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Hypoxia is a near-universal feature of cancer, promoting glycolysis,
cellular proliferation, and angiogenesis. The molecular mechanisms of
hypoxic signaling have been intensively studied, but the impact of
changes in oxygen partial pressure (pO,) on the state of signaling
networks is less clear. In a glioblastoma multiforme (GBM) cancer cell
model, we examined the response of signaling networks to targeted
pathway inhibition between 21% and 1% pO,. We used a microchip
technology that facilitates quantification of a panel of functional pro-
teins from statistical numbers of single cells. We find that near 1.5%
pO,, the signaling network associated with mammalian target of
rapamycin (mTOR) complex 1 (nTORC1)—a critical component of hyp-
oxic signaling and a compelling cancer drug target—is deregulated in
a manner such that it will be unresponsive to mTOR kinase inhibitors
near 1.5% pO,, but will respond at higher or lower pO, values. These
predictions were validated through experiments on bulk GBM cell line
cultures and on neurosphere cultures of a human-origin GBM xeno-
graft tumor. We attempt to understand this behavior through the use
of a quantitative version of Le Chatelier's principle, as well as through
a steady-state kinetic model of protein interactions, both of which
indicate that hypoxia can influence mTORC1 signaling as a switch. The
Le Chatelier approach also indicates that this switch may be thought
of as a type of phase transition. Our analysis indicates that certain
biologically complex cell behaviors may be understood using funda-
mental, thermodynamics-motivated principles.
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In most solid organ cancers, increased interstitial pressure,
vascular constriction, abnormal leaky blood vessels, and edema
result in a hypoxic microenvironment, particularly in the center
of the tumor (1-5). Hypoxia, in part by stabilizing the hypoxia-
inducible transcription factor (HIF), can increase the biological
aggressiveness of tumors, promoting glycolysis, cellular pro-
liferation, and angiogenesis; it can also make tumors less re-
sponsive to many therapies (6-9).

Signaling through mammalian target of rapamycin (mTOR)
is often a critical component of the hypoxic response (10-13).
Amplification and activating mutations of receptor tyrosine
kinases; mutation of phosphoinositide 3-kinase (PI3K) and its
regulatory subunits; and loss of the phosphatase and tensin ho-
molog (PTEN) tumor suppressor protein can lead to elevated
growth factor-independent activation of mTOR signaling (10,
14). The hypoxic microenvironment indirectly regulates mTOR,
in part by regulating intracellular ATP levels (15), to promote
tumor cell growth and proliferation. Such regulation can occur
via activation of hypoxia-inducible factor-1a (HIF-1a)-dependent
glycolysis, and by stimulating angiogenesis (16). Most models of
mTOR signaling in cancer assume a continuous relationship
among the level of growth factor receptor pathway signaling,
and/or ATP and nutrient levels, and the degree of mTORC1
activation. However, most signaling cascades actually behave as
excitable devices with built-in excitability thresholds, enabling
them to integrate diverse temporal and spatial inputs to produce
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specific signaling responses (17). It is not known how physical
perturbations such as altering oxygen partial pressure (pO,) can
influence the excitability of signaling networks, and whether such
effects yield continuous or discrete transitions. This question is
important because if mTOR signaling becomes uninhibitable at
levels of hypoxia that are frequently reached within the center of
a tumor, a potentially targetable mechanism of drug resistance
can be identified.

We set out to study how varying pO, from 21% (ambient) to 1%
(hypoxia) influences mTOR complex 1 (mTORC1) and HIF-1a
signaling within model glioblastoma multiforme (GBM) cancer
cells that exhibit persistent mMTORCI activation (18, 19). We used
the single-cell barcode chip (SCBC) (20, 21) to investigate U87
EGFRVIII cells [GBM cells that stably express the epidermal
growth factor receptor-activating mutation (EGFRVIII)]. The
SCBC s an integrated microfluidics platform (22) designed for the
quantification of a panel of functional proteins from statistical
numbers of single cells (21). The panel, which was designed to
capture key aspects of both HIF-1o and mTORCT1 signaling (9, 12),
included three secreted proteins [VEGF, IL-6, and matrix metal-
loprotease-1 (MMP1)], one cytoplasmic protein (HIF-1a), and
three cytoplasmic phosphoproteins [phospho(p)-mTOR, p-ERKI,
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and p-P70 ribosomal protein S6 kinase (p-P70S6K)]. Advantages
of these proteins are the availability of high-quality antibody pairs
for our assays, and the fact that they are produced by single cells at
a level that allows us to accurately convert single-cell fluorescence
signal into copy numbers detected per cell.

