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We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-

particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects.

By averaging over motions of the objects’ internal degrees of freedom, we obtain an effective

Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at

quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving

quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a

frequency different from its classical eigenfrequency—with a difference that depends on the internal

structure of the object—and can be observable using current technology. For several objects, the

Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum

uncertainty cannot be transferred from one object to another.
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Introduction and summary.—Testing nonrelativistic
macroscopic objects has been a minor approach towards
the search for effects of quantum gravity. Apart from the
standard formulation of linearized quantum gravity [1],
which seems rather implausible to test in the lab, several
signatures have been conjectured: (i) gravity decoherence
[2–12], where gravity introduces decoherence to macro-
scopic quantum superpositions; (ii) modifications to ca-
nonical quantization motivated by the existence of a
minimum length scale [13–15]; and (iii) semiclassical
gravity [16–18], which will be the subject of this paper.
As originally suggested by Moller [16] and Rosenfeld [17],
spacetime structure might still remain classical even if
it is sourced by matters of quantum nature, if we impose
(G ¼ c ¼ 1)

G�� ¼ 8�hc jT̂��jc i: (1)

Here G�� is the Einstein tensor of a (3þ 1)-dimensional

classical spacetime, T̂�� is the operator for the energy-

stress tensor, and jc ðtÞi is the wave function of all matters
that evolve within this classical spacetime.

Many arguments exist against semiclassical gravity.
Some rely on the conviction that a classical system cannot
properly integrate with a quantum system without creating
contradictions. Others are based on ‘‘intrinsic’’ mathemati-
cal inconsistencies, the most famous one between Eq. (1),
state collapse, and r�G�� ¼ 0 [19]. Towards the former

argument, it is the aim of this paper to explicitly work out
the effects of classical gravity on the quantum mechanics
of macroscopic objects; although we will find them coun-
terintuitive, they do not seem dismissible right away.
In fact, we shall find these effects ‘‘right on the horizon
of testability’’ by current experimental technology.
Towards the latter argument, we shall remain open-minded
regarding the possibility of getting rid of quantum state

reduction while at the same time avoiding the many-world
interpretation of quantum mechanics [20,21] (also see
Supplemental Material [22]).
The nonrelativistic version of Eq. (1), the so-called

Schrödinger-Newton (SN) equation, has been extensively
studied for single particles [23–29]. In this paper, we
consider instead a macroscopic object consisting of many
particles and will show that within certain parameter
regimes the center-of-mass (c.m.) wave function approxi-
mately satisfies the following SN equation:
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Here hxi � h�jx̂j�i is the expectation value of the c.m.
position; !c:m: is the eigenfrequency in the absence of
gravity, determined by how the c.m. is confined; C is the

SN coupling constant, from which we introduce !SN �ffiffiffiffiffiffiffiffiffiffi
C=M

p
. For Si crystal at 10 K, we estimate !SN �

0:036 s�1, much larger than the naively expected
ffiffiffiffiffiffiffiffiffi
G�0

p
from the object’s mean density �0, due to the high con-
centration of mass near lattice points.
For a single macroscopic object prepared in a squeezed

Gaussian state, Eq. (2) leads to different evolutions of
expectation values and quantum uncertainties, as illus-
trated in Fig. 1. Such a deviation can be tested by opto-
mechanical devices in the quantum regime [30–34]. For
two macroscopic objects interacting through gravity, we
show further, using the two-body counterpart of Eq. (2),
that classical gravity cannot be used to transfer quantum
uncertainties—experimental demonstration of this effect
will be much more difficult than demonstrating modifica-
tions in single-object dynamics.
We emphasize that it is not our aim to use the SN

equation to explain the collapse of quantum states, or to
provide a pointer basis for gravity decoherence, as has been
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attempted in the literature [23–29]. We will take a con-
servative strategy, avoiding experimental regimes with
exotic wave functions [10–12] and constrain ourselves to
Gaussian states whose evolutions deviate little from pre-
dictions of standard quantum mechanics: just enough to be
picked up by precision measurements. In this way, solu-
tions to the SN equation we consider are much less com-
plex than those in previous literature [23–29].

