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A number of exotic structures have been formed through high-
pressure chemistry, but applications have been hindered by diffi-
culties in recovering the high-pressure phase to ambient conditions
(i.e., one atmosphere and 300 K). Here we use dispersion-corrected
density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor
of DFT with the universal low gradient correction for long range
London dispersion)] to predict that above 60 gigapascal (GPa) the
most stable form of N,O (the laughing gas in its molecular form) is
a one-dimensional polymer with an all-nitrogen backbone analo-
gous to cis-polyacetylene in which alternate N are bonded (ionic
covalent) to O. The analogous trans-polymer is only 0.03~0.10 eV/
molecular unit less stable. Upon relaxation to ambient conditions,
both polymers relax below 14 GPa to the same stable nonplanar
trans-polymer. The predicted phonon spectrum and dissociation ki-
netics validates the stability of this trans-poly-NNO at ambient con-
ditions, which has potential applications as a type of conducting
nonlinear optical polymer with all-nitrogen chains and as a high-
energy oxidizer for rocket propulsion. This work illustrates in silico
materials discovery particularly in the realm of extreme conditions
(very high pressure or temperature).
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With strong interplay between experiment and theory, such
molecular crystals as N; (1, 2), CO, (3, 4), CO (5, 6), NH;
(7), and benzene (8) have been transformed into extended solids
(covalent and ionic bonded networks) under high pressures. These
studies have enhanced our understanding of chemical bonds under
compression and provide opportunities to seek additional novel
materials; however, it has been difficult to retain these remarkable
structures at the ambient conditions needed for most applications
(9). For CO,, a 3D covalent network was synthesized (3) at high
pressure (40 GPa) and temperature (1,800 K) that is isomorphic to
the -cristobalite phase of SiO, (10), with each carbon atom
bonded tetrahedrally to four oxygen atoms. This phase of CO, was
proposed to have potential applications as superhard (initial
experiments estimated a bulk modulus of 365 GPa (11), but theory
and experiment later found it to be 136 GPa (10, 12)), nonlinear
optical, and high-energy density material, so efforts were made to
quench this phase down to 1 atm and 300 K (3); however, it reverts
back to the molecular phase at pressures lower than 1 GPa.
Because it is isoelectronic to CO, but polar, attempts were made
to form an extended solid from N,O using compression (above 20
GPa) and laser heating (above 1,000 K) in a diamond anvil (13).
However, instead it decomposed into a mixture of an ionic crystal
NO*NO;™~ and compressed N, molecules. No covalent extended
framework similar to the polymeric CO, phase was found. Indeed,
because the nitrogen atom forms one less covalent bond than the
carbon atom, it is not obvious that it would be possible to construct
a dense extended solid phase of N,O other than the ionic form.
Even so, we decided to use first principle method to explore a large
number of space groups and bonding patterns at high pressures.
Because we start with molecular crystals of nitrous oxide (NNO)
in which London dispersion attractions (van der Waals attraction)
is dominant, we used the PBE-ulg flavor of density functional
theory (DFT-ulg) in which corrections accounting for London
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dispersion attractions are included (14). We searched for high-
pressure structures with two independent strategies.

In the first approach, we started with 41 known AB,-type
crystal structures, replaced A with O and B with N, and used DFT
to determine the optimum atom positions and packings using
a fixed density of 3.915 gm/cm® (a relative compression of 0.384
and the same as polymeric CO, at 41 GPa) (10). Then we took
the new configurations from the lowest energy structures, built
appropriate extended cells, and refined further with DFT to ob-
tain the optimum stacking.

In the second approach, we used the USPEX (Universal
Structure Predictor: Evolutionary Xtallography) code (15-17)
based on an evolutionary algorithm developed by Romanov,
Glass, and Lyakhov (15) and featuring local optimization, real-
space representation, and flexible physically motivated variation
operators. Here we considered a 12-atom unit cell at 40, 60, and
80 GPa.

