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Abstract {While modern structural biology has provided us with a rich and diverse picture
of membrane proteins, the biological function of membrane proteins is often in
uenced by the
mechanical properties of the surrounding lipid bilayer. He re we explore the relation between
the shape of membrane proteins and the cooperative function of membrane proteins induced by
membrane-mediated elastic interactions. For the experimental model system of mechanosensitive
ion channels we �nd that the sign and strength of elastic inte ractions depend on the protein shape,
yielding distinct cooperative gating curves for distinct p rotein orientations. Our approach predicts
how directional elastic interactions a�ect the molecular s tructure, organization, and biological
function of proteins in crowded membranes.

Introduction. { Cell membranes exhibit a complex
organization of lipids and membrane proteins [1, 2] and
play an integral role in many cellular processes. The
functional properties of membrane proteins are not purely
determined by protein structure but, rather, membrane
proteins act in concert with the surrounding lipid bilayer
[3{7]. In particular, the hydrophobic regions of membrane
proteins couple to the hydrophobic regions of lipid bilayers
[8{11]. The energetic cost of the resulting membrane de-
formations can be captured by an elastic model [12{18] in
which the lipid bilayer is described as an elastic medium
and the membrane proteins are regarded as rigid mem-
brane inclusions. Neighboring membrane proteins may
induce overlapping deformation �elds of the bilayer mem-
brane, yielding long-range interactions between membrane
proteins [18, 19]. Such membrane-mediated interactions
have been studied using a wide range of analytic and nu-
merical methods [18,20{38], and experiments have impli-
cated membrane-mediated interactions in the clustering of
a number of di�erent membrane proteins [19,39{44].

Over the past two decades an increasing number of
membrane protein structures have become available [45,
46], demonstrating a rich diversity in the shapes of mem-
brane proteins. In addition, a variety of experiments
have suggested that cell membranes are highly crowded

[1, 47{49], with the size and spacing of membrane pro-
teins both being of the order of a few nanometers. How
are the observed shapes of membrane proteins re
ected
in the structure of elastic bilayer deformations, and what
are the resulting directional interactions between mem-
brane proteins at the small separations most relevant for
cell membranes? In this letter we build on the meth-
ods in Refs. [20{23] to develop an analytic approach ad-
dressing these questions, and apply this approach to the
mechanosensitive channel of large conductance (MscL)
[50{52]. MscL was one of the �rst membrane ion chan-
nels for which high-resolution structural information be-
came available [45, 53{57] and provides a widely-studied
model system for how bilayer mechanical properties reg-
ulate protein conformational changes. Our calculation of
the interaction potentials and cooperative gating curves
for pentameric MscL [45, 52{62] shows that, similarly as
lipid bilayer material properties [13{18, 43, 56{59], direc-
tional interactions can alter the structure and function of
proteins in crowded membranes.

Calculation of interaction energy. { Following the
standard framework of membrane elasticity [63{65], we
describe the positions of the inner and outer lipid bilayer
lea
ets within the Monge representation through the func-
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tions h+ (x; y) and h� (x; y), which determine [66] the mid-
plane and thickness deformation �elds governing bilayer
membranes. Since thickness deformations are thought to
be dominant for MscL gating [29,67{69], we illustrate our
method for the thickness deformation �eld

u(x; y) =
1
2

[h+ (x; y) � h� (x; y) � 2a] ; (1)

where 2a is the hydrophobic thickness of the unperturbed
lipid bilayer, with the elastic energy [12,21,29,63{71]

G = 1
2

Z
dxdy

n
K b(r 2u)2 + K t

�
u
a

� 2
+ �

�
2u

a + ( r u)2
� o

;

(2)
whereK b is the bending rigidity of the lipid bilayer, K t is
the sti�ness associated with thickness deformations, and�
is the membrane tension. Midplane deformations decouple
to leading order from thickness deformations [66], and are
described [29, 63{69] by an energy functional similar to
eq. (2). For generality we allow for the two tension terms
u=a and (r u)2 in eq. (2), which capture the e�ects of
membrane tension on lipid surface area [29,65,69] and on
membrane undulations [63{68], respectively.

