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Metal Enrichment Database and Filtering Protocols. Through our own
analytical efforts and a literature survey, we have assembled a da-
tabase of molybdenum (Mo) and chromium (Cr) concentrations for
over 3,000 samples. Data sources are shown in Table S1. Samples
were initially filtered to represent solely fine-grained siliciclastic
sediments, using basic petrographic observation and major ele-
ment thresholds. Samples were required to contain weight percent
(Wt %) levels of iron (Fe) and aluminum (Al). Samples containing
less than 1.0 wt % total organic carbon were also removed.

The information contained within a particular degree of authi-
genic enrichment of Cr or Mo depends on local depositional redox.
Thus, samples were further filtered such that Cr data were only
analyzed from anoxic shales, and Mo data were only analyzed from
euxinic shales. Anoxic shales were delineated as having Fer/Al > 0.5
(1) and/or Fegr/Fer > 0.38 (2-4), where Feyr designates “highly
reactive” Fe (Fe that is reactive to dissolved H,S on syngenetic or
diagenetic timescales; ref. 5) and Fer represents total Fe. Euxinic
settings were delineated by combining the above thresholds for
anoxia with either Fepy/Fegr > 0.7 (4, 6) or with elevated values
for degree of pyritization (DOP > 0.6; ref. 7), defined as (8)

Fepy

boP= Fepy + Fencr’

where Feyc is Fe soluble in a 1-min boiling concentrated HCl
leach and Fepy denotes pyrite Fe. Because elevated DOP has also
been shown to require enhanced Fe mobility and transport (1, 7),
and because it is an extremely robust analytical measurement,
DOP > 0.8 supersedes all other redox filters in the designation
of euxinia. In some cases, total sulfur content is used to calculate
DOPr, according to

FCS
DOPy = Feg + FGT7
where Feg denotes the inferred amount of sulfur-bound Fe as-
suming that total sulfur represents pyrite sulfur (9). Modern
systems (such as the Black Sea and Cariaco Basin) were addi-
tionally filtered by site location, for extreme silicilastic dilu-
tion, and the presence of bioturbation, and units with fewer
than ten filtered samples were not included in overall statistical
calculations.

Our focus here is on the contrast in enrichment records be-
tween the mid-Proterozoic and the Phanerozoic. However, as
noted in the main text, there appear to be substantial Cr en-
richments in late Paleoproterozoic anoxic shales. Recent work
has suggested an increase and subsequent decrease in Earth
surface oxidation during the Paleoproterozoic (10, 11), and we
suggest in the main text that the Cr enrichment pattern is pos-
sibly related to this, with the subsequent drawdown of Cr en-
richments representing the progressive expansion of anoxic
marine environments. Shown in Fig. S1 is the full enrichment
record, including Archean and Paleoproterozoic data. The Mo
enrichment record in euxinic shales (Fig. S1B) is similar to
previous work (12), showing minimal enrichment during the
Archean and appreciable although muted enrichments (relative
to the Phanerozoic) during most of the Proterozoic. The Cr
enrichment record shows some very high enrichments during the
Archean and Paleoproterozoic (Fig. S14). Some of this trend is
almost certainly because Archean upper crust was more mafic in
composition, and much of these enrichments could be linked to
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very Cr-rich source terrains. The Paleoproterozoic enrichments,
on the other hand, may well be authigenic enrichments. Future
isotopic and petrographic work is required to distinguish be-
tween these two models.

Modern Mo Mass Balance. We begin by assuming steady state,
wherein a single input flux (F;,) is balanced by removal via au-
thigenic burial into three main sedimentary sinks: an oxic sink
(Fox), @ reducing sediment sink (Fyeq), and a sulfidic sink (Fgyy).
Our balanced modern Mo budget is shown in Fig. S2 and Table
S2, and individual removal terms are discussed below. The
weathering flux of Mo on the modern Earth is dominated by the
mobilization of Mo from sulfide mineral phases or organics in
sedimentary and igneous rocks and transport as dissolved MoO,%,
and we set as Fj, a recently obtained modern riverine flux of
dissolved MoO,4* to the ocean (13). This flux is somewhat larger
than those conventionally used, but is derived from the most
extensive riverine database generated to date, representing 38
rivers across 5 continents and including 11 of 19 large-scale
drainage areas. However, regardless of our choice of estimate for
the riverine Mo flux, sensitivity analysis (Fig. S3) indicates that
our conclusions are weakly sensitive to the assumed value of the
input flux over a wide range. We neglect hydrothermal fluxes of
Mo to/from the ocean, as these are either poorly established or
likely to be quantitatively small (see below).