An SCBC cell data set, which is comprised of a statistical
number of single-cell assays, yields three types of independent
observables. The first observables are averaged levels of each
assayed protein from single cells; the second are the protein
fluctuations, which are histograms of the observation frequency
vs. the measured protein levels; and the third are the correlations
between the various assayed proteins. The latter two observables
are unique to single-cell multiplex proteomics assays, and all
three observation types are used to understand how changes in
pO; influence mTORC1 and HIF-1a signaling. We provide the
interpretation in three stages of increasing level of detail, where
the last stage is a theory with predictive capabilities. We first
discuss a mean-field qualitative model that provides a context for
discussing how the average effect of other proteins influences the
fluctuations of a specific protein in question. The experimentally
measured fluctuations, when interpreted within this model, point
toward a pO,-dependent deregulation of mTORCI signaling,
and imply that mTORCI1 signaling will be difficult to inhibit near
1.5% pO,. This picture is shown to be correct through the use of
the ATP-competitive mTOR inhibitor PP242 (23) on the GBM
cell lines as well as a neurosphere culture model grown from a
human-derived GBM xenograft tumor that also expresses the
EGFRVIII mutation. We then attempt to understand the pO,-
dependent deregulation of mMTORCI1 in two more detailed ways.
We first present a steady-state kinetic model to capture the re-
lationships among O,, p-mTOR, HIF-1a, and PP242. The kinetic
approach indicates that there is a switch in mMTORCI signaling
near 1.5% pO,, and that there is a value of pO, near 1.5% for
which mTOR is uninhibitable. Finally, we discuss a quantitative
version of the Le Chatelier’s principle that relies on the single-cell
proteomics assays as input (24), and, unlike the mean field model,
allows for the explicit treatment of protein—protein correlations.
The theory is validated by using it to predict the effect of changes
of pO, on the mean numbers of the assayed proteins. This pre-
diction fails between 2% and 1.5% pO,, which implies that
changing pO, through this range is a strong perturbation to the
cells. The theory then shows that the deregulation of mTORC1
signaling is associated with a phase transition in the signaling net-
work. The implication is that, near 1.5% pO,, the network switches
from one set of protein—protein interactions to another. At the
switching point, the network is unstable, and the coordinated sig-
naling between mTOR and its effector proteins is lost.

Results and Discussion

Single-Cell Proteomic Assays Use the SCBC Platform. The SCBC
platform (Fig. 14; SI Appendix, Fig. S1) contains 240 1.7-nL-
volume microchambers. Each microchamber has an upper as-
saying compartment that contains a nine-element DNA barcode.
A second compartment, separated by a valve, serves as a lysis
buffer reservoir. Eight elements of the barcode are converted
to a miniature antibody array for assaying a panel of proteins
by loading a DNA-antibody conjugate mixture (Materials and
Methods), and one element provides an alignment marker (Fig.
1B). Cells are loaded from an upstream inlet into the SCBC and
distributed randomly among the microchambers. Controlling the
cell loading density enables about half of the microchambers to
contain a single cell, whereas others may be empty or contain two
or more cells. After cell loading and counting, the microchip is
incubated in a controlled O, environment for 7 h (Fig. 14),
followed by an on-chip cell lysis (Fig. 1B; SI Appendix, Fig. S1E).
An O; sensor (0.1% accuracy) measured both the level and the
equilibration rate of the pO,. Secreted proteins are captured
during incubation, and intracellular proteins are captured

Wei et al.

following lysis. A detection antibody mixture and the fluorescent
probes are loaded afterward to complete the on-chip immuno-
assay, which is read with a GenePix array scanner (see Fig. 1B for
detailed execution scheme). The incubation time was chosen to
ensure cell viability at all pO, explored (SI Appendix, Fig. S1B),
and to enable capture of sufficient numbers of secreted proteins.
Additional experimental details, plus assay cross-reactivity and
calibration, are provided (Materials and Methods; SI Appendix,
Fig. S2 and Table S2).

For the U87 EGFRUVIII cell line, we collected single-cell data at
21%, 3%, 2%, 1.5%, and 1% pO,. At each condition, we assayed
~100 single cells, 60 zero-cell chambers, and 50 two-cell chambers.
After background subtraction, scatter plots of the single-cell pro-
teomic data (Fig. 1C) can be compared against bulk cell pop-
ulation protein assays using Western blotting or sandwich ELISA
(Fig. 1D; SI Appendix, Fig. S2A4). The statistical uniqueness of one-
cell data was established via comparison against two-cell data (Fig.
1E). For each protein measured, the fluorescence intensity is
converted into copy numbers detected using calibration data (S/
Appendix, Fig. S2C) that relied on standard proteins. For a given
protein, a histogram of copy number vs. frequency of observation
reflects the fluctuations of that protein.

