisy EPR pairs. However, the distillation pr
tocol requires them to make measurements that are diffi
in practice. Then we will see how key distribution that i
vokes~difficult! entanglement distillation can be reduced
key distribution based on~easier! preparation, transmission
and detection of squeezed states.

Suppose that Alice and Bob share pairs of oscillato
Ideally each pair has been prepared in an EPR state, a si
taneous eigenstate~let us say with eigenvalue 0! of qA2qB
andpA1pB . Now suppose that Alice measures the two co
muting stabilizer generators defined in Eq.~1!, obtaining the
outcomes

Sq,A5e2p ifq,A, Sp,A5e22p ifp,A, ~43!

or

qA5fq,AAp ~mod Ap!,
~44!

pA5fp,AAp ~mod Ap!.

Now, the initial state was an eigenstate with eigenvalue
of the operatorsSq,A^ Sq,B

21 andSp,A^ Sp,B . The observables
measured by Alice commute with these, and so prese
their eigenvalues. Thus if the initial EPR state of the os
lators were perfect, Alice’s measurement would also prep
for Bob a simultaneous eigenstate of the stabilizer genera
with

Sq,B[e2p ifq,B5e2p ifq,A,
~45!

Sp,B[e22p ifp,B5e2p ifp,A,
02230
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qB5qA ~mod Ap!,
~46!

pB52pA ~mod Ap!.

Similarly, the initial state was an eigenstate with eigenva
one of the observables

X̄A~fp! ^ X̄B~fp!, Z̄A~fq! ^ Z̄B~fq!21, ~47!

which also commute with the stabilizer generators that Al
measured. Thus Alice’s measurement has prepared an
coded Bell pair in the code space labeled by (fq ,fp), the
state

uf̄1&AB5
1

A2
~ u0̄&Au0̄&B1u1̄&Au1̄&B). ~48!

Of course the initial EPR pair shared by Alice and B
might be imperfect, and then the encoded state produce
Alice’s measurement will also have errors. But if the EP
pair is not too noisy, they can correct the errors with hi
probability. Alice broadcasts her measured values of the
bilizer generators to Bob; Bob also measures the stabil
generators and compares his values to those reported by
ice, obtaining a relative syndrome

ei (fq,A2fq,B), e2 i (fp,A1fp,B). ~49!

That is, the relative syndrome determines the value ofqA

2qB ~modAp) andpA1pB ~modAp). Using this informa-
tion, Bob can shift his oscillator’sq and p ~by an amount
between2Ap/2 andAp/2) to adjustqA2qB ~modAp) and
pA1pB ~modAp) both to zero. The result is that Alice an
Bob now share a bipartite state in the code subspace lab
by (fq ,fp).

If the initial noisy EPR state differs from the ideal EP
state only by relative shifts of Bob’s oscillator relative
Alice’s that satisfyuDqu,uDpu,Ap/2, then the shifts will be
corrected perfectly. And if larger shifts are highly unlikel
then Alice and Bob will obtain a state that approximates
desired encoded Bell pairuf̄1& with good fidelity. This pro-
cedure is a ‘‘distillation’’ protocol in that Alice and Bob sta
out with a noisy entangled state in a tensor product of infin
dimensional Hilbert spaces, and ‘‘distill’’ from it a fa
cleaner entangled state in a tensor product of tw
dimensional subspaces.

Once Alice and Bob have distilled an encoded Bell pa
they can use it to generate a key bit, via the usual EPR
distribution protocol: Alice decides at random to measu
either X̄ or Z̄, and then publicly reveals what she chose
measure but not the measurement outcome. Bob then m
sures the same observable and obtains the same outco
that outcome is the shared key bit.

How do they measureX̄ or Z̄? If Alice ~say! wishes to
measureZ̄, she can measureq, and then subtractfq from the
outcome. The value ofZ̄ is determined by whether the resu
9-9
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is an even (Z̄51) or an odd (Z̄521) multiple ofAp. Simi-
larly, if Alice wants to measureX̄, she measuresp and sub-
tractsfp—the value ofX̄ is determined by whether the resu
is an even (X̄51) or an odd (X̄521) multiple of Ap.

Imperfections in the initial EPR pairs are inescapable
just because of experimental realities, but also because
ideal EPR pairs are unphysical nonnormalizable states. L
wise, the stabilizer operators cannot even in principle
measured with arbitrary precision~the result would be an
infinite bit string!, but only to some finitem-bit accuracy.
Still, if the EPR pairs have reasonably good fidelity, and
measurements have reasonably good resolution, enta
ment purification will be successful.

To summarize, Alice and Bob can generate a shared
by using the continuous variable code for entanglement
rification, carrying out the following key distribution proto
col using entanglement purification.

~1! Alice prepares~a good approximation to! an EPR state
of two oscillators, a simultaneous eigenstate ofqA2qB50
5pA1pB , and sends one of the oscillators to Bob.

~2! After Bob confirms receipt, Alice and Bob each me
sure ~to m bits of accuracy! the two commuting stabilize
generators of the code,ei (2Ap)q ande2 i (2Ap)p. ~Equivalently,
they each measure the value ofq andp moduloAp.! Alice
broadcasts her result to Bob, and Bob applies shifts inq and
p to his oscillator, so that his values ofq andp moduloAp
now agree with Alice’s~to m-bit accuracy!. Thus, Alice and
Bob have prepared~a very good approximation to! a Bell
stateuf̄1& of two qubits encoded in one of the simultaneo
eigenspaces of the two stabilizer operators.

