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MATHEMATICAL THEORY OF SOUND RANGING.
By HARrY BaTEMAN, Ph. D.
{Throop College of Technology, Aeronsutical Laboratary, Pasadens, Cal., Jan, 8, 1018.]

1. Iniroduction.—The development of the art of con-
cealing large guns so that they can not be easily seen by
hostile airmen or observers in kite balloons has brought
into prominence the study of methods of locating powerful

by means of observations of the time of arrival of
tﬁe sound of their gunfire at one or more observing sta-
tions. There are really two distinet problems to be
discussed.

(1) The simple case when the flash is seen and the dis-
tance of the gun is to be determined from the observed
interval of time between the instants when the flash is
seen and the report is heard at a single station.

(2) The more complex case when the flash is not seen.
The sound of the report must now be timed at three or
four observing stations and the position of the gun esti-
mated from the observed differences in time. A small
error in the timing of the sound is more disastrous in the
second case than in the first, consequently an accurate
method of timing the arrival of the sound is very neces-
sary for the successful application of the second method.

rAYrtillery chronoscopes have been used for the simple
method of ranging, and some improvements in design
have been made during the present war. Whereas
formerly a chronoscope enabled time to be measured
accurately to a fifth of a second, a modern instrument
will record hundredths of a second.! Chronoscopes of
this type are used in testing the nerves of would-be air
pilots and it is found that a successful candidate will stop
the pointer in fifteen-hundredths of a second after hear-
ing a sound, while an unsuccessful candidate may allow
twenty or even thirty hundredths of a second to pass.
Now, it is unlikely that the personal equation of an
observer will remain absolutely constant and an error of

- one-tenth of a second would certainly be disastrous in
the second method of sound ranging and troublesome
even in the first, consequently it is advisable to have
instrumental means of recording automatically the time
at which the sound arrives and methods of measuring
time with great accuracy have been skillfully developed.

The possibility of utilizing sound to locate a large gun
is to some extent due to the nature of the sound produced
by gunfire. In front of the gun the sound is much more
intense than it is behind, in fact, as far as the production
of sound is concerned, the gun acts something like a
searchlight, directing its beam along the line of fire. As
a result of this the sound is much more intense in the
forward direction than it would be if it were produced
by the explosion of a shell. Thus to the German gen-
erals behind the lines every shot from the British %ms
appeared to stand out above the dull heavy roar of their
own guns as a sharp staccato note like a loud drum tattoo,
whence the name drum-fire (Trommelfeuer).? Again, the
reports which have been heard in England seem to have
come from German guns; for instance, the sound of gun-
fire, which was heard very distinctly on the evening of
July 10, 1917, was attributed to the German bombard-
ment on the Nieuport front, which commenced at 5 p. m.?

In both methods of sound ranging it is necessary to
take into account the meteorologlca% conditions, for the
velocity of sound depends on the temperature, humidity,

chronoscope balanoebu%hundredtbsolamﬂndhubeen
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and composition of the air, while the wind affects the
mode of propagation. The velocity of sound may be
calculated from the formula *

TH
V= V°(T.,(H—0.37Sh)

where T is the absolute temperature, H is the barometric
pressure, and % is the vapor pressure of water vapor,
while V, is the velocity of sound in dry air at tempera-
ture T, The variation in composition can generally
be neglected under ordinary conditions unless the sound
ascends to a great height before it reaches the observer,
but it is conceivable that on the battle field the presence
of large quantities of smoke may affect the sound in a
manner which is not quite negligible. A further diffi-
culty arises on account of the fact that the very intense
waves caused by the detonation of explosives have a
velocity distinctly greater than that of ordinary sound,
and it must not Jl’)e assumed without experimental veri-
fication that the velocity varies with the temperature
and humidity of the air in the same way as the ordinary
velocity of sound. It seems advisable, then, to invent a
method of sound ranging in which the velocity of sound
is eliminated altogether, and this is one of the objects of
the present paper.

ether it 1s of importance in military operations or
not, the meteorological aspect of the problem of sound
ranging is of some theoretical interest, ‘because there are
indications that it may eventually be possible to obtain
some knowledge of the conditions in the upper atmos-
phere by a method of timing sound signals.