Results

Both methods led to the same two final high-pressure structures:
both corresponding to a 1D N,O polymer but with either cis- (Fig.
1B) and trans- (Fig. 1C) conformations (cis is lower), predicted to
be the most stable species above 60 GPa. The valence bond
descriptions of these structures has an alternating N and N* back-
bone polyacetylene like zigzag chain with each N* forming a co-
valent bond to O. The valence bond description would suggest
alternating single and double bonds (1.448 A and 1.309 A),
which we find for cis; however, for trans we find all NN bonds to
have the same bond distances (1.390 A at 1 atm), indicating full
resonance along the chain. Fig. 1 shows the enthalpies of various
relevant phases of N,O as a function of pressure, taking the
ground state molecular crystal with space group Pa3 (a-nitrogen
structure) as the reference. For the two molecular phases, Pa3
and space group Cmca, experiments find head-to-tail orientation
disorder (18), so we considered all possible conformations in the
unit cell to determine the lowest energy. The calculated dependence
of crystal volume on pressure is comparable with experiment (Fig.
S1), leading to a calculated transition pressure between the two
molecular phases of 5.8 GPa at 0 K, compared with the experi-
mental value of 4.8 GPa at room temperature (18).

In the range of 10-55 GPa and 1,000-3,400 K, the diamond
anvil experiments on NNO observed a mixture of the ionic NO*
NO;™ phase in equilibrium with an N, molecule phase, formed
from the dissociation of N,O at high pressure and temperature
(13, 19, 20). We also calculated these phases at the pressures
considered here. However, the structure of NO*NO;~ is not
well-established experimentally: experiments reported the forma-
tion of monoclinic P2;/m phase ionic salt from the high-pressure
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Fig. 1. (A) Ground state enthalpy as a function of pressure predicted for various phases of N,O, with illustrations of crystal structures and chemical for-

mulations of single chain for planar cis-polymer (B), planar trans-polymer (C), and nonplanar trans-polymer (D).

(2 GPa) reaction of an N, and O, mixture (21), whereas the
original experiments on dissociation of N,O under laser heating in
a diamond anvil found an orthorhombic phase related to the
aragonite to form after cooling (13, 22). Therefore, for the DFT
study, we constructed the NO*NO;™ crystal by cell relaxation
starting with the aragonite structure. This led to an orthorhombic
Pna2, phase (Fig. S2 and Table S1), which we found to be 0.03 eV
per formula more stable than the monoclinic phase. We carried
out DFT calculations of N, molecular crystals, starting with the
known phases (o, v, €, {) at low temperature (23), and at each
pressure, the energy calculated to be most stable was used in the
enthalpy calculations. Surprisingly, this combination of NO*NO3~
and N, is more stable than the NNO molecular phases for all
pressures down to 0 GPa. This is plausible,as the heat of formation
of N,O molecule is 82 kJ/mol (1 kcal = 4.18 kJ) above N, and O,
which were shown to form NO*NO;™ at 2 GPa using 10.2 keV
synchrotron X-ray radiation (21).

Fig. 1 shows that the cis and frans 1D polymeric phases remain
energetically close (cis more stable by 0.03~0.10 eV/molecular
unit) and become more stable than both the molecular and the
mixed ionic phases at pressures above 60 GPa. Including zero
point energy (ZPE) and entropy from phonons has little effect
(Fig. S3):

e including ZPE to obtain the 0 K equation of state (EOS), we
find that the critical pressure for the transition from the mixed
ionic phase to the cis-polymer increases from 58.5 GPa to
61 GPa,

e while introducing entropy and enthalpy corrections to 300 K
leads to a further increase to 62 GPa at 300 K (64 GPa at 500 K).

The dominant factor in determining the enthalpy at high pressure
is the compressibility. For the mixed phase, the ionic NO*NO;~
component is a dense solid, but the global compressibility of the
mixed phase is dominated by the molecular phase of N,, which
polymerizes only above 110 GPa (2). In contrast, the two new NNO
polymeric phases each forms a pure extended solid with mixed
covalent and ionic frameworks. Thus, these phases dominate at high
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pressures (where the PV term in the enthalpy becomes dominant)
over all of the other phases of N,O containing molecular forms.