Protein Fluctuations Reveal a Deregulation in mTORC1 Signaling near
1.5% p0,. Fig. 2 4 and B show the single-cell fluctuations for the
four cytoplasmic proteins at different pO, values. HIF-1a has
a unique profile compared with the phosphoproteins related to
mTORCTI signaling (including mTOR and its effectors: P70S6K
and ERK1) (12). As pO, decreases, the HIF-1la fluctuations
evolve from a narrow and peaked histogram into a widely dis-
persed profile, with the average shifting to higher copy numbers.
By contrast, the three phosphoprotein fluctuations exhibit broad
widths at 21%, 3%, 2%, and 1% pO,, but are sharply peaked at
1.5% pO, (Fig. 2B), which has implications for a signaling net-
work transition.

Protein fluctuations can be highly informative toward un-
derstanding protein functional activity. A widely dispersed fluc-
tuation can indicate a highly active protein that is involved in
multiple functional processes. A narrow, sharp fluctuation, by
contrast, represents a protein with limited interactions. To il-
lustrate this point, we carried out Monte Carlo simulations to
generate histograms for a hypothetical functional protein at
several degrees of activity. The protein was assumed to partici-
pate in up to four independent functional processes. Each pro-
cess required a range of protein copy numbers and had an
associated probability that it was active in any given single cell
(see Materials and Methods for detail). The simulated histograms
(Fig. 2C; SI Appendix, Table S3) reveal that the fluctuations are
increasingly dispersed as the number of potentially active func-
tional processes increases. This plot effectively emulates the
fluctuations of HIF-1a as pO, is lowered (Fig. 24). The impli-
cation is that HIF-1a is increasingly activated as the cells tran-
sition from normoxia to hypoxia. This conclusion may be drawn
by simply inspecting the fluctuation profiles of HIF-1q, but it is
also in strong agreement with the literature (8, 9).

By analogy with the above discussion of HIF-1a, we hypoth-
esized that the phosphoproteins associated with mTORCI sig-
naling (Fig. 2B) become isolated from cell signaling processes at
~1.5% pO,. Such isolation has implications because mTORC1
is considered an important drug target in GBM (and other)
tumors. The decoupling of mTORCI from its effector proteins
within this hypoxic window could account for a level of re-
sistance to mTOR kinase inhibitors. We tested this prediction
by assaying for the effects of the mTOR inhibitor PP242 (23) on
the phosphorylation levels of mTOR, P70S6K, and ERKI, as
a function of pO,, on bulk U887 EGFRVIII cell cultures, because
those cells were the ones analyzed using the SCBC platform.
We also tested our prediction on a tumor model by similarly
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Fig. 1. SCBC platform, experimental flowchart, and representative data. This SCBC design permits incubation of the cells within controlled pO, environ-
ments, followed by multiplexed and quantitative assays of functional (secreted, membrane, and/or cytoplasmic) proteins from quantized cell populations. (A)
Drawing of the custom-built hypoxia setup with real-time pO, monitoring. The photograph is of an SCBC with the microchambers (red) and control valve
layers (green) delineated with food dyes. (Lower Right) Side view of a single-cell microchamber with a representative readout image from the SCBC device.
Each barcode fluorescent stripe corresponds to a specific protein assay. Signals from three microchambers with different cell numbers, indicated as 5, 1, and 3,
are shown. (B) SCBC assay steps. DNA barcodes are converted into antibody barcodes using a mixture of DNA-antibody conjugates. Cells are then loaded and
isolated into the upper chamber and incubated at a desired pO,, during which time secreted proteins are captured on designated barcode stripes. The chip is
then cooled to near 0 °C, and the valve connecting the lysis buffer chamber is opened, leading to cell lysis within 15 min. The intracellular proteins are
released and captured onto designated barcode stripes. (C) Scatter plots of assayed protein levels measured from U87 EGFRuvIII single cells at 21% (blue dots)
and 1% (red dots) pO,. The averaged fluorescence intensity with SEM is overlaid for each protein. Statistical uniqueness is evaluated by two-tailed Student t
test assuming unequal variance (NS, not significant; *P < 0.05; **P < 0.005; ***P < 0.0005). (D) Western blotting results for several of the cytoplasmic proteins
from U87 EGFRUVIII cells assayed at 21% and 1% pO,. (E) Scatter plots of the assayed levels of p-P7056K and p-mTOR at 21% pO, for individual microchambers
containing one, two, or three cells, indicating the statistical uniqueness of data sets representing different quantized cell populations.