~3! Alice decides at random to measure one of the
coded operatorsX̄ or Z̄; then she announces what she cho
to measure, but not the outcome. Bob measures the s
observable; the result is the shared bit that they have ge
ated.

Now notice that, except for Bob’s confirmation that h
received the states, this protocol requires only one-way c
sical communication from Alice to Bob. Alice does not ne
to receive any information from Bob before she measures
stabilizer operators or before she measures the encoded
erationX̄ or Z̄. Therefore, the protocol works just as well
Alice measures her oscillator before sending the other on
Bob. Equivalently, she prepares an encoded state, adop
randomly selected values of the stabilizer generators.
also decides at random whether the encoded state will b
X̄ eigenstate or aZ̄ eigenstate, and whether the eigenva
will be 11 or 21.

Again, since the codewords are unphysical nonnorma
able states, Alice cannot really prepare a perfectly enco
state; she must settle for a ‘‘good enough’’ approxim
codeword.

In summary, we can replace the entanglement purifica
protocol with the following equivalent key distribution pro
tocol using encoded qubits.
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~1! Alice chooses random values~to m bits of accuracy!
for the stabilizer generatorsei (2Ap)q ande2 i (2Ap)p, chooses a
random bit to decide whether to encode aZ̄ eigenstate or an
X̄ eigenstate, and chooses another random bit to de
whether the eigenvalue will be61. She then prepares~a
good approximation to! the encoded eigenstate of the chos
operator with the chosen eigenvalue in the chosen code,
sends it to Bob.

~2! After Bob confirms receipt, Alice broadcasts the s
bilizer eigenvalues and whether she encoded aZ̄ or an X̄.

~3! Bob measuresq or p. He subtracts from his outcom
the value moduloAp determined by Alice’s announce
value of the stabilizer generator, and corrects the result to
nearest integer multiple ofAp. He extracts a bit determine
by whether the multiple ofAp is even or odd; this is the
shared bit that they have generated.

To carry out this protocol, Alice requires sophisticat
tools that enable her to prepare the approximate codewo
and Bob needs a quantum memory to store the state tha
receives until he hears Alice’s classical broadcast. Howe
we can reduce the protocol to one that is much less tec
cally demanding.

When Bob extracts the key bit by measuring~say! q, he
needs Alice’s value ofq moduloAp, but he does not need
her value of the other stabilizer generator. Therefore, ther
no need for Alice to send it; surely, the eavesdropper will
no better off if Alice sends less classical information. If s
does not send the value ofSp , then we can consider th
protocol averaged over the unknown value of this genera
Formally, for perfect~nonnormalizable! codewords the den
sity matrix describing the state that is accessible to a po
tial eavesdropper then has a definite value ofSq but is aver-
aged over all possible values ofSp—it is a
~nonnormalizable! equally weighted superposition of all po
sition eigenstates with a specified value ofq mod Ap; e.g.,
in the case where Alice prepares aZ̄ eigenstate, we have

r~fq ,Z̄51!,

}(
s

uq5~2s1fq!Ap&^q5~2s1fq!Apu,

~50!
r~fq ,Z̄521!,

}(
s

uq5~2s111fq!Ap&^q5~2s111fq!Apu.

Averaged overfq as well, Alice is sending a random pos
tion eigenstate. Likewise, in the case where Alice prepa
an X̄ eigenstate, she sends a random momentum eigens

Therefore, the protocol in which Alice prepares encod
qubits can be replaced by a protocol that is simpler to
ecute but is no less effective and no less secure. Instea
bothering to prepare the encoded qubit, she just decide
random to send either aq or p eigenstate, with a random
eigenvalue. If Bob had a quantum memory, he could st
the state, and wait to hear from Alice whether the state
sent was aq or p eigenstate; then he could measure th
9-10
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observable. SubtractingfqAp ~or fpAp) from his measure-
ment outcome, he would obtain an even or odd multiple
Ap.

But Bob does not really need the quantum memory. As
the BB84 protocol, it suffices for Bob to decide at random
measure eitherq or p, and then publicly compare his bas
with Alice’s. They discard the results where they used d
ferent bases and retain the others.

A problem with this procedure is that the position a
momentum eigenstates are unphysical nonnormaliz
states, and the probability distribution that Alice samples
decide on what value ofq or p to send is also non
normalizable. For it to be implementable, we need to mod
the procedure so that Alice sends narrowq or p wave pack-
ets, and chooses the position of the center of the wave pa
by sampling a broad but normalizable distribution.

Therefore, Alice and Bob can adopt the key followin
distribution protocol using squeezed states.

~1! Alice chooses a random bit to decide whether to se
a state squeezed inq or in p. She samples a~discrete approxi-
mation to! a probability distributionPpos(q) or Pmom(p) to
choose a value ofq or p, and then sends to Bob a narro
wave packet centered at that value.

~2! Bob receives the state and decides at random to m
sure eitherq or p.