Many-particle SN equation.—For n nonrelativistic par-
ticles, if we denote their joint wave function as ’ðt;XÞ
with 3n-D vector X � ðx1; . . . ;xnÞ and xk the 3D spatial
coordinate of kth particle, then the many-particle SN equa-
tion, obtained by Penrose and Diósi [5,23], is

i@@t’ ¼ X
k

�
� @

2r2
k

2mk

þmkUðt;xkÞ
2

�
’þ VðXÞ’; (3)

where VðXÞ is the potential energy for nongravitational
interactions, while the Newtonian potential U is given by

r2Uðt;xÞ ¼ 4�
X
j

Z
d3nXj’ðt;XÞj2mj�ðx� xjÞ: (4)

Center of mass and separation of scales.—Equations (3)
and (4) are still not suitable for experimental studies,
because we cannot separately access each particle in a
macroscopic object. In optomechanical devices, a light
beam often probes the average displacements of atoms
within the first few layers of the reflective coating of a
mirror-endowed mass. Motion of this effective surface can
often be well approximated by the c.m. motion of the entire
object (see Refs. [31,32,35]); the error of this approxima-
tion is referred to as the ‘‘internal thermal noise’’ and has
been shown to be suppressible below the free-mass stan-
dard quantum limit (SQL) [36], a quantum level of c.m.
motion defined by the object’s total mass and the measure-
ment time scale [37–39]. This suppression is possible
because (i) we tend to measure c.m. motion by averaging
over a large number of atoms at the surface of the object,
and (ii) we measure c.m. motion over a time scale much
longer than ones at which atoms oscillate due to thermal or
zero-point fluctuations. Obtaining the SN equation for the

c.m. is therefore central to the experimental test of this
model. Before doing so, let us consider the separation of
temporal and spatial scales in the motion of a macroscopic
piece of crystal.
The scales of c.m. motion are determined externally by

how we confine the object during measurement, and by
how we measure it. Here we consider motions with
!c:m:=ð2�Þ from Hz to kHz scale. If the thermal noise level
is below the free-mass SQL [36], then one can either use
optical or feedback trapping to create mechanical oscilla-
tors with coherence time �c:m: longer than 1=!c:m: [40,41].
Although not yet achieved, research towards sub-SQL
devices in the Hz–kHz regime is being actively pursued

[35,42,43]. In this regime, we have �xc:m: �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðM!c:m:Þ

p
;

for 1 g<M< 10 kg, �xc:m: � 10�19–10�17 m.
By contrast, the internal motions of atoms are due to

excitation of phonons [44], with a total variance of [45]

hx2i � B2
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where B is also known as the ‘‘B factor’’ in x-ray diffrac-
tion, � ¼ h�=kBT, and gð�Þ is the phonon density of states;
the first term in the bracket gives rise to zero-point uncer-
tainty �x2zp, while the second gives rise to thermal uncer-

tainty �x2th. These have been studied experimentally by

x-ray diffraction, through measurements of the Debye-
Waller factor [46], and modeled precisely (for Si crystal,
see Ref. [47]). Much below the Debye temperature, one
can reach �xth � �xzp, with most atomic motion due to

zero-point fluctuations near the Debye frequency !D.
For Si crystal, !D � 1014 s�1, �xzp ¼ 4:86� 10�12 m,

and �xthð293 KÞ ¼ 5:78� 10�12 m [47]. At lower tem-
peratures, �xth / T; therefore, on the scale of �10 K,
at which our proposed experiment operates, we have
�xzp � �xth � �xc:m:.