analyzing neurosphere cultures derived from the human origin  mTORCI that targets the PI3K pathway (28). The protein assays
GBM39 xenograft (25). This model also carried the EGFRVIII  used here were multiplexed sandwich ELISA immunoassays
mutation. GBM neurospheres can provide realistic tumor models ~ from statistical numbers of cells based upon a published tech-
relative to cell lines (26), and have even been shown to exhibit nique (29). The cells were assayed in the presence of a 3-uM
stem-like behaviors under hypoxic stress (27). Inhibition of mMTOR  solution of PP242, or a DMSO control, under varying pO,. As
by PP242 leads to down-regulation of the phosphorylation of both  shown in Fig. 3, the results clearly support the prediction. We
mTOR and P70S6K, and increased phosphorylation of ERK1, found that mTORCI signaling is inhibited by PP242 for both
due to the activation of a negative feedback loop downstream of =~ U87 EGFRVIII cells and for the GBM39 neurosphere cultures
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Fig. 2. Measured single-cell fluctuations for four cytoplasmic proteins as a function of pO,, and a simulation of fluctuations for a hypothetical protein. (A)
Single-cell fluctuation profiles for HIF-1a at various pO,. (B) Single-cell fluctuations for p-mTOR, p-P70S6K, and p-ERK1 at various pO,. Note that these
fluctuations exhibit a sharpening at 1.5% pO,. (C) Single-cell fluctuation profiles from a Monte Carlo simulation that assumes a hypothetical protein par-
ticipates in varying numbers of functional processes. Note the comparison of this simulation to the measured fluctuations of HIF-1a.

at 21%, 3%, and 1% pO,, but is much less inhibited between 2%
and 1.5% pO..

We now look toward achieving a better mechanistic un-
derstanding of the behavior of mTOR signaling near 1.5% pO,
via a steady-state kinetic model.

Steady-State Kinetic Model Identifies a Switch in mTORC1 Signaling
near 1.5% p0,. As master regulators of hypoxic GBM cells, HIF-1a
and mTORCI1 act in an integrated way (12). Our data suggest
that their interplay is critical for the signaling network transi-
tion. PP242, as an ATP competitive inhibitor, can directly inhibit
mTORCI1 activity. mTORCI1 activity will also be inhibited by HIF-
lo—dependent transcriptional regulation, which can occur through
REDDI (regulated in development and DNA damage responses
1) or BINP3 (BCL2/adenovirus E1B 19-kDa protein-interacting
protein 3), when exposed to hypoxia (30-32). Furthermore, our
measurements (Fig. 3), and other reports (33), indicate that the
HIF-1a expression level can be suppressed by addition of PP242
under hypoxia. Thus, because HIF-la can repress mTORCI,
suppression of HIF-1a could potentially promote mTORCI1 ac-
tivity. This effect may compete against PP242 direct inhibition of
mTORCI1 during the course of hypoxia, thus providing a potential
mechanistic explanation of the undruggability of mTORCI sig-
naling between 1.5% and 2% pOy; this is summarized by the
network hypothesis illustrated in Fig. 44.

This Fig. 44 network is a greatly simplified version of what is
known from the literature, but we are able to work with it here
because, as a steady-state kinetic model, it only requires that the
flux into and out of a particular protein channel equal a con-
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stant value, for a given set of physical conditions. Thus, we are
accounting for the net influence of the network components on
each other, but not necessarily the direct influence. The network
of Fig. 44 has the nuance that the indicated protein—protein and
protein—molecule interactions are not necessarily linear relation-
ships. We combined steady-state chemical kinetic analysis with the
fitting of data from calibrated microwell-based sandwich ELISAs
on proteins collected from lysed U87 EGFRVIII cells (Fig. 3.4 and
C; SI Appendix, Table S5). The details of our approach are in S/
Appendix, Method III. In Fig. 4 B-D, we present the relationships
between HIF-1a and pO,, and p-mTOR and HIF-1a, and the
influence of PP242 on HIF-1a.

With these relationships in hand, we can calculate the de-
pendence of the p-mTOR level on pO, using, as input, only the
measured pO, values, the presence or absence of PP242, and the
fitted parameters (Fig. 4E; SI Appendix, Method III). This result is
of interest in three ways. First, the kinetic model accurately cap-
tures the p-mTOR levels in the absence of PP242 inhibition, for all
values of pO,; second, it predicts a pO, level for which p-mTOR
is not influenced by PP242. For the parameters fitted here, this
level is near 1.25% pO,, but can be shifted to slightly higher pO,
levels by altering some of the fitting parameters, while keeping
them within their statistical margins of error. Third, for any of
the fitted parameters, the kinetic model also predicts PP242 in-
hibition of mTOR at pO, levels above the crossing point, and
PP242 activation of mTOR below the crossing point, which is
clearly not observed experimentally. The implication is that new
regulators of mTOR, not included in the model of Fig. 44, would
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Fig. 3. The influence of the mTOR inhibitor PP242 on the assayed protein levels for GBM cell lines and xenograft neurosphere tumor models, as a function of
pO,. (A and B) Bar graphs showing the changes in protein copy number, as measured from bulk-cell lysate of the U87 EGFRvIII cells and the GBM39 tumor
model. Protein level changes are normalized by the number listed below the corresponding protein name. (Insets) Fluorescence images of the developed
assays of the highly expressed mTOR effector, p-P70S6K. (C) Plot of protein concentrations at various pO, joined with spline fit for control and PP242-treated
U87 EGFRuIII cells (Upper) and GBM39 neurospheres (Lower). Note that the drug treated and untreated levels coincide for p-mTOR, p-P70S6K, and p-ERK1 for
both model systems near 1.5-2% pO,. Error bars represent SDs of the measurements.