The Euler-Lagrange equation associated with eq. (2) is
given by �

r 2 � � +
� �

r 2 � � �
�

�u = 0 ; (3)

where

� � =
1

2K b

"

� �
�

� 2 �
4K bK t

a2

� 1=2
#

(4)

and �u = u + �a=K t . The solution of eq. (3) for a single
cylindrical membrane inclusion of radiusRi is [12,72]

�u(r i ; � i ) = f +
i (r i ; � i ) + f �

i (r i ; � i ) ; (5)

where r i and � i are polar coordinates with the center of
inclusion i as the origin, the Fourier-Bessel series

f �
i (r i ; � i ) = A �

i; 0K 0(
p

� � r i ) +
1X

n =1

(A i;n + Bi;n ) ; (6)

in which A i;n = A �
i;n K n (

p
� � r i ) cosn� i and Bi;n =

B �
i;n K n (

p
� � r i ) sin n� i , K n are modi�ed Bessel functions

of the second kind, and we have assumed that membrane
deformations decay away from a single membrane inclu-
sion [70]. The coe�cients A �

i;n and B �
i;n are determined by

the boundary conditions at the bilayer-inclusion interface
for which, to allow for general protein shapes, we use

u(r i ; � i )
�
�
r i = R i

= Ui (� i ) ; (7)

n̂ � r u(r i ; � i )
�
�
r i = R i

= U0
i (� i ) ; (8)

where n̂ is the unit normal vector along the bilayer-
inclusion interface. As an alternative to eq. (8) one may
assume [21, 22, 28, 70, 73] a free contact slope along the
bilayer-inclusion interface.

Following Refs. [20, 23], we construct the solution of
eq. (3) for two membrane inclusions using the ansatz

u = u1(r1; � 1) + u2(r2; � 2) ; (9)

where the ui (r i ; � i ) are the single-inclusion deformation
�elds implied by eq. (5), with the bipolar coordinate trans-
formations

r2 =
�
d2 + r 2

1 + 2 dr1 cos� 1
� 1=2

; (10)

cos� 2 = ( d + r1 cos� 1) =r2, and sin� 2 = ( r1 sin � 1) =r2, in
which d is the center-to-center distance between the two
inclusions. Note that, if the single-inclusion solution in
eq. (5) is considered up to some ordern = N , eq. (9)
contains 4(2N + 1) independent constants which must be
�xed through the boundary conditions in eqs. (7) and (8).
Employing eq. (3), the elastic energy in eq. (2) can then
be written as a sum over the boundary terms

Gi = �
Ri

2

Z 2�

0
d� i

�
K b

@�u
@ri

r 2 �u � K b�u
@

@ri
r 2 �u + � �u

@�u
@ri

�

(11)
at r i = Ri , where we have neglected terms independent
of �u. This expression is evaluated at each order in the
Fourier-Bessel series in eq. (9) using the orthogonality
properties of trigonometric functions. Thus, the elastic
energy in eq. (2) reduces to an algebraic expression for the
coe�cients A �

i;n and B �
i;n which, in turn, are prescribed by

the boundary conditions in eqs. (7) and (8).
We determine the coe�cients A �

i;n and B �
i;n in eq. (9) up

to arbitrary N by expanding u2 in the membrane region
surrounding inclusion 1 in terms ofr1=d < 1 and imposing
on u the boundary conditions at r1 = R1 [20, 23], with a
similar procedure for inclusion 2. Thus, �nding the general
solution in eq. (9) which respects the boundary conditions
in eqs. (7) and (8) reduces to solving a system of 4(2N +1)
linear equations, which we achieve using standard meth-
ods [74]. Substitution of the resulting expressions of the
coe�cients into eq. (11) yields, for a given N , the inter-
action potential between two membrane inclusions. The
validity of this �nite-order series solution is based on the
assumption that very rapid angular variations at large n in
the membrane deformation �eld can be neglected, which
we con�rm for a given problem by systematically including
higher-order terms.