SN equation for the c.m.—For a crystal with n atoms, the
c.m. is at xc:m: ¼ ð1=nÞPkxk, and motion of the kth atom in
the c.m. frame is yk � xk � xc:m:. In standard quantum
mechanics, for interatom interaction that only depends on
the separation of atoms, the c.m. and internal DOFs are
separable:’ðt;XÞ ¼ �c:m:ðt;xÞ�intðt;YÞ, with 3ðn� 1Þ-D
vector Y � ðy1; . . . ; yn�1Þ. The two wave functions evolve
independently:

i@@t�c:m:ðt;xÞ ¼ Hc:m:�c:m:ðt;xÞ; (6)

i@@t�intðt;YÞ ¼ Hint�intðt;YÞ: (7)

For classical gravity, let us first still assume separability,
’ ¼ �c:m:�int, and we will show this remains true (with
negligible error) under evolution. Specifically, the sum of
SN terms in Eq. (3) becomes

FIG. 1 (color online). Left: according to standard quantum
mechanics, both the vector (hxi, hpi) and the uncertainty ellipse
of a Gaussian state for the c.m. of a macroscopic object rotate
clockwise in phase space, at the same frequency ! ¼ !c:m:.
Right: according to the c.m. Schrödinger-Newton equation (2),
(hxi, hpi) still rotates at !c:m:, but the uncertainty ellipse rotates
at !q � ð!2

c:m: þ!2
SNÞ1=2 >!c:m:.
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VSNðx;YÞ ¼
X
k

mkUðxkÞ=2

¼ X
k

Z
"½x� zþ yk��2

c:m:ðzÞd3z: (8)

Here we have suppressed dependence on time and defined

"ðzÞ ¼ �Gm

2

Z ~�intðyÞ
jz� yj d

3y (9)

as half the gravitational potential energy of a mass m at
location z (in a c.m. frame), due to the entire lattice, and

~�intðyÞ ¼ m
Xn
j¼1

Z
�ðy � y0jÞj�intðY0Þj2d3n�3Y0 (10)

is the c.m. frame mass density. (Note that yn �
�P

n�1
j¼1 yj.) We will now show that VSN approximately

separates into a sum of terms that either only depend on
Y or only on x. Taylor expansion of VSN in x and z leads to
(for one direction)

VSN ¼ X
k

"ðykÞ þ ðxc:m: � hxc:m:iÞ
X
k

"0ðykÞ

þ x2c:m: � 2xc:m:hxc:m:i þ hx2c:m:i
2

X
k

"00ðykÞ; (11)

while higher orders fall as powers of �xc:m:=�xzp � 1.

Here in VSN, the first term describes the leading SN cor-
rection to internal motion and can be absorbed into Hint.
The second term describes the interaction between the c.m.
motion and each individual atom—it can be shown to have
negligible effects, because internal motions of different
atoms are largely independent, and at much faster time
scales. The third term is largely a correction to the c.m.
motion; its main effect is captured if we replace it by
its ensemble average over internal motion (again allowed
by approximate independence between atoms; see
Supplemental Material [22]):

P
k"

00ðykÞ ! C �
hPk"

00ðykÞi, with

C ¼ � 1

2

@2

@z2

�Z G~�intðyÞ~�intðy0Þ
jzþ y � y0j dydy0

�
z¼0

; (12)

which is half the double spatial derivative of the ‘‘self-
gravitational energy’’ of the lattice as it is being translated.
As this is independent from the internal motion Y, we
therefore obtain the leading correction to Hc:m:, which
justifies Eq. (2) introduced at the beginning.

Estimates for !SN.—Let us now estimate the magnitude
of !SN from Eq. (12). Naively assuming a homogeneous
mass distribution with constant density �0 leads to

Chom � GM�0; !hom
SN � ffiffiffiffiffiffiffiffiffi

G�0

p
; (13)

up to a geometric factor that depends on the shape of the
object. This is a typical estimate for the gravity-
decoherence time scale for a homogeneous object prepared
in a nearly Gaussian quantum state with position uncer-
taintymuch less than its size [12]. Using themean density of
Si crystal, this is roughly 4� 10�4 s�1. However, mass in a

lattice is highly concentrated near lattice sites; the realistic
~�int at low temperatures contains a total mass of m around
each lattice point, Gaussian distributed with uncertainty
of �xzp in each direction. This gives, through Eq. (12),

!crystal
SN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=ð12 ffiffiffiffi

�
p

�x3zpÞ
q

: (14)