At present the mathematical theory is based on the
idea of sound rays and is more accurate for sound of
high frequency than for sound of low frequency. The
work which is being done in the development of methods
of producing and recordi.u%)sounds of high frequency will
thus be valuable for the above purpose, while a standard
phone or sound generator may also be useful.

2. Sound ra.-ng':,-n};q Jfrom observations at one station when
the sound travels horizontally.—Let O (fig. 1) represent
the position of the observer, ¢ the position of the fgun
The direction OG is known from the observation of the
flash, while the time, ¢, which the sound takes to travel
from @ to O is also known. Let v be the velocity of the
wind, AOQ the direction of the wind; then if the length
A0 re%resents v, the length AG will represent Vi, and
since the angle AOG is known, the position of ¢ may be
found by a simple geometrical construction or by tri-

angulation,
2.
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F1G6. 1.—Sound ranging for the gun G trou'?a l(iue station when the sound travels hori-
zontally.

G-——..—=-_—:

This method fails if the sound travels to the observer
by a path through the upper air, and so it is useful to
have a test which will enable an observer to find out

¢0.D. Chwolson. Lehrbuch der Ph . V.2, p.30.
L) discusaion of this Tte L

30,
'or a matter and references see L, V. King, in Journal of
Franklin Institute, March, 1917, p. 274. e the
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when this occurs. The following test is based on the
theory developed in §4.

Let a second observation be made at a point 0’ on
0@, then if the sound travels through the upper air, the
interval between the times of travel at O and 0’ should
be less than it would be if the sound traveled in a hori-
zontal direction. Tig_s test will, of course, fail if the
sound produced by the firing of the gun travels with u
velocity greater than the ordinary velocity of sound.

If an object reflects sound back to the observer, its
distance may be estimated by noting the interval be-
tween the production of the sound at O and the arrival
of the echo. If T denotes this interval, the distance of
the object is given by the formula—

,

Y ine
1 V,sma

where 6 is the angle between the direction of the wind
and the direction of the object. If v is small compared

with V' so that % may be neglected, this method may

be used to find the distance of the object when its dirce-
tion is not known.

If it were possible to produce at O an intense sound
having a frequency equal to one of the natural frequencies
of the and obtain a return sound from the gun, this
method might be used with advantage and a gun located
by means of observations at two stations before it was
even fired.

3. Sound ranging from observations at a number of sta-
tions when the sound travels horizonially.—When the
sound travels over the surface of the earth and this is
treated as flat, the problem of locating a gun from obser-
vations at three stations A/, B’, (', may be solved as
follows: the first step is to reduce the problem to the case
when there is no wind. Let {,, %, t,, be the times at
which the sound is recorded at these stations and let 7'
be any convenient time. Draw lines A’A, B’B, C'(, in
a direction opposite to the wind and let the lengths of
these lines represent the distances v(t,— T), v({,— T),
v(t,— T'), respectively, where v is the velocity of the wind.
We must now determine the position of a point G at
which a gun can be fired so as to be heard at A, B, and
C, at times {,, ;, and £, respectively, when there is no
wind. Let GA= V(t,— 1), then if we draw a line GG’ in
a direction opposite to the wind to represent the length
v(T— T;), the point ¢ will indicate the position of the gun.
To determine the point G we can make use of the hyperbo-
las H and H, defined by the equations GA—GB = V)(7ta —1t),
andGB—-G(= V(tb—tc),respectivelig, orwecandrawcircles
of radii V(ti,— T, V(t, — T'), V(t,— T'), with their centers at
A, B, O, respectively. The point ¢ is then the center of
a circle which has the same kind of contact with each.
If the latter method is to be used the computer may
find it useful to have a set of metal disks whose radii
differ successively by small amounts, the circle which
{;)ouch%sl the three circles may then be found very quickly

y trial.