~3! After Bob confirms receipt, Alice and Bob broadca
whether they sent/measured in theq or p basis. If they used
different bases, they discard their results. If they used
same basis, they retain the result and proceed to Step 4

~4! Alice broadcasts the value that she sent, moduloAp
~to m-bit accuracy!. Bob subtracts Alice’s value from wha
he measured, and corrects to the nearest integer multip
Ap. He and Alice extract their shared bit according
whether this integer is even or odd.

V. A SECURE PROTOCOL USING
CONTINUOUS VARIABLES

Now we are ready to combine the protocol of Sec. III w
the protocol of Sec. IV. The result is a protocol based
concatenating the continuous variable code with
@@n,k,d## binary CSS code. The concatenated code emb
a k-dimensional Hilbert space in the infinite-dimensional H
bert space ofn oscillators.

Again, we first imagine that Alice and Bob carry out a
entanglement distillation protocol. They start out sharingn
pairs of oscillators, each in a~noisy! EPR state. By measur
ing the stabilizer generators of the concatenated code,
distill k encoded Bell pairs of much better fidelity, and th
generate a key by measuring the encoded Bell pairs.

By once again following the chain of reductions r
counted in Sec. III and Sec. IV, we arrive at an equival
protocol involving transmission of squeezed states. The c
plete protocol, including verification, error correction, a
privacy amplification, becomes the continuous-varia
QKD described in the following steps.

~1! Alice has (41d)n oscillators. For each oscillator, Al
ice decides at random to prepare either a state squeezedq
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or a state squeezed inp. The position of the squeezed state
determined by sampling~a discrete approximation to! a
probability distribution Ppos(q) or Pmom(p). Alice then
sends the oscillators to Bob.

~2! Bob receives the (41d)n oscillators, measuring eac
in the q or p basis at random.

~3! Bob confirms that the oscillators have been receiv
and then Alice announces whether each oscillator w
squeezed inq or in p.

~4! Alice and Bob discard the results in the cases wh
Bob measured in a different basis than Alice used in
preparation. With high probability, there are at least 2n mea-
sured values left~if not, abort the protocol!. Alice decides
randomly on a set of 2n values to use for the protocol, an
chooses at randomn of these to be check values.

~5! For all 2n measured values, Alice announces the va
of q or p moduloAp ~to m bits of accuracy!.

~6! Bob subtracts the corresponding number announ
by Alice from each of his measured values, and then corre
the result to the nearest integer multiple ofAp. Bob and
Alice now extract bit values determined by whether the m
tiple of Ap is even or odd.

~7! Alice and Bob announce the values of their check b
If too few of the check bits agree, they abort the protoco

~8! Alice announcesu1v, whereu is the string consisting
of the remaining noncheck bits, andv is a random codeword
in C1.

~9! Bob subtractsu1v from his code qubits,u1e, and
corrects the result,v1e, to a codeword inC1. With high
probability, Bob recoversv.

~10! Alice and Bob use theC2 cosetv1C2 as the key.

Here, to be specific, we have instructed Alice and Bob
sacrificen check bits for eachn bits that are used for key
distribution. They might instead use fewer or more, depe
ing on how stringent a bound on the eavesdropper’s mu
information they require.

The check bits provide Alice and Bob with estimates
the bit error ratespZ ~respectively,pX) when states squeeze
in q ~respectively,p) are transmitted. Our analysis of th
BB84 protocol indicates that the squeezed state protoco
secure provided thatpZ and pX are both below 11%, and
assuming that Alice and Bob scramble and unscramble
oscillators ~by applying a random permutation and its i
verse!.

However, as noted in Sec. III D, the proof and the secu
criterion pZ ,pX,11% apply only if Alice’s source can be
simulated by measuring half of an entangled state of t
oscillators. In particular, we may imagine that Alice h
many pairs of oscillators identically prepared in the st
rAB , and that she prepares the state that she sends to Bo
measuring oscillatorA. When she measures in theq basis,
she sends the state

rB~q!5
A^qurABuq&A

tr~A^qurABuq&A!
~51!

with probability

Ppos~q!5tr~A^qurABuq&A!, ~52!
9-11
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and when she measures in thep basis, she sends the state

rB~p!5
A^purABup&A

tr~A^qurABuq&A!
~53!

with probability

Pmom~p!5tr~A^purABup&A!. ~54!

Thus, the states that Alice sends need not be perfect pos
or momentum eigenstates for the proof of security to wo
and Alice’s source might even have a bias so that the
key bit carried by an oscillator is more likely to be a 0 than
a 1. Still, for a source of this type, if Alice and Bob verif
that the error rate for the raw key bits is below 11% in bo
bases, then the protocol is provably secure. We will disc
examples in Sec. VI and Sec. VII.

Intuitively, the squeezed-state protocol is secure beca
the eavesdropper cannot monitor the value ofq ~or p) trans-
mitted without introducing a detectable disturbance in
complementary observablep ~or q). As shown in Fig. 1, the
Wigner functions of the signal states squeezed inp and inq
overlap, so that the states cannot be reliably distinguishe

VI. GAUSSIAN STATES

Perfectly squeezed states~position or momentum eigen
states! are unphysical nonnormalizable states, so the proto
will actually be carried out with imperfectly squeezed stat
Furthermore, engineering a source that produces hig
squeezed states would be quite technically demanding. H
much squeezing is really needed for the protocol to be
cure? A related question is, how must we choose the p
ability distributions Ppos(q) and Pmom(p) that govern the
center of the squeezed state?