have to be invoked to account for the observed behavior at very
low pO; levels.

The influence of hypoxia and PP242 on the GBM39 model
exhibits many similarities to that observed for U87 EGFRVIIL
cells, but only certain aspects of the kinetic model translate to
that system. For example, HIF-1la exhibits a clear hyperbolic
dependence on decreasing pO, in both models, but the other
relationships are not as clear for GBM39. This finding is not
surprising, given that the GBM39 protein assays are sampling
a neurosphere model of a tumor, which is comprised of a het-
erogeneous mixture of cellular phenotypes.

The kinetic model gives some mechanistic insight into the
switch in mTORCI, partly through its failure to predict the in-
fluence of PP242 below 1.5% pO.,. This failure presumably arises
because certain protein—protein interactions are neglected in this
range. Those interactions are implicit in the protein fluctuations.
Thus, we turn to the quantitative Le Chatelier’s principle, be-
cause it explicitly recognizes individual protein—protein correla-
tions, and the predictive nature of this theory may help shed light
on the uninhibitability of mMTORC1 between 1.5% and 2% pO,.

Application of a Quantitative Le Chatelier’s Principle to the Single-
Cell Data Identifies a Phase Transition in mTORC1 Signaling Between
2% and 1.5% p0,. For the Le Chatelier approach, the goal is to
understand whether a change in pO, constitutes a strong or
a weak perturbation to the U887 EGFRUVIII cells. We previously
reported on the development and validation of this approach (24).
In that earlier work, we used the theory to predict how the levels
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of a panel of secreted proteins from a human macrophage cell
line, stimulated with lipopolysaccharide to emulate gram-negative
bacteria, would respond to the addition of neutralizing antibodies.
The theory requires single-cell data as input, and can predict how
the levels of certain proteins will respond to a weak perturbation.
A strong perturbation is implied when the theoretical prediction
and the experimental measurement are in strong disagreement.

For the theory, we first use the measured data to compute the
mean number N; of molecules for each protein i per cell, and the
mean of the joint numbers of proteins i and j, N;N;.

Thereby we compute the covariance matrix X, which is a sym-
metric P X P matrix, where P is the size of the protein panel
assayed, and the matrix elements X; represent the covariance
between proteins i and j (SI Appendix, Table S6). Given the
protein—protein covariance matrix X, we write the quantitative Le
Chatelier’s principle as the matrix equation AN = X Ap, where
Ap is a column vector whose P components give the change in the
chemical potentials of the P proteins due to the change in external
conditions. = 1/kgT, where T is the temperature and kg is
Boltzmann’s constant (theoretic details can be found in ref. 24).
This matrix equation relates the change AN in the mean number
of molecules of each protein to external perturbations, such as O,
pressure changes, or addition of a drug. Applying this approach to
the single-cell data, we found that the state of the signaling net-
work at 3% pO, was only weakly perturbed from that at 21% pO,
(Fig. 54). The change between 3% and 2% pO, was a stronger
perturbation (we correctly predict the signs of the changes in
protein levels, but the predicted levels for proteins IL-6 and
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Fig. 4. The network hypothesis and accompanying steady-state kinetic model describing relationships among HIF-1a, p-mTOR, PP242, and pO, in U87 EGFRuvIII
cells reveal a switch in mTOR regulation below 1.5% pO,. Bracketed protein names indicate the concentration of that protein in pg/mL. (A) The network drawing
indicates (net) effective activating (arrow) and inhibiting (bar) interactions. The functional forms of those interactions represent the fitted or predicted
parameters, using steady-state kinetic relationships. (B) The levels of HIF-1a fit well to a steady-state kinetic model predicting a hyperbolic increase in HIF-1o with
decreasing pO,. (C) [p-mTOR] exhibits an inverse linear relationship with [HIF-1a]. (D) The change in HIF-1a levels upon addition of a 3-uM solution of PP242
exhibits a quadratic dependence upon [HIF-1a]. (E) The fitted parameters from the model are used to calculate [p-mTOR] in terms of pO, in the presence and
absence of PP242, and compared against experiments (the points connected by lighter lines). The calculation predicts a pO, level where the solid red and blue lines
cross, or where PP242 does not inhibit p-mTOR. However, the model also predicts PP242 activates p-mTOR at pO, levels above this crossing point, which is clearly
not observed. This disagreement implies that different regulators of mTOR are important in the regime of moderate-to-severe hypoxia.