When the distance AB is small compared with the
distance of the gun the hyperbola H may be replaced by
its asymptote which bisects AB and makes an angle with
AB whose cosine is the ratio of ¢,—1, to the time which
sound would take to travel from A to B. When this
method is used it is useful to have observations at two

MONTHLY WEATHER REVIEW. 5

pairs of stations, one pair of stations being at a consider-
able distance from the other.
a

A

Wind

G—G’
B——-p

[
c ¢
F16. 2.—~8ound ranging for the gun G’ from three stations, 4’, B, C’, when the sound
travels over the flat surface of the earth.

When the velocity of the sound is unknown use ma
be made of observations at two trials of stations A’B'LX
and P’Q’'R’. Let t,t,1,, be the times at which the sound
arrives at.A, B, and C, respectively; and let x,, y,; X,, ¥5; X3,
Ys, be the rectangular co-ordinates of the derived points
A, B, C,in the reduced problem (fig. 4); also let r,, 1, 15, be
the distances of an arbitrary Gpoint from A, B, ancf (', re-
spectively; then the point ¢ lies on the circular cubic
whose equation is

it —1t) +r,(ts—t,) +r5(¢, —1,) =0.

cos § =V {la—ip)/AB

FI1g. 3.—Method using two pairs of stations, A B being small in comparison with the
distance 0G.

If the distances between A, B, and (' are small com-
pared with the distance of the gun, the circular cubic
may be replaced by its asymptote whose equation, when
the origin is at the centre of the circle ABC(), is

z[z, (tty) +, (ts"tl) +23(t,-8,)] + yly, (taty) + Y2 (tty) + s (tl'tz)]
- 2A%(tat3) (ts-1) (1y-t5)
[, (ta-t3) + 2o (t5-ty) F 23 (61-£) P+-[y1 (b £3) +y2(ta-tr) +¥s(t1-t) F

where A is the area of the triangle AB(. The denomi-
nator on the right hand side may also be written

@ — )t —t,) + 52— 1) (G —1,) + s — 1) (b, — 1),

where a, b, and ¢ are the lengths of the sides of the tri-
angle ABC. The asymptotes of the two cubics associ-
ated with ABC and PQR, respectively, meet in a point
G from which an approximate position of the point G’
may be derived.
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Fi16. 4.—Method using two triads of stations, the gun G lying onthe circulat cubic or its
asymptote.

4, The general theory of rays of sound.—Let (u,v, w) be
the component velocities of the air at a point with rec-
tangular coordinates (z, ¥, z2) when there are no sound
waves passing through the atmo?here, p the density,
and V the local velocity of sound. Let u4-u', v+v’,
w+w', p(1+¢) be the values of u, v, w, p, when sound
waves are present, then if viscosity, thermal conduction
and radiation are neglected and the atmosphere is sup-
posed to be in a state of convective equilibrium, and of
the same composition throughout, the hydrodynamical
equations of motion take the form

du' , ,0u, ,0u ,0u de
W‘}"U’ —a;-l-’l) a—y+'w 5‘5+V’a =0,
@’ v, U, . ade
Ei--*-u sa-:-l-’l)-a-?—/'*'w b—z+w5—y =(,
', ow, o0, o0,
—dT+u —a?‘l"l) ay+'w bz+Vzaz_0’

d ? ’ 4
PG+ o)+ (o) + 2 (o) =0,

d__0 0 [ 0
=115 T8y V52"

In obtaining these equations we have assumed that
u’, v’, w’, ¢, are small, that all changes take place adiabat-
ically, and that no condensation of water vapor occurs
in the atmosphere.