We will analyze the most favorable case, in which t
squeezed states are Gaussian wave packets and the pro
ity distributions are also Gaussian. We will begin again w

FIG. 1. One-sigma contours of the Wigner functions for typic
squeezed states used in the quantum key distribution protocol,

squeeze factorD̃5e2r51/2. The signal states squeezed inp and in
q overlap with one another, preventing Eve from learning about
without disturbing the other.
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a description of how the code is used for entanglement p
fication, but where Alice and Bob start with many copies
a Gaussian entangled pair of oscillators that is an appr
mate eigenstate ofqA2qB and pA1pB . If we imagine that
Alice measures half of each pair before she sends the o
half to Bob, then we obtain a protocol in which Alice sen
imperfectly squeezed states governed by a particular p
ability distribution.

The initial Gaussian entangled state of the two oscillat
is

uc~D!&AB5
1

Ap
E dqAdqB expF2

1

2
D2S qA1qB

2 D 2G
3expF2

1

2
~qA2qB!2/D2G uqA ,qB&

5
1

Ap
E dpAdpB expF2

1

2
D2S pA2pB

2 D 2G
3expF2

1

2
~pA1pB!2/D2G upA ,pB&, ~55!

where D2 is real and positive. Sinceuc(D)&AB is actually
invariant under

D2→4/D2, qB→2qB , pB→2pB ~56!

we may assume without loss of generality~changing the sign
of the position and momentum of Bob’s oscillator if nece
sary!, that 0,D2<2. In the limiting caseD252, uc(D)&AB
becomes the product of two oscillator vacuum states.
D2,2, it is an entangled state. The amount of entanglem
shared between the oscillators, in ‘‘ebits,’’ is defined as

E~D![S~rA!52tr rAlog2rA , ~57!

~the Von Neumann entropy of Alice’s density matrixrA
5trBuc(D)&^c(D)u), and can be expressed as@17#

E~D!5~cosh2r !log2~cosh2r !2~sinh2r !log2~sinh2r !,
~58!

where

D2[2e22r . ~59!

In this entangled state, if Alice measures the position
her oscillator and obtains the outcomeqA , she prepares for
Bob the Gaussian state

uc~qA!&B5
1

~pD̃2!1/4E dqB

3expS 2
1

2
~qB2qB0!2/D̃2D uqB&, ~60!

where

l
ith

e
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qB05S 12
1

4
D4

11
1

4
D4
D qA5~12D̃4!1/2qA , ~61!

and

D̃25
D2

11
1

4
D4

. ~62!

The probability distribution for the outcome of Alice’s me
surement can be expressed as

P~qA!5
D̃

Ap
exp~2D̃2qA

2 !, ~63!

and we can easily see from Eq.~55! that if Alice and Bob
both measureq, then the difference of their outcomes is go
erned by the probability distribution

Prob~qA2qB!5
1

ApD2
exp@2~qA2qB!2/D2#. ~64!

Similar formulas apply if Alice and Bob measurep.
Suppose that Alice and Bob try to distill one good qu

from the imperfect entangled stateuc(D)&AB . They both
measure the stabilizer generators, that is, the values ofq and
p moduloAp. Alice broadcasts her values, and Bob adju
his values so that they agree with Alice’s; thereby they
tain a pair of encoded qubits, which would have been in
stateuf̄1& if the initial pair of oscillators had been a perfe
EPR pair (D250). Then if Alice and Bob were to proceed t
perform a complete Bell measurement on their encoded q
pair, the probabilitypZ that they would findZ̄^ Z̄521 is no
worse than the probability that, ifqA andqB were measured
the results would differ by more thanAp/2, or

pZ<
2

ApD2EAp/2

`

dq e2q2/D2
<

2D

p
exp~2p/4D2!,

~65!

and similarly forpX ~the probability thatX̄^ X̄521). For
the values ofD that are typically of interest~e.g.,D,1), the
error probability is dominated by values ofqA2qB ~or pA

1pB) lying in the range@Ap/2,3Ap/2#, so that the estimate
of the error probability can be sharpened to

pZ ,pX;
2

ApD2EAp/2

3Ap/2
dq e2q2/D2

. ~66!

After error correction and measurement in the encoded
basis, the initial bipartite pure state of two oscillators, w
entanglementE given by Eqs.~58! and~59!, is reduced to a
02230
t

s
-
e

it
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bipartite mixed state, diagonal in the encoded Bell ba
with fidelity F5(12pZ)(12pX); this encoded state has en
tanglement of formation@13#

E5H2S 1

2
1AF~12F ! D ~67!