For �xzp � 4:86� 10�12 m, we obtain !Si
SN � 0:036 s�1,

nearly 100 times !hom
SN . If we define

� ¼ ð!crystal
SN =!hom

SN Þ2 ¼ m=ð12 ffiffiffiffi
�

p
�0�x

3
zpÞ; (15)

then � ¼ 8:3� 103 for Si crystal.
Evolutions of Gaussian states and experimental tests.—

As one can easily prove, Gaussian states remain Gaussian
under Eq. (2); the self-contained evolution equations for
first and second moments of x̂ and p̂, which completely
determine the evolving Gaussian state, are given by

h _̂xi ¼ hp̂i=M; h _̂pi ¼ �M!2
c:m:hx̂i; (16)

_Vxx ¼ 2Vxp=M; _Vpp ¼ �2Mð!2
c:m: þ!2

SNÞVxp; (17)

_Vxp ¼ Vpp=M�Mð!2
c:m: þ!2

SNÞVxx: (18)

For covariance we have defined VAB � hÂ B̂þB̂ Âi=
2� hÂihB̂i. Equation (16) indicates that hx̂i and hp̂i evolve
the same way as a harmonic oscillator with angular fre-
quency !c:m:—any semiclassical measurement of on hx̂i
and hp̂i will confirm classical physics. On the other hand,
evolution of second moments (which represent quantum
uncertainty), is modified to that of a harmonic oscillator
with a different frequency (see Fig. 1):

!q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c:m: þ!2
SN

q
: (19)

Equations (16)–(18) for Gaussian states can also be repro-
duced by a set of effective Heisenberg equations that
contain expectation values:

_̂x ¼ p̂=M; _̂p ¼ �M!2
c:m:x̂� Cðx̂� hx̂iÞ: (20)

Classical gravity introduces a C-dependent term to
Eq. (20), in a way that only affects quantum uncertainty.
The most obvious test for the SN effect is to prepare a

mechanical oscillator into a squeezed initial state, let it
evolve for a duration �, and carry out state tomography. We
need to detect an extra phase �� ¼ !c:m:�ð!2

SN=!
2
c:m:Þ in

the rotation of the quantum uncertainty ellipse. This seems
rather difficult because !SN=!c:m: is often a very small
number, yet !c:m:� is often not large either.
However, we have not taken advantage of the fact that��

is deterministic and repeatable. One way of doing so is to
carry out a frequency-domain experiment. Suppose we use
light (at !0) to continuously probe a mechanical object’s
position, with quantum backaction noise (in the form of
radiation-pressure noise) comparable in level to thermal
noise, as has been achieved by Purdy et al. [34]. The
effective Heisenberg equations (valid for Gaussian states)
for such an optomechanical device is given by [48,49]
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_̂x ¼ p̂=M; (21)

_̂p¼�M!2
c:m:x̂�2	mp̂�Cðx̂�hx̂iÞþ F̂BAþFth; (22)

b̂2 ¼ â2 þ nx þ ð
=@Þx̂; b̂1 ¼ â1: (23)

Here 	m is the damping rate, 
 the optomechanical cou-

pling constant, F̂BA � 
â1 the quantum backaction, and
Fth the classical driving force (e.g., due to thermal noise).
â1;2 represent quadratures of the ingoing optical field and

b̂1;2 those of the outgoing field. (They correspond to am-

plitude and phase modulations of the carrier field at !0.)
We have used nx to denote sensing noise. As we show in
the Supplemental Material [22], the outgoing quadrature

b̂2 contains two prominent frequency contents, peaked at
!c:m: (due to classical motion driven by thermal forces) and
at !q (due to quantum motion driven by quantum fluctua-

tion of light), respectively. Both have the same width (	m),
and height (if thermal and backaction noises are compa-
rable). In order to distinguish them, we require

SFth
� SFBA

; Q * ð!c:m:=!SNÞ2: (24)

This indicates a SN-induced shift of�� � 2�=Q per cycle
can be picked up by the frequency domain experiment,
even in the presence of classical thermal noise Fth.