If the disturbance which produces the sound waves is
initially confined to a limited region, a wave of discon-
tinuity of some type will travel outward. The front
of this wave will satisfy the partial differential equation
of the characteristics of the above system of equations.®
The simplest way of obtaining this equation is to assume

¢ See Hadamard: Propagation des ondes. Paris, 1903,
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that w’, v’, w’, %, v, w, p, are continuous but that the
first derivatives of u’, v/, w’, ¢, suddenly change in value
as we cross the moving surface F(z, y, 2, 1) =0. We thus
obtain the equations

o' dF  ..9 OF ' dF .0 OF

SF &V oF =" aF st or ="
ow' dF d¢ OF
oF @ "V er 2z~
O¢ dF Ou'dF v OF ow' d

PoF & tP\oF 5z ToF oy ToF o2 )"

from which we find that
dF\* _ OF\?* (OF\ (OF\:
(Tz? -7 a—f) +(?y +(?f) 2
When & solution of this equation has been found, the

rays are given by the equations of the bicharacteristics,
namely,

- dz - dy dz dt
dF _dF  dF _dF  dF _oF dF
vZT V% @ Vo Ya Vo &

If, however, the solution is given as a complete integral
F=t—f(, v, 2, a, 8)=0

involving the two arbitrary constants « and g, the ra
are obtained by combining the above equation with the
equations

d of
5£=Or b—ﬂ=0'

as in the Hamiltonian theory for rays of light.’

When there is no wind, we have the general theorem
of Straubel,® which may be enunciated as follows: Let
P and @ be two points on a ray and let rays consecutive
to PQ and forming a small pencil of solid angle dw with
its vertex at P cut out an area dS’ on a plane through @
perpendicular to the ray, while a similar small pencil of
rays of solid angle dw’ with its vertex at @ cuts out an
area dS on a plane through P perpendiculer to the ray,
then we have the relation

o d8 _ dw’ 48’
|

This theorem has not yet been generalized so as to be
applicable to the case in which a wind is blowi.n(f.

transformation theory based on the fundamental
quadratic form

(dz —udt)? + (dy — vdt)® + (dz —wdt)? = V2df?

may be used to group together various distributions of
u, v, w, V, in which the problem of determining the
sound rays is soluble by means of function of a given
type. Inversion is a particular transformation which
may be used with advantage.

en the air is stratified in horizontal layers so that
the wind is blowing horizontally and V depends only on

1 8ee Herman, Geometrical Ogt;.les, Chapter XIII,
S R, Straubel In Phys. Zeitschr., 1903, 4t 114-117; T. Levi-Civita in Rend., Ac. del
Lincel, 1915, 24: 666.
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one coordinate Z, the sound rays may be found in a well-

OWD manner as follows:”
Let us write

oF

2z =

then, if F=t—f(z,y,2,a,8) as before, we find that

oF
ay——ﬁ.

t=f @9, 20, 8)= [ G TFuat oy~ VG )~ ax—fy

and the equations of the rays are obtained by writing

of Lo, ¥_o.
da 0, 38 0.

The same result may also be obtained as follows:® Let
(6, o) be the spherical polar coordinates of the wave-
normal at a point with rectangular coordinates (z, ¥, 2),
then we have the equations

o=¢
Vcosoe’co +ucos¢ + vsing == Vo(coseco., + %,C08¢ + v,8ine¢ (1)
=N\ (say)

which express that the velocity and direction of the line
or intersection with the horizon of the t:%ent plane to
the wave front remain constant. The s es are used
here ﬂ:.zo indicate values of quantities at the level of the

ground.