~whereH2 is the binary entropy function!.
If Alice and Bob have a large numbern of oscillators in

the stateuc(D)&AB , they can carry out an entanglement d
tillation protocol based on the concatenation of the sing
oscillator code with a binary CSS code, and they will be a
to distill qubits of arbitrarily good fidelity at a finite
asymptotic rate provided thatpZ and pX are both below
11%; from Eq.~66! we find that this condition is satisfied fo
D,0.784 ~which should be compared with the valueD
5A2 corresponding to a product of two oscillators each
its vacuum state!. Thus secure EPR key distribution is po
sible in principle with two-mode squeezed states provid
that the squeeze parameterr satisfiesr .2 loge(0.784/A2)
50.590; from Eqs.~58! and ~67!, D50.784 corresponds to
E51.19 ebits carried by each oscillator pair, which is r
duced by error correction and encoded Bell measuremen
E50.450 ebits carried by each of the encoded Bell pairs

Now consider the reduction of this entanglement distil
tion protocol to a protocol in which Alice prepares
squeezed state and sends it to Bob. In the squeezed-
scheme, Alice sends the stateuc(qA)& with probability
P(qA). The widthD̃ of the state that Alice sends is related
the parameterD appearing in the estimated error probabili
according to

D225D̃22
1

2
~11A12D̃4!. ~68!

The state Alice sends is centered not atqA but at qB0

5qA(12D̃4)1/2. Nevertheless, in the squeezed state proto
that we obtain as a reduction of the entanglement distillat
protocol, it isqA rather thanqB0 that Alice uses to extract a
key bit, and whose value moduloAp she reports to Bob. The
error probability that is required to be below 11% to ensu
security is the probability that error correction adjusts Bo
measurement outcome to a value that differs fromqA ~not
qB0) by an odd multiple ofAp. As we have noted, this erro
probability is below 11% forD,0.784, which@from Eq.
~62!# corresponds toD̃,0.749; this value should be com
pared to the valueD̃51 for an oscillator in its vacuum state
Thus, secure squeezed-state key distribution is possibl
principle using single-mode squeezed states, provided
the squeeze parameterr defined by D̃5e2r satisfiesr .
2 loge(0.749)50.289. When interpreted as suppression, re
tive to vacuum noise, of the quantum noise afflicting t
squeezed observable, this amount of squeezing can be
pressed as 10 log10(D̃

22)52.51 dB.
The error rate is below 1% forD̃,0.483 (D,0.486),

and drops precipitously for more highly squeezed states,
to below 1026 for D̃;D,0.256. For example, if the noise i
9-13
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the channel is weak, Alice and Bob can use the Gaus
squeezed state protocol withD̃;1/2 ~see Fig. 2! to generate
a shared bit via theq or p channel with an error rate
(;1.2%) comfortably below 11%; thus the protocol is s
cure if augmented with classical binary error correction a
privacy amplification.

Of course, if the channel noise is significant, there will
a more stringent limit on the required squeezing. Many kin
of noise ~for instance, absorption of photons in an optic
fiber! will cause a degradation of the squeezing factor. If t
is the only consequence of the noise, the squeezing ex
the channel should still satisfyD,0.784 for the protocol to
be secure, as we discuss in more detail in Sec. VII. Oth
wise, the errors due to imperfect squeezing must be adde
errors from other causes to determine the overall error r

So far we have described the case where thep states and
the q states are squeezed by equal amounts. The prot
works just as well in the case of unequal squeezing, if
adjust the error correction procedure accordingly. Cons
carrying out the entanglement distillation using the code w
general parametera rather thana51. The error rates are
unaffected if the squeezing inq andp is suitably rescaled, so
that the width of theq andp states becomes

Dq5Da, Dp5D/a. ~69!

In this modified protocol, Alice broadcasts the value ofq
moduloApa or the value ofp moduloAp/a. Bob subtracts
the value broadcast by Alice from his own measurement o
come, and then adjusts the difference he obtains to the n
est multiple ofApa or Ap/a. The key bit is determined by
whether the multiple ofApa, or Ap/a, is even or odd.

Thus, for example, the error rate sustained due to imp
fect squeezing will have the same~acceptably small! value
irrespective of whether Alice sends states withDq5Dp
51/2, or Dq51 andDp51/4; Alice can afford to send co

FIG. 2. Probability distributions for the squeezed quantum k

distribution protocol, with squeeze factorD̃51/2. The dotted line is
the probability distribution P @a Gaussian with variance

(1/2D̃2)(12D̃4)# that Alice samples to determine the center of t
squeezed signal that she sends. The solid lines are the proba
distributions in position or momentum of the squeezed states~Gaus-

sians with varianceD̃2/2, shown with a different vertical scale tha
P) centered at2Ap, 0, andAp. The intrinsic error probability due
to imperfect squeezing~prior to binary error correction and privac
amplification! is 1.2%.
02230
an

-
d

s
l
s
ng

r-
to

e.

ol
e
er
h

t-
ar-

r-

herent states about half the time if she increases the squ
ing of her other transmissions by a compensating amoun

Can we devise a secure quantum key distribution sche
in which Alice always sends coherent states? To obtain,
reduction of an entanglement distillation protocol, a proto
in which coherent states (D̃51) are always transmitted, w
must consider the caseD252. But in that case, the initia
state of Alice’s and Bob’s oscillators is a product sta
Bob’s value ofq or p is completely uncorrelated with Al-
ice’s, and the protocol obviously won’t work. This observ
tion does not exclude secure quantum key distribut
schemes using coherent states, but if they exist ano
method would be needed to prove the security of su
schemes.