For Si oscillators with !SN � 0:036 s�1, if !c:m: �
2�� 10 Hz, Eq. (24) requires Q * 3� 106, which is
challenging but possible [35]. If a lower-frequency oscil-
lator, e.g., a torsional pendulum with!c:m: � 2�� 0:1 Hz
[50] can be probed with backaction noise above thermal
noise, then we only require Q * 3� 102.

SN equation for two macroscopic objects.—Now sup-
pose we have two objects confined within potential wells
frequencies !1;2, and moving along the same direction as

the separation vector L connecting their equilibrium posi-
tions (from 1 to 2). The standard approach for describing
this interaction is to add a potential

Vg ¼ E0
12½xð1Þc:m: � xð2Þc:m:� þ ðC12=2Þ½xð1Þc:m: � xð2Þc:m:�2 (25)

into the Schrödinger equation, with

E12 � �
Z

d3xd3y
G~�ð1Þ

tot ðxÞ~�ð2Þ
tot ðyÞ

jLþ y � xj ; C12 � @2E12

@L2
;

(26)

with ~�ð1Þ
tot and ~�ð2Þ

tot the mass densities of objects 1 and 2,
respectively. As has been argued by Feynman, this way of
including gravity tacitly assumes that gravity is quantum.
Although quantum operators have not been assigned for
the gravitational field, they can be viewed as have been
adiabatically eliminated due to their fast response: quan-
tum information can transfer between these objects via
gravity. Suppose !1 ¼ !2 ¼ !, then Vg modifies the fre-

quency of the two objects’ differential mode—allowing a
quantum state to slosh between them, at a frequency of
� ¼ j!þ �!�j ¼ C12=ð2M!Þ.

Suppose we instead use the SN equation for the two
macroscopic objects. In addition to modifying each
object’s own motion, we add a mutual term of

VSN ¼ E0
12½xð1Þc:m: � xð2Þc:m:�

þ C12
2

½ðxð1Þc:m: � hxð2Þc:m:iÞ2 þ ðxð2Þc:m: � hxð1Þc:m:iÞ2�: (27)

This VSN makes sure that only hxc:m:i gets transferred
between the two objects the same way as in classical
physics: quantum uncertainty does not transfer from one
object to the other. To see this more explicitly for Gaussian
states, we can write down the full set of effective
Heisenberg equations governing these two c.m.’s:

_̂xj ¼ p̂j=Mj;

_̂pj ¼ �Mj!
2
c:m:x̂j �

X
k;j

½E0
kj þ Ckjðx̂j � hx̂kiÞ�:

(28)

It is clear that expectation values follow classical physics,
and quantum uncertainties are confined within each
object—and evolve with a shifted frequency. Although
we have shown theoretically that the inability of trans-
ferring quantum uncertainty and the shift between !c:m:

and !q share the same origin, in practice, observing the

frequency shift for a single object will be much easier,
because C12 �GM2=L3 & GM�0 � C11, C22, due to the
lack of the amplification factor � in C12 [cf. Eq. (15)].
Discussion.—The lack of experimental tests on the

quantum coherence of dynamical gravity makes us believe
that semiclassical gravity is still worth testing [18]. Our
calculations have shown that signatures of classical gravity
in macroscopic quantum mechanics, although extremely
weak, can be detectable with current technology. In par-
ticular, the classical self-gravity of a single macroscopic
object causes a much stronger signature than the classical
mutual gravity between two separate objects: simply
because the mass of a cold crystal is concentrated near
lattice sites. We also speculate that the rate of gravity

decoherence should also be expedited by �1=2 � 100—if
it is indeed determined by gravitational self-energy [5,6].
However, due to the lack of a widely accepted microscopic
model for gravity decoherence, this only makes it more
hopeful for experimental attempts but would not enforce a
powerful bound if decoherence were not to be found.
Finally, since classical gravity requires the existence of a

global wave function of the Universe that does not col-
lapse, (the unlikely case of) a positive experimental result
will open up new opportunities of investigating the nature
of quantum measurement.
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