MMP1 deviate significantly from experiment). We could not
predict the measured changes between 2% and 1.5% pO,. We
could, however, describe the changes between 1.5% and 1%
pO,. We do not show a prediction for VEGF at low pO; be-
cause, in this range, VEGF appears decoupled from the other
proteins (S Appendix, Fig. S3).

Based on these observations, we hypothesized that the states
corresponding to ~2-21% pO, represented one phase of the sig-
naling network, whereas those between 1% and 1.5% pO, rep-
resented a second phase, with a phase transition occurring in
between. We tested this hypothesis by analyzing the protein—
protein covariance matrix to view the coordination of mTORC1
signaling as pO, was varied. This approach goes beyond measuring
specific protein—protein pairwise interactions, because it accounts
for all of the proteins that are simultaneously assayed from each
single cell. For the analysis, the eigenvalues (Fig. 5B) of the co-
variance matrix describe the strength of the coordinated protein—
protein interaction modes, and the eigenvectors (Fig. 5C) de-
scribe the composition of those modes. Such an analysis draws
from the Gibbs phase rule (34, 35), which states that, at a phase
transition, a degree of freedom is lost for each coexisting phase.
Consider the water liquid/solid phase transition. Away from the
transition, temperature can be readily varied by warming or cool-
ing, but at the transition when ice and water coexist, it is not
possible to change the temperature without altering the pressure.

The nature of the hypoxia-induced transition is that, at the
phase transition, the signaling network undergoes a switch in
connectivity during which the functional phosphoproteins related

Wei et al.

to mTORCT1 signaling are isolated and inactivated, and this is
reflected in how the fluctuations of Fig. 2B sharpen at 1.5% pO,,
but more rigorously in Fig. 5B. Above 2% pO,, these eigenvec-
tors capture 75-95% of the covariance, and hence signaling
network coordination, among the proteins HIF-1a, p-P70S6K,
and p-mTOR; below 1.5% pO,, they capture 80-100% of the
covariance among p-P70S6K, p-mTOR, and p-ERKI1. The ampli-
tudes of these eigenvectors are strongly influenced by pO,, and
they each point to a minimum between 1.5% and 2% pO, (Fig.
5B). Because the cell is a finite system, the minimum will likely not
be sharp. This eigenvalue singularity indicates a loss of degrees of
freedom (or the loss of mTORCI signaling coordination) and
thereby points to the existence of a phase transition associated
with mTORCI1 signaling between 1.5% and 2% pO,. Recall
the quantitative Le Chatelier’s principle AN = X Apu, where
the vector AN of change in protein numbers has P components.
The matrix equation tells us that we can identify P linearly in-
dependent ways in which an external perturbation can influence
the response of the proteins within the network. If the matrix X' is
singular (i.e., it has one or more zero eigenvalues), there are fewer
independently allowable variations. This is the loss of degrees of
freedom. This analysis leads to the surprising prediction that
mTORCI1 signaling will be intrinsically uncontrollable in the U87
EGFRUVIII cells between 1.5% and 2% pO,, but may be influenced
at higher or lower pO, values. The proof follows from the near-
zero eigenvalues of the covariance matrix; the associated eigen-
vectors are those localized on the phosphoproteins associated with
mTORCI1 signaling. Near the transition, even large changes in
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Fig. 5. The use of a quantitative Le Chatelier principle reveals an oxygen partial pressure-dependent phase transition in the mTORC1 signaling network

within model GBM cells. (A) Measured and predicted changes for the panel of

assayed proteins, as pO; is changed between specified levels. The agreement

between experiment and prediction for 21-3% and 1.5-1% implies that these pO, changes constitute only a weak perturbation on the signaling network.
The change from 3% to 2% pO, represents a somewhat stronger perturbation, whereas for the range 2-1.5% pO,, a strong perturbation is indicated by the
qualitative disagreement between prediction and experiment. (B) The coordination of mTOR-associated signaling modes, as a function of pO,, is reflected in
an analysis of the relevant eigenvalues (mode strength) and their composition of the protein—protein covariance matrix (mode composition). The co-
ordination of mTOR with its effectors, p-ERK and p-P70S6K, dominates the composition of the three lowest-amplitude eigenvectors, which exhibit singular
behavior between 2% and 1.5% pO,. Experimentally determined points are connected by solid lines; dashed lines imply that the amplitudes of the three

eigenvectors will reach a (shallow) minimum (loss of mTOR signaling coordina
represents the compositions of the three lowest-amplitude eigenvectors at the

tion), which is indicative of a phase transition. Each column of the pie charts
corresponding pO,; they reflect a shift in the coordination of mTOR signaling

across the phase transition. Note the importance of HIF-1a in these eigenvectors at pO, > 2%, and the importance of p-ERK below 2%.