The ray velocity is obtained by comJ;;)unding the
wind velocity with the velocity of sound directed along
the normal to the wave front, hence the equations deter-
mining the rays are

dz=udt+ Vdt sin 6 cos ¢,
dy =vdt+ Vdtsin 0sin ¢, (2)
dz= Vdtcos 0,

The range and time of passage of sound which travels up
into the air and down again are thus given by the equa-
tions
z

V2cos ¢ +us dz

[@—_Vv2 /ad

z .
V? sin ¢ +vs dz

z=2

__8 . dz
ye—v: V

where .
8=\ —1u €08 ¢ — ¥ SN ¢,

and Z is defined by the equation s=V.
These equations give

z
N —z cos ¢ —¥ sin ¢=2f1/s'— 7’%- 4)
0

Now let the initial direction of the ray vary slightly
so that 6 and ¢ become 0+d8 and ¢ +dg¢, then

? Lord Rayleigh, Theory of SBound, v. 2, p. 133.
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Adt+td\ —dxcosp —dysing + (zsing —ycose)do

zZ

—o fs(d)\ + usingdg —v cos ¢ d¢ dz
EEC
or
Adt =dzcosd +dysing. )

It is clear from symmetry that the line joining the
two end points of the ray is parallel to the tangent at
the vertex, let the displacement dz,dy, be made in this
direction; then, if u,», and V refer to the vertex of the
ray, we shall have

de  dy _ dzcose-+dysing

u+ Veosp v+ Vsing Y n

If, on the other hand, the sound travels horizontally the
above equations are replaced by

- @ dy

-+ Vicosp, @, Vising,

: dz cos ¢ +dy sin ¢

= UpCOSP+ 1, s8I &+ V, COS(p — &)

dt. (6)

dt,

Now

A =u,co8¢ +v,sing + Vycosecd,
> 4,c08¢ +v8ing + Vicos( ¢ —¢,),

hence di<dtf,., This means that the time of travel of
the sound increases more rapidly with the range when
the sound travels horizontally than when it travels by a
curved path through the upper air.

If it 1s found by means of the test based on this in-
equality, that the sound does travel to the observer
through the upper air we are met with the difficulty
that the wind velocity to be used in reducing the prob-
lem of sound ranging to the case of no wind, is the wind
velocity at the vertex of the ray and this is unknown.
It is reasonable to assume, however, that when the ver-
tex is high this velocity is about equal to the gradient-
wind velocity and is roughly the same for all the rays
that come into consideration. With this assumption,
our method of reduction is legitimate and the position
of G@ may be found by the method depending on the use
of two triads of observations, for if we make two inde-
pendent displacements (dz,dy) and (dz,dy,) the equa-
tions :

A\t = dzcose + dysing,

Adt, = dz,cosd +dy,sing,

are of the same form but with different values of A\
whether the sound travels horizontally or through the
upper air; also the quantity \, like the velocity of sound,
is eliminated in the above method.

The gradient-wind velocity may, of course, be derived
from the weather map when this is available.

When the vertex of a ray is not very high the differ-
ence in the times of travel of this ray and of one that is
supposed to travel horizontally between the same end
points, is generally so small as to be almost negligible
and proba.gly the best plan is to make the calculations
just as if all the sound traveled horizontally.

It should be noticed that if the velocity of the wind is
less than the velocity of sound there are always two
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directions, ¢, for a ray which has its vertex at a given
level, for which the relation ¢ =¢, is satisfied. These
directions are given by the equation

wv, —uyv+ ( Vo, — Vyv) cos ¢ + (u V, —u, V) sin ¢ =0,
and are real because the inequality
(Vo = Veu)2 + (uV, —u, V)? > (uw, —u40)*
is satisfied since it may be written in the form
- [(ug? +0,7) V — (uuy +v0y) Vo > (ury —uy®)?luy® + 0 — V2l

It generally happens, however, that for some values
of ¢ the rays that start horizontally at a given height Z
bend upward instead of downward, and so are not rays
that start from the ground. Using primes to denote
differentiations with regard to 2, we find on applying the
equation

Vcosecd + ucose +v8ing = A\
to the level Z and a consecutive level, that
(V’ +u'cose +v’sin¢)dz-F V(seedd —1) = 0;
hence a ray bends upward or downward according as
V' 4+ u'cosg +2'sing =< 0

When there are directions for both upward and down-
ward rays, the two angular regions are separated by two
radii whose directions are given by the equation

V' 44/ cosg +1'sing =0.