The major difference between these cis and frans forms is that
the planar cis-NNO polymer possesses alternating single and
double bonds as in polyenes (polyacetylene) with an even num-
ber of carbons, whereas the planar trans-conformation of NNO
has equal NN bond lengths (strong resonance) along the chain,
perhaps due to strong electrostatic repulsion between adjacent
negatively charged oxygen atoms.

We further investigated the stability of the two NNO polymers
by phonon analysis. Indeed, for both crystals we find no imagi-
nary phonon modes under high pressures, as shown in the pho-
non spectra in Fig. 2 (at 80 GPa), which confirms their existence
as stable species (local minima). However, as the pressure is
released, both crystals develop imaginary phonon modes at ~14
GPa, and both relax to one single nonplanar frans-conformation
(Dataset S1) at zero pressure, with a phonon spectrum that
attests its stability. Under high pressures, the planar con-
formations with their higher compressibilities are more stable,
but they lead to larger electrostatic repulsion between negatively
charged oxygen atom and lone-pair on nitrogen in the cis-case
and between adjacent negatively charged oxygen atoms in the
trans-case. It is the competition between compressibility and
electrostatics that leads to the transition to the nonplanar poly-
mer at low pressure.

Discussion

Besides accommodating electrostatics, the transition between
planar and nonplanar frans-conformations is also accompanied by
an abrupt change from uniform bonding to alternating single and
double bonds, as shown in Fig. 3, implying synergistic Peierls
distortion, which is relevant to the electronic properties. There-
fore, we calculated band gaps of all polymeric structures (opti-
mized with PBE-ulg flavor of DFT) and plotted against pressures
in Fig. 3. Interestingly, PBE-ulg predicts that both planar NNO
polymers are 1D metals, with transitions to insulators below 72
GPa for cis-polymer and 25 GPa for trans-polymer, the latter with
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simultaneous conformation transition from planar to nonplanar.
Fig. 3 also shows the bond length differences between neighboring
N-N bonds for the various phases. We find a trend from uniform
bonding (exact for frans-polymer, quasi-uniform for cis-polymer
with 0.03 A difference) at hlgh pressures to alternating single and
double bonds when pressure is released. Combining this with the
trend in band gaps indicates a first-order Peierls distortion as in
polyacetylene. However, it is well documented (24, 25) that
density functionals, such as PBE that are based only on local
density approximation and generalized gradient approximation,
significantly underestimate band gaps for insulators, due to intrinsic
delocalization error (26) from including the self-interaction in the
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Coulomb energy. To verify the metallic properties of these poly-
mers under high pressures, we reinvestigated all electronic struc-
tures with the hybrid functional B3PW91 (27), which we showed to
predict accurate band gaps for a wide range of semiconductors (28).
In contrast to PBE, B3PW91 predicts insulating states for all three
polymers throughout the whole range of pressures considered, as
shown in Fig. 3. Here the density of states (Fig. S4) shows that
both planar cis- and rans-polymers at high pressures with (quasi-)
uniform bonding are charge-transfer insulators, with the valence
band dominated by negatively charged oxygen and bridging ni-
trogen atoms, whereas the conduction band is dominated by the
positively charged nitrogen atom. Accordingly, B3PW91 results

0.20 - - 0.20
1 —— Planar cis-Polymer [ —
] =<
] —A— Planar trans-Polymer \5;

Non-planar frans-Polymer t 3!

F0.15 2

! £ =

A / s ©

L N o

-

! L / L =

‘ ! -0.10 @

1 ! /‘ : ©

1 ,IVA F C

4 <}

d A& a

/:_‘/A r =

At 005 2

mer ‘/‘ ! _—005 o

] Planar ¢is” Pow AT ; C £

1—a—a—d—a—AT : S

! e

1 £

] Planar trans-Polymer 1 L fo

0.00 4—A—A—A—A—A—A—A—A—A—A—A—A—A—A—A—A—A—A—a—4 0,00 %
""""" | RARAEELALN RALLALLLAS LALLERERA] LAREAL LY AL ALLLAY LA LEALS LA

80 70 60 50 40 30 20 10 0
Pressure (GPa)

Fig.3. Band gap (A) and neighboring N-N bond length difference (B) predicted as functions of pressure for all three polymer phases of N,O at ground states.
The dashed lines with arrows indicate where the transition from planar to nonplanar conformation happens.