Cylinder model of MscL. { Before employing
eq. (11) with eqs. (7) and (8) to study directional interac-
tions between MscL proteins we test our approach in the
special case of membrane inclusions with circular cross sec-
tion, for which elastic interactions have been investigated
in some detail [18,20{33]. In particular, we consider cylin-
drical membrane inclusions of constant hydrophobic thick-
ness, which have been used to model MscL [29,44,67{69]
as well as other membrane proteins [12{19]. Following the
basic phenomenology of MscL gating [50{52], we take the
inclusion to exist in one of two states|open or closed|
with the competition between these two states governed
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Fig. 1: (Color on-line) Elastic interaction potentials obt ained
from eq. (11) between cylindrical membrane inclusions of con-
stant hydrophobic thickness up to order n = N in the Fourier-
Bessel series in eq. (9) between open, closed, and open and
closed channel states (curves from top to bottom at d = 10 nm)
for � = 0. We use the same parameter values as in Ref. [29].
Vertical lines and shaded regions indicate the minimum valu es
of d mandated by steric constraints.

by membrane tension. Furthermore, in the cylinder model
of MscL [29,44,67{69], open and closed states of MscL are
distinguished only by the inclusion radius and hydropho-
bic thickness.

Figure 1 shows our solutions of the elastic interaction
potentials for cylindrical membrane inclusions obtained
from eq. (11) at various N . Because we expand the so-
lutions in r i =d around each inclusion i , convergence is
slowest at small d. The interaction potentials in �g. 1
exhibit the same qualitative behavior as observed in com-
puter simulations of this system [29, 44]. Moreover, for
intermediate and large d, the results in �g. 1 are in good
quantitative agreement with the corresponding numerical
solutions of the elastic equations [29]. For smalld, how-
ever, the values of the interaction potentials for closed
(and open) channels obtained from simulations [29] are
of a somewhat smaller magnitude than those in �g. 1 at
N = 8 and beyond, while smaller values ofN also pro-
duce smaller magnitudes of the interaction energy in our
analytic calculation. Thus, a potential explanation for
the discrepancy between analytic and numerical results
at small d is that the grid size used for the simulations in
Ref. [29] does not capture rapid angular variations (which,
in our analytic solution, correspond to large values ofN )
with su�cient accuracy at small inclusion separations.

Pentameric MscL. { While the cylinder model of
membrane proteins [12{18] provides a beautiful zeroth-
order description of the membrane deformation footprint
of a membrane protein, structural biology has shown that
membrane protein structures are much richer. In partic-
ular, the structures of MscL in di�erent organisms have

been found to exhibit distinct symmetries [52,60{62]. One
of the primary goals of the work described here is to deter-
mine in what way the zeroth-order model of membrane-
mediated protein interactions needs to be amended when
accounting for real membrane proteins. A simple coarse-
grained model of the cross-sectional shape of MscL, as well
as of other membrane proteins, is given by

Ci (� i ) = Ri [1 + � i coss (� i � ! i )] ; (12)

where � i parameterizes the magnitude of the deviation of
the protein cross section from the circle,s denotes the
order of the protein symmetry (oligomeric state), and ! i

captures the orientation of the protein. Equation (12) is
illustrated in the insets of �g. 2 for open and closed MscL.

The physiologically relevant oligomeric states of MscL
remain a matter of debate [52,60{62], with tetrameric [75],
pentameric [53], and hexameric [76] MscL having been re-
ported. Our approach is able to handle all of these cases,
but here we focus on pentameric MscL, which correspond
to s = 5 in eq. (12) with Ri and � i estimated from struc-
tural models [45, 53{59]. Since these structural models
of MscL suggest� i � 1, we take the weak perturbation
limit of eq. (12) and only consider the leading-order terms
in � i breaking rotational symmetry. Expansion of u at
r i = Ci (� i ) in � i [34, 35] then yields boundary conditions
of the form in eqs. (7) and (8) which, following the pro-
cedure described above, allows us to analytically solve for
the directional interaction potentials between MscL pro-
teins. For simplicity we �rst consider the case of a con-
stant Ui along Ci (� i ), with a value of a so that Ui is of the
same sign in the open and closed states of MscL, and then
turn to the complementary case of directional interactions
induced by a varying Ui [10, 11]. We choose the param-
eter values for bilayer-MscL interactions as discussed in
Refs. [29, 67{69] and, in particular, setU0

i (� i ) = 0 along
the bilayer-MscL interface.