the chemical potentials of p-mTOR and its effector proteins
p-ERK and p-P70S6K result in very small changes in their
mean numbers.

The hypoxia-induced phase transition is a multidimensional
transition that behaves in a complementary manner to a regular
transition of the inverse relation Au = g~'2~! AN. The latter
implies that near a phase coexistence where £~! has a low ei-
genvalue, large changes of the number of molecules (extensive
variables) will barely influence the chemical potential (the con-
jugated intensive variables); this bears an analogy to the liquid/
solid transition of water where finite changes of the internal
energy (the extensive variable) via the addition of heat do not
alter the temperature (the conjugated intensive variable). Given
that intensive and extensive variables come in conjugate pairs
and are interchangeable through Legendre transforms (35), both
transition manners can be appreciated.

Conclusion

We found that in model GBM cell lines and in a mouse GBM
xenograft neurosphere model, the change in mTOR signaling from
normoxia to hypoxia involves a discontinuous transition between
two phases—i.e., changing pO, induces a switch in mTORCT sig-
naling. These results point to a fundamentally different approach
toward understanding and predicting certain cellular behaviors,
and may also provide a clue toward understanding the clinical
failure of mTOR inhibitors on GBM tumors (36, 37). Our mea-
surements were guided by the existing biological literature, but our
concern was not with capturing the detailed biomolecular inter-
actions within the cells, but rather on understanding how the state
of the signaling network is influenced by physical (pO,) or mo-
lecular (therapeutic) perturbations. The approach is driven by re-
cently developed experimental tools for quantitating the levels of
a panel of functional proteins from single cells, and the theory is
grounded in well-established physicochemical principles.
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Materials and Methods

Cell Lines and Reagents. U87 EGFRuvIII cells were constructed as previously
described (38) and routinely maintained in DMEM (American Type Culture
Collection) containing 10% FBS in humidified atmosphere of 5% CO, and
95% air at 37 °C (all percentage concentrations are vol/vol unless otherwise
specified). GBM39 human glioblastoma cells were generated as previously
described (25) and maintained in NeuroCult-XF Proliferation Medium
(STEMCELL Technologies, Inc.) containing 20 ng/mL EGF (Sigma) and FGF
(Sigma) and 1 pg/mL heparin (Sigma) in humidified atmosphere of 5% CO,
and 95% air at 37 °C. The DNA and antibody reagents are listed in the
SI Appendix, Table S1. The DNA-antibody conjugates were synthesized as
described in SI Appendix, Method I and validated with standard proteins by
DNA spot microarray before use (29).

Protein Assays from Bulk Cell Culture. The validation of the DNA-antibody
conjugates involved separate calibrations for each of the different immu-
noassays (S/ Appendix, Fig. S2C), as well as quantitating the cross-reactivity
between those immunoassays (S/ Appendix, Fig. S2B). All bulk protein assays
in this study started with spotted DNA microarrays that were obtained from
the Institute for Systems Biology (Seattle, WA). The spotted arrays and
the flow patterned barcode arrays used the same DNA oligomer pairs (S/
Appendix, Table S1) for each detected protein. The description of the
microwell-based multiplexed immunoassays from statistical numbers of cells
followed our previously published protocols (29).

mTOR Kinase Inhibition Assay. U87 EGFRuvIII cells were cultured in DMEM with
1% FBS at a density of 150,000 cells/mL and at O, levels controlled to be 21%,
3%, 2%, 1.5%, or 1% for 7 h, with or without addition of 3 uM of the mTOR
kinase inhibitor 2-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-
1H-indol-5-ol (PP242; Sigma-Aldrich). GBM39 neurosphere cells were disso-
ciated with TripLE (Invitrogen) to form a single-cell suspension, and then
cultured in laminin (Sigma) precoated dishes with NeuroCult-XF Prolif-
eration Medium at a density of 150,000 cells/mL and at various conditions
identical to U87 EGFRuvIII cells above. Following incubation, the treated cells
were then washed with cold PBS to remove residual media. A mixture of cell
lysis buffer (Cell Signaling) containing 20 mM Tris-HCI, 150 mM NacCl, 1 mM
Na,EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM
p-glycerophosphate, 1 mM Na3zVO,, and 1 pg/mL leupeptin; Complete Pro-
tease Inhibitor (Roche); and Phosphatase Inhibitor Mixture 2 (Sigma) was
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added, and the mixture was stored on ice for 10 min. The cell extract was
then collected and spun at 14,000 x g at 4 °C for 10 min. The resulting su-
pernatant was recentrifuged to remove remaining cell debris. The cell lysate
and media were then added into corresponding wells for profiling secreted
and intracellular proteins. This protocol followed closely a previously pub-
lished optimized protocol (21).