Xiao et al.

PNAS | April 2,2013 | vol. 110 | no.14 | 5323

CHEMISTRY


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222890110/-/DCSupplemental/pnas.201222890SI.pdf?targetid=nameddest=SF4

L T

/

1\

BN AS  PNAS D)

infer the transition to be second-order Peierls distortion as in
polyacene. At this point we cannot be sure whether to trust the
B3PWO1 or the PBE description, so it would be most valuable to
carry out experiments on the conductivity or electronic spectra of
these new phases.

To further evaluate the stability of nonplanar frans-polymer,
we investigated the dissociation kinetics of the polymer, using
DFT for a model oligomer containing 8 N,O units and termi-
nated with methyl groups at both ends. We stretched this finite
chain until it fractured, locating the transition state (TS) shown
in Fig. 4. This leads to an activation energy of 20.6 kcal/mol. At
the TS, the partially dissociated N,O has N-N distances of 2.062
and 1.830 A to its two neighbors, much longer than corresponding
equilibrium distances of 1.465 and 1.447 A. This indicates that
a large free space is required to activate the dissociation process,
making the dissociation less favorable in the solid. This high-
activation barrier of 20.6 kcal/mol from the finite model corre-
sponds to a surface energy of 1.56 x 10° erg/cm?, considering the
packing in the crystal. Thus, we consider that it is likely that the
nonplanar trans-polymer of N,O will be stable at 1 atm pressure
and 300 K.

After passing the TS, the oligomer would start releasing N,O
one by one from each end, accompanied with significant heat
release of 40.6 kcal/mol per N,O molecule, which might lead to
catastrophic decomposition. Thus, the nonplanar frans-NNO
polymer is a high-energy content structural material. Indeed, we
calculated (PBE-ulg) the nonplanar N,O frans-polymer to provide
an internal energy release of 3.5 kJ/g when dissociated into N, and
O,, which is comparable to the energy release of trinitrotoluene
(TNT) (4.2 kJ/g). Thus, nonplanar #rans-NNO is a potential
high-energy oxidizer for new explosive composites and rocket
propellants.

Since the N,O polymer chain is composed of alternating single
and double bonds, similar to polyacetylene, albeit with an all ni-
trogen backbone, it might form the basis for a unique type of
conducting polymer, through appropriate doping or structure
modification. Similarly we expect that it might have strong non-
linear polarizabilities for nonlinear optical applications.

Summarizing, we used DFT to predict that the NNO molecular
crystal can be transformed into novel polymeric phases at high
pressures (beyond decomposition into mixture phase of ionic com-
pound NO*NO;™ and N, gas previously observed in experiments).
The two most stable 1D N,O polymers with planar cis- and trans-
conformations were identified to be energetically favorable at
pressures above 60 GPa. More importantly, when the pressure is
released, these polymers transform into the same nonplanar trans-
conformation, stable at ambient pressure and temperature. This was
substantiated by analysis of the phonon spectrum and by calculating
the dissociation kinetics. This unique poly-NNO material might be
an excellent high-energy oxidizer for a polymer composite in which
nonpolar NNO forms the matrix.

The PBE calculations suggest metallic property in the high-
pressure polymer resulting from the strong resonance in these
systems, which seems to disappear in the low-pressure nonplanar
polymer due to changes in bonding, leading to Peierls distortion,
together with electrostatic repulsions. Thus, with doping these
NNO polymers, such as I, which works successfully in poly-
acetylene, may give rise to a new type of conducting polymer
based on all-nitrogen chains. This whole work serves to illustrate
the unique in silico process of discovering materials by theoret-
ical modeling particularly under extreme conditions.