Oxic settings are defined as those in which Mn is permanently
removed from the ocean as an oxide phase (with associated
adsorbed Mo). In many oxic deep-sea settings, dissolved O,
penetrates to the sediment-basalt interface (14, 15) and this Mn
(and Mo) will effectively be buried permanently. In other set-
tings, dissimilatory microbial Mn reduction deeper in the sedi-
ment column can remobilize Mn (and, presumably, associated
Mo). However, when O, penetration depths are large (multiple
centimeters or more) upward-diffusing Mn will be quantitatively
oxidized at a steady-state oxidation front (16-18), effectively
removing Mn and Mo from the ocean on a timescale charac-
teristic of tectonic recycling of seafloor sediments (on the order
of ~10® y). Morford and Emerson (19) suggest that once O,
penetration falls below ~1 cm, Mn and Mo will be recycled and
released from shallow sediments. We therefore characterize oxic
seafloor as being the areal extent of sediments in which O,
penetration exceeds 1 cm. This is estimated using global diage-
netic models (20, 21) to be ~3 x 10° km?, or roughly 84% of
modern seafloor area. We stress that there are fairly large re-
gions of the seafloor that are essentially Mo neutral (see below),
such that the total seafloor area for the entire budget need not
sum to 100%. This area is then combined with a burial rate of
2.75 x 107 pg-em™2y ™, estimated by compiling Mo burial rates in
oxic settings (22) and by combining Mn burial rates in oxic pelagic
sediments (23) with a characteristic Mo/Mn ratio of 2 x 107> (24).
The combined sink is shown in Table S2.

Sulfidic settings are defined as environments in which dissolved
H,S accumulates at or above the sediment—-water interface. This
includes traditional euxinic settings (Black Sea, Cariaco Basin),
but is also meant to include small areas of the seafloor below
regions of intense upwelling (Peru margin, Namibian shelf),
where dissolved H,S is present at high levels essentially at the
sediment-water interface and occasionally breaches into the
water column (25, 26). Our sulfidic sink is calculated by com-
bining estimates of seafloor area, authigenic enrichment, and
bulk mass accumulation rate (MAR) for modern sulfidic settings
(2, 27-39). The globally averaged sulfidic burial calculated
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through such an approach will be biased low—given that the
modern extent of euxinic seafloor, on an areal basis, is domi-
nated by the Black Sea, and this setting is characterized by low
burial rates due to restricted exchange over the Bosporus sill and
an evolved Mo reservoir (36). As a result, the global sulfidic
burial rates implemented in the model are referenced to a
modern globally averaged sulfidic burial rate that neglects the
influence of the Black Sea. This is done in an effort to represent
the burial capacity of marine settings with unfettered access to
the seawater Mo reservoir (12).

The final sink is reducing sediments. This sink represents
environments that have been referred to by the rather ambiguous
term “suboxic.” We follow ref. 12 in designating these environ-
ments as those in which dissolved H,S accumulation is restricted
to pore waters, but further point out that reducing sediments in
which O, penetration is less than ~1 cm and H,S accumulation
occurs more deeply in the sediments do not effectively bury Mo
(19). From a mechanistic perspective, these reducing sediment
environments are typically associated with relatively low bottom-
water O,, but the effectiveness of Mo sequestration in these
settings is most likely a more complex function of Mn flux to
sediments (and, thus, bottom-water O,), sedimentation rate, and
labile organic carbon flux to the sediment-water interface. In any
case, we use a somewhat moderate burial rate for reducmg
sediments of 0.27 ug-cm~2y~! (37, 40-43), and use the remaining
parameters of the budget to solve for the seafloor area repre-
sented by this sink (Table S2). Although we present a revised
approach for estimating the global Mo removal fluxes, our result
is similar to previous estimates based on consideration of bulk
burial rates (12) and isotope mass balance (40).