SCBC Fabrication and Operation. DNA barcode arrays are flow patterned using
molded polydimethylsiloxane (PDMS) microfluidics templates. This procedure
has been previously described (39), and the quality of the flow-patterned
barcodes is reflected in the data of S/ Appendix, Fig. S1C.

For SCBC fabrication, the PDMS microfluidic chip for the single-cell assay
was fabricated by two-layer soft lithography (S/ Appendix, Fig. S1 A and B).
The fabrication of these chips has been previously described (21), and with
a few specific differences, as described here. The channel surface of the as-
fabricated PDMS chip was coated with collagen type 1 (BD Biosciences;
0.1 mg/mL in deionized water) before thermally bonded to the DNA barcode
slide to form the working device. The collagen coating promoted cell ad-
herence during the on-chip cell culture.

Protocols of single-cell proteomic assays that were used for profiling se-
creted, intracellular, and membrane proteins from single cells are derived
from previously published work, but with the several modifications described
in detail in S/ Appendix, Method II.

Protein Calibration and Error Analysis for Bulk and SCBC Assays. Calibration
curves for bulk protein measurement. The assay for generating calibration curves
was performed under conditions identical to the mTOR kinase inhibition
assay described previously, except that standard proteins were used instead
of cell lysate or medium. A mixture of standard proteins was serially diluted in
1x PBS and added into different wells. Fluorescence signals were collected
and plotted vs. protein concentrations (S/ Appendix, Fig. S2C and Table S2).
Calibration curves for SCBC measurement. These calibrations were performed
within an SCBC and under exact the same condition as the single-cell pro-
teomic assay described above, except that standard proteins were used,
rather than cells. A mixture of standard proteins from the SCBC assayed panel
was serially diluted in 1x PBS and flowed into the SCBC microchannels.
Fluorescence signals were collected to generate the calibration curves
(SI Appendix, Fig. S2C). Because the volume of the microchambers is known,
these calibration curves enable a transformation from the fluorescence in-
tensity to number of molecules for each protein assayed, under the caveat
that the standard proteins may not be exactly the same as their counterparts
from the GBM cells.
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Experimental error in SCBC assays. The error analysis of proteomic measurement
via SCBC was intensively discussed in our previous work (21, 24). Briefly, the
experimental error comes from barcode-structured protein assays. We pre-
viously demonstrated that location of a cell within a microchamber does not
contribute significantly to measurement error (21, 24). The width of a his-
togram that plots the frequency at which a particular (binned) protein level
is observed vs. that level (which represents the single cell fluctuations) is
dominated by the biology (the cell-to-cell heterogeneity) rather than the
experiment. The experimental measurement error is generally less than 10%
for this fashion of measurement.

Monte Carlo Simulation of Protein Fluctuation Profile. The simulation is
designed to capture the protein fluctuation profile for different degrees of
protein activity, and is programmed by R (www.r-project.org). The protein is
assumed to be able to participate in up to four independent functional
processes. Each process has a required range of protein concentration
(protein copy number for a given volume) represented by a Gaussian dis-
tribution and a fraction active, which is the likelihood of the protein carrying
out this process. If the protein does not carry out any process, its concen-
tration is set as an inactive baseline. The more active the functional protein
is, the more processes it will participate in (up to four in this simulation).

The hypothesized processes and their required concentrations and fraction
active values are listed in S/ Appendix, Table S3.

In the Fig. 2C, one active process means that protein is confined to be in-
volved only in process 1 or doing nothing; two active processes represents that
the protein can access both process 1 and process 2 and so on. Finally, four
active processes indicate the protein is able to participate into all four parallel
functional processes listed above. The Gaussian distributions for representing
the required range of protein copy number have been set to have a fixed
coefficient of variation as 0.15. A total of 200 single-cell events are generated
for each case, and the corresponding histogram is plotted in Fig. 2C. The av-
eraged required protein copy number and fraction active value for each
process are arbitrarily chosen for calculation convenience, and can be altered
freely without affecting the final conclusion of the simulation.
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