In general, the source that we obtain by measuring hal
the entangled pair is biased. IfD is not small compared to
Ap, then Alice is significantly more likely to generate a
than a 1 as her raw keybit. But as we have already discusse
in Sec. III D, after error correction and privacy amplificatio
the protocol is secure ifpX and pZ are both less than 11%
This result follows because the squeezed-state protoco
obtained as a reduction of an entanglement distillation p
tocol.

VII. LOSSES AND OTHER IMPERFECTIONS

The ideal BB84 quantum key distribution protocol
provably secure. But in practical settings, the protocol can
be implemented perfectly, and the imperfections can co
promise its security.~See Ref.@18# for a recent discussion.!
For example, if the transmitted qubit is a photon polarizat
state carried by an optical fiber, losses in the fiber, dete
inefficiencies, and dark counts in the detector all can imp
serious limitations. In particular, if the photons travel a d
tance large compared to the attenuation length of the fi
then detection events will be dominated by dark counts, le
ing to an unacceptably large error rate.

Furthermore, most present-day implementations of qu
tum cryptography use, not single-photon pulses, but w
coherent pulses; usually the source ‘‘emits’’ the vacuu
state, occasionally it emits a single photon, and with nonn
ligible probability it emits two or more photons. Quantu
key distribution with weak coherent pulses is vulnerable t
‘‘photon number splitting’’ attack, in which the eavesdro
per diverts extra photons, and acquires complete informa
about their polarization without producing any detecta
disturbance. A weaker pulse is less susceptible to pho
number splitting, but increases the risk that the detector
be swamped by dark counts.

From a practical standpoint, quantum key distributi
with squeezed states may not necessarily be better
BB84, but it is certainly different. Alice requires a sourc
that produces a specified squeezed state on demand; f
nately, the amount of squeezing needed to ensure the s
rity of the protocol is relatively modest. Bob uses homody
detection to measure a specified quadrature amplitude;
measurement may be less sensitive to detector defects
the single-photon measurement required in BB84.

But, as in the BB84 protocol, losses due to the absorp

y

lity
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of photons in the channel will enhance the error rate
squeezed-state quantum key distribution, and so will li
the distance over which secure key exchange is possible
study this effect by modeling the loss as a damping chan
described by the master equation

ṙ5GS ara†2
1

2
a†ar2

1

2
ra†aD ; ~70!

herer is the density operator of the oscillator,a is the anni-
hilation operator, andG is the decay rate. Eq.~70! implies
that

d

dt
^a†kal& t52

1

2
~k1 l !G^a†kal& t , ~71!

where

^O& t5Tr@Or~ t !# ~72!

denotes the expectation value of the operatorO at time t.
Integrating, we find

^a†kal&T5e2~1/2!(k1 l )GT^a†kal&0 , ~73!

and so, by expanding in power series,

^: f ~a†,a!:&T5^: f ~ja†,ja!:&0 , j5e2GT/2, ~74!

where f is an analytic function, and :f : denotes normal or-
dering~that is, in :f (a†,a):, all a†’s are placed to the left o
all a’s!.

In particular, by normal ordering and applying Eq.~74!,
we find

^eibq&T5e2~1/4!(12j2)b2
^eibjq&0 , ~75!

whereq5(a1a†)/A2 is the position operator. A similar for
mula applies to the momentum operator or any other qua
ture amplitude. Equation~75! shows that if the initial state a
t50 is Gaussian (q is governed by a Gaussian probabili
distribution!, then so is the final state att5T @19#. The mean
^q& and varianceDq2 of the initial and final distributions are
related by

^q&T5j^q&0 ,S DqT
22

1

2D5j2S Dq0
22

1

2D . ~76!

Now let us revisit the analysis of Sec. VI, taking in
account the effects of losses. We imagine that Alice prepa
entangled pairs of oscillators in the state Eq.~55!, and sends
one oscillator to Bob through the lossy channel; then th
perform entanglement purification. This protocol reduces
one in which Alice prepares a squeezed state that is tr
mitted to Bob. In the squeezed-state protocol, Alice deci
what squeezed state to send by sampling the probability
tribution P(qA) given in Eq.~63!; if she chooses the valu
qA , then she prepares and sends the stateuc(qA)& in Eq.
~60!. When it enters the channel, this state is governed by
probability distribution
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P~qBuqA!5
1

D̃Ap
exp@2~qB2qB0!2/D̃2#, ~77!

and when Bob receives the state this distribution has, acc
ing to Eq.~76!, evolved to

P8~qBuqA!5
1

D8Ap
exp@2~qB2qB08 !2/D82#, ~78!

where

qB08 5jqB0[j~12D̃4!1/2qA ,
~79!

D825j2D̃21~12j2!.

By integrating overqA in P8(qA ,qB)5P8(qBuqA)P(qA), we
can obtain the final marginal distribution for the differen
qA2qB :

P8~qA2qB ;j!5
1

DjAp
exp@2~qA2qB!2/Dj

2#,

~80!

Dj
225

D̃2

11j222j~12D̃4!1/21~12j2!D̃2
,

which generalizes Eq.~68!. We can express the dampin
factor j as

j5e2kd/2, ~81!

whered is the length of the channel andk21 is its attenua-
tion length ~typically of the order of 10 km in an optica
fiber!.