Modern Cr Mass Balance. As for Mo, we begin by assuming steady
state, with a single input flux (Fj,) balanced by three authigenic
burial fluxes: an oxic sink (Fx), a reducing sediment sink (Fyeq),
and an anoxic sink (Fanox). In our modeling analysis we take
anoxic environments to include those that are euxinic (anoxic
and H,S-rich), ferrugmous (anoxic and Fe®*-rich), and NO;~
buffered (i.e., anoxic but with low concentrations of both H,S
and Fe?*). We note, however, that the latter environments are
likely to be spatially and temporally limited, given the relatively
low concentration (and thus redox buffering capacity) of NO3™ in
seawater. Potential hydrothermal fluxes to/from the ocean are
neglected in our treatment of the modern Cr cycle, as currently
available data suggest that these fluxes are quantitatively in-
significant (see below). The Cr mass balance is rather poorly
constrained—compared with that for Mo. However, we suggest
that although our mass balance is likely to be revised as better
estimates of fluxes and reservoirs become available, this is very
unlikely to change our fundamental conclusions.

Our input flux is calculated following the method of ref. 13. In
brief, we compiled a database of dissolved [Cr] values and annual
discharge rates for rivers (Table S3), and used this to calculate
discharge-weighted dissolved [Cr] values for individual large-
scale drainage regions according to the available data. The Cr
flux from each large-scale drainage region was then computed by
combining the discharge-weighted [Cr] value with the total dis-
charge flux from each region. These regional fluxes were com-
bined and used to estimate a global discharge-weighted dissolved
[Cr] value of 14.82 nM. This value was then combined with an
estimated global exorheic flux of 3.9 x 10* km®y~! (44), yielding
an estimate of the discharge-weighted flux of dissolved Cr to the
modern ocean. Although dissolved Cr data are less common
than dissolved major ion data for rivers, the large-scale drainage
regions in our database account for ~70% of the overall exorheic
flux to the oceans. Assuming minimal estuarine removal (45, 46),
and combining this estimate with an average seawater concen-
tration of 4 nM (47) and an ocean volume of 1.37 x 10*' L, this
yields a residence time for Cr in the modern ocean of ~9,500 y
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(i.e., over a factor of 9 greater than characteristic timescales of
ocean mixing). To our knowledge, estimates of this sort are few,
but ours is well in line with previous attempts (e.g., ref. 48). As
for Mo, sensitivity analysis (Fig. S3) indicates that our con-
clusions are not likely to be fundamentally altered unless input
fluxes to the ocean become extremely low.

Dissolved Cr(VI) species should become adsorbed onto the
surface of metal- and Al-oxide phases (49-51). We therefore
expect some nontrivial burial flux of Cr in oxic settings, although
we note that sorption to Al-oxide phases decreases sharply when
approaching circumneutral pH (52). The Cr content of pelagic
red clays, although often elevated above crustal values with re-
spect to Cr/Ti ratios, is rather variable. We use in our budget
a relatively low oxic Cr burial rate of 1.0 x 10~ pg-cm™2y~%, of
the same order as our much better constrained Mo burial ﬂux.
This corresponds to a sediment with a Cr/Ti ratio of 1.87 x 1072,
consistent with typical values from pelaglc red clays (53— 55)
accumulating at a burial rate of 1.0 x 10~ g-cm™2y~'. Because
the burial of Cr in oxic settings should depend on the efﬁciency
of metal oxide burial, this burial rate is then combined with the
same areal extent of oxic seafloor (defined by sediment O,
penetration depth) discussed above.

