Kechris, A. S. (1990) The Classification of Hyperfinite Borel Equivalence Relations. In: Séminaire d'initiation à l'analyse. Publications mathématiques de l'Université Pierre et Marie Curie. No.104. Université Pierre et Marie Curie , Paris, pp. 1-2. https://resolver.caltech.edu/CaltechAUTHORS:20130626-124718433
|
PDF
- Published Version
See Usage Policy. 64Kb |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20130626-124718433
Abstract
Let X be a standard Borel space and E a Borel equivalence relation on X. We call E hyperfinite if there is a Borel automorphism T of X such that xEy ⇔ ∃ n Є ℤ(T^nx = y). For Borel equivalence relations E,F on X, Y resp. we write E ⊑ F ⇔ 3 ƒ : X → Y(ƒ Borel, injective with E = ƒ^(-1)[F]) E ≈ F ⇔ E ⊑ F and F ⊑ E E ≅ F ⇔ ∃ ƒ :X → Y(ƒ a Borel isomorphism with E= ƒ^(-1)[F]) A Borel equivalence relation E on X is called smooth if there is a Borel map ƒ: X → Y (Y some standard Borel space) with xEy ⇔ ƒ(x) = ƒ(y).
Item Type: | Book Section | ||||
---|---|---|---|---|---|
Additional Information: | © 1991 Université Pierre et Marie Curie. The above results will appear in a forthcoming paper by the author entitled The structure of hyperfinite Borel equivalence relations. | ||||
Other Numbering System: |
| ||||
Series Name: | Publications mathématiques de l'Université Pierre et Marie Curie | ||||
Issue or Number: | 104 | ||||
Record Number: | CaltechAUTHORS:20130626-124718433 | ||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20130626-124718433 | ||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||
ID Code: | 39107 | ||||
Collection: | CaltechAUTHORS | ||||
Deposited By: | Ruth Sustaita | ||||
Deposited On: | 26 Jun 2013 22:20 | ||||
Last Modified: | 03 Oct 2019 05:04 |
Repository Staff Only: item control page