The protocol is secure if the error rate in both bases
below 11%; as in Sec. VI, this condition is satisfied forDj

,0.784. Thus we can calculate, as a function of the ini
squeezing parameterD̃, the maximum distancedmax that the
signal states can be transmitted without compromising
security of the protocol.

For D̃!1, we find

k dmax5~1.57!D̃1O~D̃2!. ~82!

Thus, the more highly squeezed the input signal, thelesswe
can tolerate the losses in the channel. This feature, wh
sounds surprising on first hearing, arises because the am
of squeezing is linked with the size of the range inqA that
Alice samples. Errors are not unlikely if losses cause
value ofqB to decay by an amount comparable toAp/2. In
our protocol, if the squeezed states have a small widthD̃,
then the typical states prepared by Alice are centered
large valueqA;D̃21; therefore, a smallfractional decay can
cause an error.

On the other hand, even without losses, Alice needs
send states withD̃,0.749 to attain a low enough error rat
and asD̃ approaches 0.749 from below, again only a sm
loss is required to push the error probability over 11%. Th
9-15
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DANIEL GOTTESMAN AND JOHN PRESKILL PHYSICAL REVIEW A63 022309
there is an intermediate value ofD̃ that optimizes the value
of dmax, as shown in Fig. 3. This optimal distance,

k dmax,opt'0.367, ~83!

is attained forD̃;0.426.
Our analysis so far applies if Alice and Bob have no pr

knowledge about the properties of the channel. But if the l
j25e2kd is known accurately, they might achieve a low
error rate if Bob compensates for the loss by multiplying
measurement outcome byj21 before proceeding with erro
correction and privacy amplification. This amplification
the signal by Bob is entirely classical, but to analyze
security in this case, we may consider an entanglement
rification scenario in which Bob applies a quantum amplifi
to the signal before measuring. Since the quantum ampl
~which amplifies all quadrature amplitudes, not just the o
that Bob measures! is noisier, the protocol will be no les
secure if Bob uses a classical amplifier rather than a quan
one.

So now we consider whether entanglement purificat
will succeed, where the channel acting on Bob’s oscillato
each EPR pair consists of transmission through the lo
fiber followed by processing in Bob’s amplifier. If the erro
rate is low enough, the key will be secure even if the am
fier, as well as the optical fiber, are under Eve’s control.

Bob’s linear amplifier can be modeled by a master eq
tion like Eq.~70!, but witha anda† interchanged, and wher
G is now interpreted as a rate of gain. The solution is sim
to Eq. ~74!, except the normal ordering is replaced byanti-
normal ordering~all a’s are placed to theleft of all a†’s!, and
with j2 replaced by the gainj225eGT>1. We conclude that
the amplifier transforms a Gaussian input state to a Gaus

FIG. 3. The effect of channel losses on the security of quan
key distribution using squeezed states. The maximum lengthkdmax

of the channel~in units of the attenuation length! is plotted as a

function of the widthD̃ of the squeezed state that enters the ch
nel. For a longer channel, the error rate due to losses is too l
and the proof of security breaks down. The curve labeled ‘‘w
amplification’’ applies to the protocol in which the signal is amp
fied prior to detection in order to compensate for the losses;
curve labeled ‘‘without amplification’’ applies to the protocol i
which the signal is not amplified.
02230
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output state, and that the mean^q& and varianceDq2 of the
Gaussian position distribution are modified according to

^q&→j21^q&,
~84!

Dq2→j22Dq21
1

2
~j2221!.

Other quadrature amplitudes are transformed similarly.
Now suppose that a damping channel with lossj2 is fol-

lowed by an amplifier with gainj22. Then the mean of the
position distribution is left unchanged, but the varian
evolves as

Dq2→j22S j2Dq21
1

2
~12j2! D

1
1

2
~j2221!5Dq21~j2221!. ~85!

For this channel, the probability distribution governin
qA2qB is again a Gaussian as in Eq.~80!, but now its width
is determined by

~Dj!amp
22 5

1

2
D̃2

12~12D̃4!1/21~j2221!D̃2
. ~86!

Error rates in theq and p bases are below 11%, and th
protocol is provably secure, for (Dj)amp,0.784.

By solving (Dj)amp50.784, we can find the maximum
distanced ~wherej225ekd) for which our proof of security
holds; the result is plotted in Fig. 3. When the squeezed in
is narrow,D̃!1, the solution becomes

j22[ exp~k dmax!51.3071O~D̃2!, ~87!

or

k dmax'0.268. ~88!

Comparing the two curves in Fig. 3, we see that the proto
with amplification remains secure out to longer distanc
than the protocol without amplification,if the input is highly
squeezed. In that case, the error rate in the protocol with
amplification is dominated by the decay of the signal, wh
can be corrected by the amplifier. But if the input is le
highly squeezed, then the protocol without amplification
mains secure to longer distances. In that case, the non
width of the signal state contributes significantly to the er
rate; the amplifier noise broadens the state further.