The anoxic sink for Cr is defined in a similar manner to the
sulfidic sink for Mo, a natural result of the fact that on the modern
Earth the relative mobility and transport of S and Fe are such that
anoxic settings tend to become euxinic (anoxic and sulfidic). We
use Cr/Ti ratios from the Cariaco Basin (234 56, 57) to obtain
a modern anoxic burial rate of ~0.5 pg-cm , and scale this to
the seafloor area of anoxic environments as dlscussed above for
the modern Mo budget. This burial rate is roughly of the same
order as that for Mo in euxinic settings, although we acknowledge
that these estimates will improve with further generation and
analysis of Cr data in anoxic marine systems. However, Cr will be
reduced and immobilized as Cr(III) via a wide range of reduc-
tants—dissolved H,S is not necessary (58-60). Indeed, Cr(VI)
reduction to Cr(III) has been shown to take place in the open-
water column of the eastern tropical Pacific, coincident with the
onset of microbial denitrification (61). This provides a crucial
distinction with the behavior of Mo, in that effective Mo capture
requires the additional presence of free dissolved sulfide, and
forms the centerpiece of our analysis. The reducing sediment sink
is again solved for using the other parameters of the budget We
assume an authigenic burial rate of 0.15 pg-em™2y~!, derived
from combining Cr/Ti ratios in the Gulf of Cahfornla (62) with
the requisite bulk MAR (63). This aspect of the budget is not well
constrained, but we consider it unlikely that such settings will
authigenically bury Cr at rates much higher than this. In other
words, we use what we consider to be a relatively high burial rate
to avoid underestimating the magnitude of this sink relative to the
anoxic sink, rendering this portion of the budget conservative for
the conclusions presented here. Parameters for our modern bal-
anced Cr budget are shown in Fig. S2 and Table S4.

Hydrothermal Cycling of Mo and Cr. The systematics of Mo and Cr
in hydrothermal systems and the effects of hydrothermal pro-
cesses on the Earth surface cycles of Mo and Cr have not been
explored in detail, but we can place some basic constraints on the
possible effects of high- and low-temperature seawater—basalt
interaction on the mass balances of Mo and Cr in the ocean. The
water flux through a high-temperature hydrothermal system
(Finry; in kg -y~ 'Y can be estimated as (64)

where Q) is the hydrothermal heat flux, AT, is the seawater
temperature anomaly, and c, is the specific heat of seawater (at
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seafloor pressure and vent fluid temperature). We can combine
this with a concentration anomaly for a given metal (A[Me] =
[Me]sw — [Me]uia) to estimate a high-temperature hydrothermal
flux to/from seawater (Fy) as

om
Fyp=—"—"AM
"= AT, [Me],

Results of this calculation for both Mo and Cr are shown in Table
S5. These calculations suggest that high-temperature seawater—
basalt interaction represents a removal flux of both Mo and Cr
that is very small relative to the riverine flux of either element.
We note that such estimates are inherently imprecise, given un-
certainties in the magnitude of on-axis heat flow (ref. 64 and
references therein) and analytical difficulties associated with
obtaining unadulterated fluid chemistry. In the case of high-
temperature fluids, it is most likely that these concentrations
have been perturbed by mixing with seawater Cr and/or Mo,
which would cause us to underestimate the magnitude of these
sink terms. However, this should have a negligible effect on our
result, given that reported concentration anomalies indicate
near-complete removal of both elements during high-tempera-
ture seawater—basalt interaction (Table S5). Assuming complete
removal of seawater Mo from the circulating fluid (i.e., A[Mo] =
107 nM) would increase our estimated high-temperature re-
moval flux from 0.85 to 0.91% of the total input flux. Making
the same assumption for Cr (i.e., A[Cr] = 4 nM), would have
a trivial effect on the estimated high-temperature removal flux.

Low-temperature, off-axis hydrothermal systems are a much
more difficult problem to address. Pristine vent fluid composition
is not well constrained for many settings, but, more importantly,
the global water flux through such systems is very poorly con-
strained. Given that the temperature anomaly is probably small,
a much larger water flux would be necessary to dissipate the
requisite heat flow. As a result, even a very small concentration
anomaly may result in a significant flux to/from seawater on
a global scale. Magnesium (Mg") substitutes readily for calcium
(Ca**) during seafloor basalt alteration (65), and is removed
from seawater during hydrothermal fluid evolution at both high
and low temperature (66-68). Using the above method of cal-
culation, the high-temperature removal flux of Mg** from sea-
water can be estimated as ~1.3 x 10'? mol-y™". By combining the
global discharge rate used above with a global average riverine
Mg** concentration of 128 umol-kg™ (69), we derive a global
riverine Mg** flux of ~5.0 x 10> mol-y™". If we assume that the
balance between the riverine flux and removal during high-
temperature seawater—basalt interaction is made up by low-
temperature flow, we can use the Mg>* concentration anomaly
(A[Mg**] = [Mg”*]sw — [Mg**]auia) Of well-constrained diffuse
flow systems such as that along the Juan de Fuca Ridge to cal-
culate an approximate water flux through such systems of 9.5 x
10" kgy .