Methods

PBE-ulg calculations were performed using Vienna Ab-initio Simulation
Package (VASP) package (29-31), modified to describe PBE-ulg and using the
projector augmented wave method (32) to account for core-valence inter-
actions. The kinetic energy cutoff for plane wave expansions was set to 500
eV, and the reciprocal space was sampled by I'-centered Monkhorst-Pack
scheme with a fine resolution of 2x x 1/60 A",

In the search of structures using USPEX (15-17), the kinetic energy cutoff
was lowered to 400 eV, with reciprocal grids of 2z x 0.06 A™". The conver-
gence criteria were set to 1 x 107 eV energy difference for solving for the
electronic wavefunction and 1 x 1073 eV/A force for geometry optimization.

To obtain the phonon spectra, very tight convergence criteria were used,
with 1 x 1078 eV energy difference and 1 x 10~° eV/A force thresholds. To
calculate force constants, we used the supercell approach with finite dis-
placements, as implemented in the Phonopy code (33).
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Fig. 4. Dissociation path calculated for dissociation of the model 8-mer. The oligomer contains 8 N,O units and is terminated with methyl groups at both ends.
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B3PW91 calculations were conducted using CRYSTALO9 package (34) and
6-311G* triple-zeta quality basis sets for both nitrogen and oxygen. Similar
k-space grids and convergence criteria as in fine calculations with VASP were
set for consistency.

For finite model calculations, the geometry optimization, Hessian calcu-
lation, and TS search were carried out at UB3LYP/6-311G*+ level using Jaguar
(35). The Hessian was used to provide the vibrational frequencies for ZPE and
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imaginary vibrational mode by following the minimum energy path scan to
connect reactant and product. Enthalpies are reported at 298.15 K and 1 atm.

ACKNOWLEDGMENTS. This work was supported by the Office of Naval
Research (N00014-12-1-0538; program manager, Cliff Bedford) and the Defense
Advanced Research Planning Agency (program manager, Judah Goldwasser).

20. lota V, Park JH, Yoo CS (2004) Phase diagram of nitrous oxide: Analogy with carbon
dioxide. Phys Rev B 69(6):064106.

. Meng Y, et al. (2006) Hard x-ray radiation induced dissociation of N, and O, molecules
and the formation of ionic nitrogen oxide phases under pressure. Phys Rev B 74(21):
214107.

22. Song Y, Somayazulu M, Mao HK, Hemley RJ, Herschbach DR (2003) High-pressure
structure and equation of state study of nitrosonium nitrate from synchrotron x-ray
diffraction. J Chem Phys 118(18):8350-8356.

23. Katzke H, Toledano P (2008) Theoretical description of pressure- and temperature-
induced structural phase transition mechanisms of nitrogen. Phys Rev B 78(6):064103.

24. Perdew JP, Levy M (1983) Physical content of the exact Kohn-Sham orbital energies:
Band-gaps and derivative discontinuities. Phys Rev Lett 51(20):1884-1887.

25. Sham LJ, Schluter M (1983) Density-functional theory of the energy gap. Phys Rev Lett
51(20):1888-1891.

26. Mori-Sanchez P, Cohen AJ, Yang WT (2008) Localization and delocalization errors in
density functional theory and implications for band-gap prediction. Phys Rev Lett
100(14):146401.

27. Becke AD (1993) Density-functional thermochemistry. Ill. The role of exact exchange.
J Chem Phys 98(7):5648-5652.

28. Xiao H, Tahir-Kheli J, Goddard WA (2011) Accurate band gaps for semiconductors
from density functional theory. J Phys Chem Lett 2(3):212-217.

29. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B
Condens Matter 47(1):558-561.

30. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):
15-50.

. Kresse G, Furthmdller J (1996) Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys Rev B Condens Matter 54(16):
11169-11186.

32. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector aug-

mented-wave method. Phys Rev B 59(3):1758-1775.

33. Togo A, Oba F, Tanaka | (2008) First-principles calculations of the ferroelastic transi-
tion between rutile-type and CaCl,-type SiO, at high pressures. Phys Rev B 78(13):
134106.

34. Dovesi R, et al. (2009) CRYSTAL 2009 User’s Manual (Univ of Torino, Torino, Italy).

35. Schrodinger, LLC (2010) Jaguar (Schrodinger, New York), Version 7.7.

2

3

PNAS | April 2,2013 | vol. 110 | no.14 | 5325

CHEMISTRY