These directions are real if 4’24’2 > V’2. In this case
the height Z may be called anticlastic (symbol4). If
wi+v'? =V’ the height Z is said to be positively syn-
clastic when rays which start horizontally bend down-
ward, and negatively synclastic when rays which start
horizontally bend upward (symbols + and —).

Let us now consider a ray which leaves the ground
horizontally, then bends upward and finally returns to the

und. If this ray also possesses the property ¢ =d, it
ollows from equation (4% that the time of travel is
greater than if the sound traveled horizontally between
the two end points of the ray. For since ¢=¢, the
quantity N is the same in both cases and so also is
z cos ¢+ sin ¢, but in the first case we have

M —zcos¢ —ysing >0

while in the second case the left-hand side is zero. This
proves the theorem.
Now let us gradually increase the range, then since
_ the time of travel for a m{uthrough the upper air increases
less rapidly for a raziw ich travels through the upper

air than for a ray which travels horizontally, it follows
that the times %mdually become equal and eventually
the time of travel through the upper air may become less

than the time that sound would take to travel hori-
zontally.

When the wind blows uniformly in one direction the
condm(_m ¢ =¢, is satisfied in the case of a ray which
starts either in the direction of the wind or in the opposite
direction.

When there is no wind blowing the condition ¢ =¢, is
satisfied for every ray and when V increases upward
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every ray which goes up into the air is brought down to
the ground again, while the time of travel through the
upper air is always less than if the sound traveled hori-
zontally between the end points of the ray. To prove
this we notice that if R genotes the range, equations
(1) and (5) give

‘%—i= V=1V, cosec 8, > V,,

therefore %’> t.

An interesting case arises when we adopt H. Mohn's
assumption * that V is a linear function of z to a first
approximation. The equations V= V,+¢z,

z
Nz Vdz
t=20 VN— V3 E =2J' VNV,
then give
cR=2/N-V;, ot=2 cos "‘—%9
o

oR =2V, sinh

and it is clear from this equation that B> V. The
problem of sound ranging under such conditions is
rather interesting, for when timings are made at two
stations A, and A, the locus of the gun is given by the
equations
oR,~2V,sinh B oR,=2V,sinh

which determine a bicircular quartic with A, and A, as
foci when the difference #,—¢, is given. As this differ-
ence varies we get a system of bicircular quartics (fig. 5)
with two, but not four, real foci in common and thi

corresponds to the system of confocal hyperbolas in the
ordinary problem of sound ranging.

-1 [} +1 2 3 4 5 6 7 +8

FiG. 5.~8ystem of bicircular quartics with two real foci in common at —1 and +1, and
the parametric equations

ri=16sinh (0+a), ry=16sinhé;
the numbers indicate the value of sinh? j« for the different quarties.

Although the present problem of sound ranging is only
of theoretical interest, it may be remarked that when
observations are made at three stations A ,A,Y‘A, _the
gun may be located by using charts on which the bicir-
cular quartics of the required type are drawn, one system
being associated with A,,A,, and another system with
A, A,. It is important to notice that the same charts can
be used with different values of ¢ by simply altering the
dimensions of the figure AA,, B,B, keeping its form
unaltered.

1 H. Mokn in Annalen der Hydrographle, 1892, 1883, 1885.



JaNuUary, 1918,

If in the present circumstances an observer hears first
by a direct ray and afterward by a ray reflected from the
Eﬁ)und, then if ¢ and #’ are the two intervals between the

ing of the gun and the observations we have

oB=2V,sinh%y  oR—4V,sinh % -

To get an idea of the magnitude of the interval t'—t¢, let
us consider the following ways of satisfying the equation

. 4 of L
2Slnh—4- == ]_nhg H

I4
1) 041=0._22, ;—t=0.43018, o(t’ ~t)=0.01964;
o’ 2
2 =04 o~ =1o19"