Combining this estimated water flux with available chemical
anomalies for Mo and Cr allows us to place rough limits on the
magnitude of the low-temperature fluxes of these elements to
seawater (Table S6). These may be upper limits given available
constraints, as the calculations assume no other removal fluxes of
Mg?* from seawater [i.e., uptake during carbonate burial or clay
mineral alteration during “reverse weathering” reactions (70)].
We suggest that although low-temperature fluxes are likely to be
somewhat larger than those that occur during on-axis fluid flow,
they are still a relatively small fraction of the corresponding
riverine fluxes. Given the framework outlined above, it is highly
unlikely that the flux of either element will exceed ~10% of their
respective riverine inputs. Furthermore, as stated above, sensi-
tivity analysis indicates that our results are not strongly affected
by reasonable changes in Cr and/or Mo input fluxes (Fig. S2).
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Offshore Scaling of Metal Burial Rates in the Model. Our modeling
approach essentially involves balancing the modern steady-state
cycles of both Cr and Mo and applying a continuous range of
perturbations to this balanced cycle to explore the new steady
state attained under different oceanic redox regimes. In doing so,
we begin with a conventional first-order mass balance formula-
tion. This class of model, often used to explore the dynamics of
various chemical tracers in the ocean and their isotope systems,
makes the implicit assumption that the burial fluxes characteristic
of some particular environment (typically organic-rich conti-
nental margin sediments or marginal restricted basins) can be
universally applied to extremely large regions of the seafloor. In
other words, it is assumed that a burial rate characteristic of, say,
the Peru margin can be applied to the abyssal realm of the ocean.
This is almost certainly physically unrealistic, as open ocean
settings are characterized by much lower bulk sediment fluxes,
and, in particular, organic carbon fluxes (71-74). As a result, if
a particular region of the abyssal ocean becomes authigenically
active for some chemical constituent of seawater, it can be ex-
pected that the removal rates of that constituent into the sedi-
ment column will be much lower than those seen in more
marginal settings. The net result will be a system that is overly
sensitive to perturbation, as burial fluxes in large regions of the
deep sea will be overestimated. This dilemma, inherent in con-
ventional first-order mass balance analysis, has been noted by
some previous work (75, 76) but has not been explored in detail.
This problem is particularly acute for redox-sensitive transition
metals, such as Mo and Cr, given that the organic matter flux is
typically thought to be directly involved in metal sequestration
(e.g., ref. 36).

We have attempted to alleviate this problem by adding a
“pseudospatial” dimension to the conventional one-box ocean
mass balance approach. We take an algorithm used in global
diagenetic models (77) for organic carbon flux to the seafloor as
a function of depth, which is then coupled to a polynomial
function fitted to bathymetric data for the modern ocean (78).
We then use a burial flux ratio (Rye/c, where Me refers to Mo or
Cr) for each element, a tuned parameter resulting in a relation-
ship that encodes a decrease in local (and globally averaged)
metal burial rates as larger regions of the seafloor become au-
thigenically active. Values for Rye/c are tuned to reproduce the
modern condition (i.e., the modern globally averaged burial rates
at ~0.1% seafloor anoxia; Fig. S4). The essential concept here is
that a given region of the seafloor has a characteristic burial
capacity for either Cr or Mo, regulated to first order by the
relative carbon flux through the water column and to the sedi-
ments, and that this burial capacity will only be reached when
a region of the ocean achieves the requisite redox characteristics
for each metal.