Figure 2(a) shows the elastic interaction potentials be-
tween pentameric MscL proteins in the open state [45,54{
57], with similar curves for the corresponding closed state
structure [53]. Irrespective of the relative protein orienta-
tion considered, we �nd an energy barrier to the dimer-
ization of two open (or closed) MscL proteins. For most
protein separations, the tip-on orientation is energetically
most favorable with the face-on orientation being least
favorable. For very small d, however, the face-on orien-
tation becomes favorable over the tip-on orientation [see
inset in �g. 2(a)]. Figure 2(b) demonstrates that elastic
interactions between open and closed MscL proteins can
also yield an energy barrier to dimerization. But, in con-
trast to �g. 2(a), MscL proteins now repel each other at
very small d, and we obtain a pronounced minimum in the
interaction energy at some optimal value ofd which de-
pends on the relative protein orientation. Similarly as in
the case of two open MscL proteins, the tip-on orientation
is energetically most favorable, and the face-on orientation
least favorable, for most protein separations in �g. 2(b),
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Fig. 2: (Color on-line) Directional interaction potential s ob-
tained from eq. (11) at N = 12 for (a) open and (b) open
and closed MscL. Bilayer-MscL interactions were parame-
terized as in Ref. [69] but for a PC20 lipid bilayer with
� = 0. Thick curves denote the three MscL orientations
in the insets, while thin curves correspond to intermediate
MscL orientations rotated by �= 20 or �= 10 as indicated by
arrows. The molecular models of MscL in the insets are
reprinted, with permission, from Annual Review of Biophysics
and Biomolecular Structure (Volume 31 c
 2002 by Annual
Reviews; www.annualreviews.org; ref. [45]), and the super-
imposed boundary curves were obtained from eq. (12) with
R i � 3:49 nm and R i � 2:27 nm, and � i � 0:11 and � i � 0:22,
for open and closed MscL.

with the tip-on orientation becoming least favorable for
very small d. For all scenarios in �g. 2 we �nd that G
changes smoothly upon rotation from the face-on to the
tip-on orientation.

The analytic solution in eq. (9) in terms of single-
inclusion deformation �elds suggests a simple qualitative
explanation for the non-monotonic behavior of the MscL
interaction potentials in �g. 2. In general, the single-
inclusion thickness deformation �eld in eq. (5) overshoots
considerably [12, 21] at its �rst extremum when relaxing
away from the inclusion boundary. Hence, if two channels
induce thickness deformations of the same sign, there is
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Fig. 3: (Color on-line) Directional interaction potential s ob-
tained from eq. (11) at N = 12 for cylindrical membrane in-
clusions of radius R i = 3 :5 nm [29] with the hydrophobic mis-
match in eq. (13) using U0

i = � 0:5 nm [29] and � i = 0 :7 nm.
The lipid bilayer was parameterized as in Ref. [29] with � = 0.
Thick curves denote the three inclusion orientations in the in-
sets, while thin curves correspond to intermediate orienta tions
rotated by �= 45 as indicated by arrows.

a regime of intermediated for which membrane deforma-
tions are ampli�ed, yielding the energy barriers in �g. 2.
At small d, the membrane deformation �elds already over-
lap before reaching the �rst extremum, thus reducing the
overall deformation footprint of the two channels and mak-
ing dimerization favorable as implied by �g. 2. For mem-
brane channels of distinct hydrophobic thickness, however,
moving the channels even closer together yields an ad-
ditional regime in which the membrane has to deform
strongly between the two channels, leading to repulsion
between open and closed MscL at very smalld as in
�g. 2(b). In each of these regimes, the competition be-
tween tip-on and face-on orientations is governed by a
complex interplay between the local strengths and asso-
ciated membrane areas of overlapping deformation �elds.

Varying hydrophobic thickness. { The qualitative
picture of elastic interaction potentials developed above
for the boundary curves in eq. (12) also applies to the
complementary case of directional interactions induced by
a varying hydrophobic thickness of membrane proteins
[10, 11]. To explore this scenario we consider cylindrical
membrane inclusions with hydrophobic mismatch

Ui (� i ) = U0
i + � i coss (� i � ! i ) ; (13)

where U0
i is the average hydrophobic mismatch and� i is

the magnitude of mismatch modulations. The hydropho-
bic surfaces generated by eq. (13) are illustrated in the
insets of �g. 3.