The sound which is reflected takes slightly longer to
reach the observer and the difference in time is about
0.0223 of the total time of travel in the first case and
about 0.00497 in the second. Thus if the sound takes 10
seconds to travel, the interval is about 1 second in the
first case and about -%; second in the second. The value
of o in the first case 1s 0.088, representing an increase in
V of 8.8 meters per second in 100 meters; in the second
case o is 0.04 and represents an increase in V of 4 meters
per second in 100 meters. These rates of increase in V
are not abnormally large, for instance at Drexel, Nebr.,
on May 8, 1916, at 6:21 a. m. the temperatures at alti-
tudes of 396 and 500 meters were 8° and 11.8° C., respect-
ively, while the wind velocity and humidity between
these levels were practically constant. A calculation of
the velocity of sound indicates that in this case Vincreases
by about 4.5 meters per second in 104 meters.

5. The initial radius of curvature of a ray which starts
horizontally.—Let us write u=wu,—az, v=v,—bz, V=
V, — @z, then for a ray which starts in a horizontal direc-
tion and then bends upward

S = V,+acose + bsing,
and we have to a first approximation

(V,cos ¢+@ﬁ,_) dz
¥= ) J2V,2(a cos ¢ +bsin ¢ +0)

Vicos ¢ +uy
V2V, (acos¢+bsing +a

=2z

(V, sin ¢ +v,) dz
y [\/2V.z(a cos ¢+b sin ¢+ )

-2/ V, sin ¢ +v,
‘/Z'V2 V.(a cos ¢ +b sin ¢ + o)

The initial radius of curvature is thus

_ (Vicosp +u,)* + (Vising +1,)*
P="3V (a cos ¢+ b sin ¢ +0)

It should be noticed that p becomes inﬁnit._e ‘when
acos¢p +bsing+0=0, while maximum and minimum
values of p are roots of the equation

Vol +u°2 +v02).

(y—pa)' + (0, = pb)" = (por - L8
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When a ray does not start in a horizontal direction but
goes up into the air and returns to the earth, the radius
of curvature at its vertex may be found by means of a
similar formula using of course the values of u,,v,,V,,
@,b,0, for the level of the vertex.

6. The case in which the gun and the observer are at
differeni levels.—In this case the limits of integration
in the eg:lations (3) are altered so that if (z,,%,,2,) are
the coordinates of a gun, (z,,9,,2,) those of the observer,
we have for a ray without a vertex

At —t) — (2, —2,)c08¢ — (y, —¥,)sing = f1/s’— V’dT,z—s

while for a ray with a vertex
A, — ) — (2, —2,)co8é — (y, — ¥, )8ing
z P z ,
- f N f VE=T.

Now let the positions of the gun and observer vary,
then we find that
Ndt, — dz,cos¢ — dy.sing F dz,coth, =

Adt, — dz,cosp — dy,sing —dz,coth,. (7)
This relation is analagous to one which occurs in the
general theory of geodesics.!' It is important to notice

that if the observer and gun are in motion so that

d.’q = al.dtl} dzl = cidtl!

dyz =b,di,,
dy, =b,dt,,

the above equations give

Y. cosec, + (u, —a,) cosé+ (v, —b,) sin ¢—¢, cot 6,
V, cosec 8, + (4, — a;) cos ¢ + (v,—b,) sin ¢ F ¢, cot 6,

This is the form which Doppler’s principle assumes for
an a.tmosghere stratified in parallel planes. It should
be noticed that this formula differs slightly from the
em(i)irica.l formula suggested in my previous note
and gives dt, =di, when the source of sound and observer

- are both stationary. In this case, then, there is no chm‘xﬁe

of frequency, as might be expected. The above formula
does not, however, quite cover the case for which the
empirical formula was suggested, because now the wind
velocity and velocity of sound are the same at the loca-
tions of the gun and the observer, if these are at the same
level, whereas in the case referred to the wind velocity
was supposed to be different in the two places.