With more sophisticated protocols that incorporate so
form of quantum error correction, continuous-variable qua
tum key distribution can be extended to longer distances.
example, if Alice and Bob share some noisy pairs of os
lators, they can purify the entanglement using protocols t
require two-way classical communication@11,12#. After
pairs with improved fidelity are distilled, Alice, by measu
ing a quadrature amplitude in her laboratory, prepare
squeezed state in Bob’s; the key bits can be extracted u

m

-
ge

e
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the same error correction and privacy amplification schem
that we have already described.

Our proof of security applies to the case where squee
states are carried by a lossy channel~assuming a low enough
error rate!, because this scenario can be obtained a
reduction of a protocol in which Alice and Bob app
entanglement distillation to noisy entangled pairs
oscillators that they share. More generally, the pro
applies to any imperfections that can be accurately mod
as a quantum operation that acts on the shared p
before Alice and Bob measure them. As one exam
suppose that when Alice prepares the squeezed state,
not really theq or p squeezed state that the protocol ca
for, but is instead slightly rotated in the quadratu
plane. And suppose that when Bob performs his homod
measurement, he does not really measureq or p, but actually
measures a slightly rotated quadrature amplitude.
the entanglement distillation scenario, the imperfect
of Alice’s preparation can be modeled as a superoper
that acts on her oscillator before she makes a per
quadrature measurement, and the misalignment of Bo
measurement can likewise be modeled by a superope
acting on his oscillator before he makes a perfect quadra
measurement. Therefore, the squeezed-state protocol
this type of imperfect preparation and measurement
secure, as long as the error rate is below 11% in both ba
Of course, this error rate includes both errors caused by
channel and errors due to the imperfection of the prepara
and measurement.

We also recall that in the protocols of Sec. V, Alice
preparation and Bob’s measurement were performed
m bits of accuracy. In the entanglement distillation scena
this finite resolution can likewise be well modeled by
quantum operation that shifts the oscillators by an amo
of order 22m before Alice and Bob perform thei
measurements. Thus the proof applies, with the fin
resolution included among the effects contributing to
permissible 11% error rate. The finite accuracy cau
trouble only when Alice’s and Bob’s results lie a distan
apart that is within about 22m of Ap/2; thus, just a few bits
of accuracy should be enough to make this additional sou
of error quite small.

VIII. CONCLUSIONS

We have described a secure protocol for quantum
distribution based on the transmission of squeezed states
harmonic oscillator. Conceptually, our protocol resemb
the BB84 protocol, in which single qubit states are transm
ted. The BB84 protocol is secure because monitoring
observableZ causes a detectable disturbance in the obs
ableX, and vice versa. The squeezed state protocol is se
because monitoring the observableq causes a detectable di
turbance in the observablep, and vice versa. Security is en
sured even if the adversary uses the most general eaves
ping strategies allowed by the principles of quantu
mechanics.

In secure versions of the BB84 scheme, Alice
source should emit single photons that Bob detects. S
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the preparation of single-photon states is difficult, a
photon detectors are inefficient, at least in some setti
the squeezed-state protocol may have pract
advantages, perhaps including a higher rate of key prod
tion. Squeezing is also technically challenging, but t
amount of squeezing required to ensure security is relativ
modest.

The protocol we have described in detail uses e
transmitted oscillator to carry one raw key bit. A
obvious generalization is a protocol based on the c
with stabilizer generators given in Eq.~9!, which encodes
a d-dimensional protected Hilbert space in each oscillat
Then a secure key can be generated more efficien
but more squeezing is required to achieve an accept
error rate.

Our protocols, including their classical error correctio
and privacy amplification, are based on CSS codes: e
of the stabilizer generators is either of the ‘‘q’’ type
~the exponential of a linear combination ofn q’s! or of the
‘‘ p type’’ ~the exponential of a linear combination ofn p’s!.
The particular CSS codes that we have described
detail belong to a restricted class: they areconcatenated
codes such that each oscillator encodes a single qu
and then a block of those single-oscillator qubits a
assembled to encodek better protected qubits using
binary @@n,k,d## stabilizer code. There are more gene
CSS codes that embedk protected qubits in the Hilber
space ofn oscillators but do not have this concatenat
structure@4#; secure key distribution protocols can be bas
on these too. The quantum part of the protocol is still t
same, but the error correction and privacy amplificati
make use of more sophisticated close packings of sphere
n dimensions.

We analyzed a version of the protocol in which Alic
prepares Gaussian squeezed states governed by a Gau
probability distribution. The states, and the probability d
tribution that Alice samples, need not be Gaussian for
protocol to be secure. However, for other types of states
probability distributions, the error rates might have to
smaller to ensure the security of the protocol.

Our proof of security applies to a protocol in which th
squeezed states propagate through a lossy channel, o
distance comparable to the attentuation length of the chan
To extend continuous-variable quantum key distribution
much larger distances, quantum error correction or entan
ment distillation should be invoked.

Strictly speaking, the security proof we have presen
applies if Alice’s state preparation~including the probability
distribution that she samples! can be exactly realized by
measuring half of an imperfectly entangled state of two
cillators. The protocol remains secure if Alice’s source c
be well approximated in this way. Our proof does not work
Alice occasionally sends two identically prepared oscillat
when she means to send just one; the eavesdropper can
the extra copy, and then the privacy amplification is n
guaranteed to reduce the eavesdropper’s information to
exponentially small amount.
9-17
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