We stress that because the metal burial rates are derived by
using a tunable ratio, this pattern is not explicitly dependent on
the absolute value of the carbon flux to the seafloor at a given
depth—rather, it hinges on the observation that carbon fluxes to
the seafloor will decrease as one moves out into the deep sea,
with the first-order topology depicted in Fig. S3. This is impor-
tant, as dramatically different redox structures within the ocean,
extreme differences in the composition of primary producing
communities, mineral ballasting, etc., might be expected to result
in significant differences in the absolute value of the carbon flux
to the seafloor within different regions of the ocean. However,
we consider it unlikely that the basic pattern of an offshore de-
crease in carbon fluxes has changed much throughout Earth’s
history on a global scale. In addition, although the basic ba-
thymetry of the ocean has doubtless changed throughout Earth’s
history, we consider the modern depth—area curve to represent
a reasonable first approximation. This approach must ultimately
be refined if used in efforts to delineate more subtle changes in
ocean redox, or if applied to periods during which continental
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configuration and/or bathymetry are better constrained, but we
contend that it provides a much more realistic depiction of the
sensitivity of Cr and Mo mass balance to perturbation than
previous model treatments. Further work should focus on the
development and implementation of more spatially explicit ap-
proaches for dealing with the effects of seafloor redox pertur-
bation on biogeochemical cycling and isotope systematics, for
example coupling efficient models of benthic diagenesis that can
be forced by gridded domains (79) to Earth system models of
intermediate complexity (e.g., GENIE; ref. 80).

Prescribed Perturbations in the Model and the Role of Reducing
Sediments. As discussed above, our model analysis involves bal-
ancing the modern steady-state cycles of Cr and Mo, applying
a continuous range of perturbations to seafloor redox state, and
establishing the ultimate steady-state conditions and local burial
rates attained by the model system. Because our model includes
a representation of offshore decreases in authigenic burial rates,
essentially a spatial component, we must make some explicit
assumptions about the basic seafloor environments in which
perturbations begin and expand.

We assume first that ~5% of the shallow seafloor remains es-
sentially authigenically neutral unless it becomes absolutely nec-
essary to encroach upon this area (i.e., above 95% seafloor anoxia
or euxinia). This assumption is meant to encompass coastal sedi-
ments deposited within the well-oxygenated mixed layer of the
ocean. In addition, we assume that if atmospheric oxygen levels
are low enough such that large portions of the oceanic mixed layer
are anoxic, then the vast majority of the ocean will almost certainly
be anoxic as well, effectively rendering the exercise moot and
making our conclusions with respect to anoxia rather self-evident
without changing our conclusions with respect to euxinia. Per-
turbations are then applied by expanding a given redox state
(anoxic or euxinic) from the shallow shelf out into the deep sea.
An important corollary of this approach is that during a given
perturbation the first environments to become authigenically ac-
tive are characterized by the highest metal burial rates. We view
this as generally justifiable on mechanistic grounds, as elevated
carbon fluxes through the water column and water column oxidant
depletion are most commonly seen along ocean margins.

However, it is important to entertain the possibility that the
nature of perturbations to seafloor redox may not be the same for
Cr and Mo. For example, given that deep-sea anoxia during the
mid-Proterozoic was most likely caused by gas-exchange con-
straints expressed in deep-water formation regions (81), rather
than local reductant (i.e., carbon) input, it may be argued that
large regions of the deep sea would first become anoxic and
authigenically active for Cr, whereas euxinic environments
driven by the combined effects of more reducing source waters
and local carbon flux would be limited to marginal environments.
In effect, this would result in less efficient Cr removal and similar
Mo removal compared with the results presented here, which
would in turn require a larger area of marine anoxia for a given
Cr reservoir change. Thus, to remain conservative we prescribe
that perturbations to both models begin and expand from set-
tings where metal accumulation rates are highest. The reverse
scenario, in which euxinia develops first in the abyssal realm of
the ocean but anoxia is confined to the shelves, is difficult to
imagine simply because of regional variability in carbon flux.