Figure 3 shows the interaction potentials associated
with eq. (13). A striking feature of �g. 3 is that, depending
on the relative inclusion orientation, membrane-mediated
interactions can be attractive or repulsive at small d. In
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Fig. 4: (Color on-line) Gating curves in eq. (14) for a pair of
MscL proteins to transition from the open-closed to the open -
open con�guration [see �gs. 2(b) and 2(a)] for the lipid bila yer
parameter values in Ref. [29] at d = 9 nm, d = 10 nm, and
the value d = 100 nm corresponding to the far-�eld limit. All
gating curves are obtained from eq. (11) at N = 12, and the
protein orientations at d = 9 nm and d = 10 nm are labelled
as in �g. 2(a). The molecular models of MscL in the insets are
reprinted, with permission, from Annual Review of Biophysics
and Biomolecular Structure (Volume 31 c
 2002 by Annual
Reviews; www.annualreviews.org; ref. [45]), and we use the
same MscL shapes as in �g. 2.

particular, if the periodic modulations in eq. (13) are in
phase at the closest approach of the two inclusions there is,
again due to the oscillatory nature of the single-inclusion
deformation �elds, an energy barrier to dimerization as in
�g. 2(a), with attraction at small d. Conversely, in the
case of orientations in �g. 3 for which the periodic modu-
lations in eq. (13) are out of phase at the closest approach
of the two inclusions, opposing inclusion boundaries in-
duce distinct thickness deformations which, similarly as
in �g. 2(b), can lead to repulsion at small d. The inter-
action potentials in �g. 3 change smoothly upon rotation
from out-of-phase to in-phase orientations, and exhibit a
minimum for intermediate orientations.

Cooperative gating. { Interaction potentials such
as those in �gs. 2 and 3 can induce directionality in the
cooperative function of membrane proteins. The gating
characteristics of MscL with varying membrane tension
are captured [50,51] by the channel opening probability

Po =
1

1 + e� (� G � � � A )
; (14)

where � = 1 =kB T, in which kB is Boltzmann's constant
and T is the temperature, and � G and � A are the free
energy and area di�erence between open and closed chan-
nel states. We only consider here contributions to �G
due to thickness deformations of the bilayer membrane in
eq. (11), which were shown previously [29, 44, 67{69] to
yield the basic phenomenology of MscL gating.

Figure 4 showsPo for pentameric MscL [45,52{62] with
a neighboring pentameric MscL protein in the open state.
We �nd that, compared to the case of non-interacting
MscL, membrane-mediated interactions can, depending on
the protein separation and orientation, shift the gating
tension to higher as well as lower values. The magnitude
of the predicted e�ect of directional interactions in �g. 4 is
comparable to previously measured [43,56] shifts in gating
tension due to modi�cation of the membrane composition.
As expected from the interaction potentials in �g. 2, the
cooperative gating tension associated with the tip-on ori-
entation is lower than the cooperative gating tension asso-
ciated with the face-on orientation for the protein separa-
tions in �g. 4, with a smooth interpolation in Po between
these two limiting orientations.

Conclusion. { Building on Refs. [20{23] we have de-
veloped an analytic approach for estimating directional
elastic interactions between membrane proteins for ar-
bitrary protein separations. On the basis of a simple
model of the shape of MscL suggested by structural stud-
ies [45,52{62], we predict that directional interactions be-
tween MscL proteins yield a characteristic sequence of pre-
ferred orientations, and cooperative gating curves, upon
dimerization of MscL. A combination of quantitative ex-
periments on the spatial arrangement [43, 44] and gating
tension [51, 56{59] of MscL would be able to put these
predictions to a direct experimental test. Our method
provides a bridge connecting the shape of membrane pro-
teins to the cooperative function of membrane proteins
induced by elastic interactions, and can be applied to any
membrane protein for which basic structural information
is available. The approach developed here represents a
step towards a physical theory of how directional inter-
actions a�ect the molecular structure, organization, and
biological function of proteins in the crowded membrane
environment provided by living cells.
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