Another important assumption that is made in our modeling
exercise is that the seafloor area of reducing sediments is fixed at
a constant value (~1.9% for the Mo model and ~4.9% for the Cr
model). However, it is reasonable to expect that if the ocean
becomes less oxygenated on a global scale there should be a first-
order expansion of reducing sediment environments. With re-
spect to our basic conclusions, it is clear that this is a much larger
concern for Cr than for Mo. Expanding the reducing sediment
sink in the Mo model would only serve to decrease the extent of
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euxinic seafloor inferred for a given calculated enrichment. In
other words, our interpretation that the mid-Proterozoic Mo
enrichment record in euxinic shales implies relatively limited
euxinic seafloor is rendered conservative by neglecting the ex-
pansion of reducing sediments in the model, and our conclusion
that euxinia represents a small relative fraction of overall anoxia
will remain unchanged. In the case of Cr, it might be argued that
expansion of the reducing sediment sink together with expanding
anoxia could result in our model significantly overestimating the
amount of anoxic seafloor necessary to drive shifts in the sea-
water Cr reservoir. We consider this a problem that is somewhat
scale-dependent, and that it is unlikely to change our funda-
mental conclusions for two reasons. First, in our model experi-
ments we have artificially enhanced the impact of the reducing
sediment sink, by choosing a relatively high Cr burial rate and by
specifying that this burial rate applies to ~5% of the seafloor in
addition to the expansion of anoxia in shelf environments. When
we consider that the offshore scaling of metal burial rates (Fig.
S4) should equally well apply to reducing sediment environ-
ments, this essentially amounts to “double counting” ~5% of the
seafloor as being both reducing sediments and anoxic, with the
highest metal burial rates specified for both. Alternatively, we
can envision this as representing the exclusive expansion of an-
oxia in marginal settings, whereas ~5% of the seafloor offshore is
covered by reducing sediments with unrealistically high burial
rates. In either case, alternative approaches would need to either
expand the reducing sediment sink at the expense of anoxic en-
vironments on the shelf, or expand it within the deep sea where
metal burial capacity decreases sharply (Fig. S4). Both approaches
would yield a comparable (and in some cases smaller) overall
removal flux into reducing sediment environments.

Lastly, it is unlikely for very large regions of the seafloor to be
characterized by this type of chemical environment at steady-state
timescales. Such systems can be driven by sharp redox gradients, as
often occurs in modern continental margin settings, but these
environments require a rather unique combination of extremely
high organic matter (i.e., reductant) loading and a degree of
bottom-water ventilation such that the system does not become
truly anoxic. Such sharp redox gradients will be difficult to maintain
across large regions of the deep sea as a result of generally at-
tenuated local organic carbon flux to offshore sediments. Alter-
natively, such a system can be driven by oxidant limitation.
However, it is difficult to imagine this kind of system persisting on
an extremely large scale, as it is poorly redox-buffered—small
changes to circulation or carbon flux will result in the development
of either true anoxia or increased bottom water O, such that the
environment becomes effectively oxic with respect to metal burial.

Using the Model to Calculate Authigenic Metal Enrichments. From
a qualitative perspective, it is difficult to avoid the conclusion that
the coupled enrichment records require much more pervasive
anoxia than that implied by equivalent Phanerozoic settings, but
also that the relative fraction of anoxia represented by sulfidic
deposition was not large. Our attempt to place more quantitative
constraints on this conceptual interpretation involves using the
scaling between seawater reservoir size and metal burial rates
(inherent in a first-order mass balance model) to estimate sedi-
mentary enrichments by assuming a bulk MAR in a hypothetical
siliciclastic-dominated continental margin setting.

These two parameters (authigenic metal burial rate and bulk
sediment MAR) should not be arbitrarily decoupled. This is true
arithmetically, as metal burial rates in modern settings are in fact
derived from bulk MARs. It is also expected on mechanistic
grounds, as higher bulk MARs result in more rapid delivery of
reactive mineral surfaces and organic carbon, and more rapid and
efficient burial of authigenically sequestered elements. Indeed,
there is good evidence from a range of modern (82) and ancient
(83) settings that metal burial rates will scale in a general sense
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with bulk sediment MARs—in other words, metal enrichments
will not simply scale linearly with changes in MAR. This issue is
similar to that discussed above, in that an arbitrary decoupling of
metal burial rates from bulk MARs is akin to applying a metal
burial rate from a continental margin setting to the abyssal realm
of the ocean, an approach we consider physically unrealistic.
Because this scaling between metal burial rate and bulk MAR is
a somewhat broad relationship, we use well-constrained recent
Cariaco Basin sediment data as a guide. We separate the range of
Cr and Mo burial rates and bulk MAR values constrained for the
Cariaco Basin over the last ~20,000 y, and sequentially combine
them to explore the effect of a reasonable decoupling between
these two parameters (Fig. S5). In an effort to render our esti-
mates conservative, we choose combinations of metal burial rate
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Fig. S5. Range of metal burial rates and bulk sediment MAR explored in the model. A, C, and E depict estimated authigenic Cr enrichments as a function of
anoxic seafloor area at a range of plausible metal burial rates and bulk sediment MAR. The blue box represents our conservative threshold for Cr enrichment as
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