When a source of sound is higher than the observer,
or is moving through the air, it is possible that some
meteorological data may be obtained by noting the
change in pitch when the sound is heard at the earth’s
surface and applying our general formula for Doppler’s
principle. C. E. Stromeyer!* has already suggested
that gustiness might be recorded by observing what in

n T, Levi-Civita, Rendiconti, Accad. dei Lincel, 1915, 24: 666.
1 H. Butemon, 'Dop&ler's principle for 8 windy atmosphere. MONTBELY WEATHER

REvVIEW, Sept., 1017, 45: 441,
13 Stromeper in Nature,London, Apr. 26, 1917,
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German is called “wimmern,”’ that is, a variation in the
sounds heard from church bells during gusty weather.

7. Derivation of meteorological data by means of sound
ranging.—When the positions of the gun and the observer
are known, the timing of the sound furnishes some in-
formation with regard to the structure of the atmosphere.

In the first place, if the sound travels through the upper
air and the gun and the observer are at the same level,
the equations

Mt =dzcos¢ + dysing, Aot = Szco8 + Sysing,

corresponding to two different displacements of the
observer, determine the angle ¢ and the quantity A.
Since the direction of the gun is known a displacement
can be made directly away from the gun and then the
equations (6) determine the quantities

u + Veose, v + Vsing,

for the level of the vertex of the ray. Now, let the
source of sound be raised a small distance dz, then it
follows from equation (7) that

Mdt,—dt,) = —dz,coth,.

This equation determines the angle 6, which is denoted
below by 6,.

Returning to the case in which both the gun and ob-
server are on the ground, let us vary the initial direction
of a ray in such a manner that Z remains constant.
We then have

Z

dz=—2 f i{(s’ — V*)sing.de + (- scose)ds].
3 (-0

Now dx must be finite, hence ds must vanish when
z=2Z. TUsing the value

8= V,cosect, + (u, —u)cosd + (v, —v)sing,
we find that we must have
V,cosechy.cotb,.dl, = [(u — u,)sing — (v — v,)cosp]de.

Now 6, ¢, and wusing—wvcosp, are known from the

revious observations and V,, u,, v, can be determined

?rom meteorological observations at the level of the

und, hence we can determine the relation between

o and d¢. This means that we can trace on the ground

a curve which is the locus of the extremities of rays

which start at a given point and have their vertices at a
given height. )

By using observations at two points of this curve for

which the values of ¢ are ¢, and ¢,, respectively, we can

calculate the quantities
u+ Vecos ¢,, u+ Veos ¢,
v+ Vsin ¢,, v+ Vain ¢,,

and so determine the values of u, v, and V.

Drawing curves for different altitudes of the vertex
of a ray, we may obtain an idea of the structure of the
atmosphere as far as the variations of u, v, and V, are
concerned, but unfortunately we can not assign the value
of Z for each curve.

An idea of the structure of the atmosghere may also
be obtained in a rough way by a study of the regions of
audibility after a great e?losmn. Data of the required
type have been collected on several occasions!* and

14 See for exam; S. fwharg in Bull,, Central met. obs’y., T 1016, pt. 2;
and C. Dmmlnpl&'lilrterf;jnvhw, Tuly, 1617. 7 Tokyo, 1916, p
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some types of sound areas have been correlated with
certain weather conditions. In Japan, according to
Prof. Omori, 9 out of 11 recent Asama-yama explosions
with double sound-areas occurred in the winter, while
10 out of 11 explosions with single sound-areas occurred
in the summer months.

8. Some numerical data.—At Prof. C. F. Marvin's
suggestion I have made some numerical calculations,
using the data obtained at Drexel, Nebr., in 1916. The
velocity of sound in the following table is calculated on
the assumption that the velocity for dry air at 0°C is
333.4 meters per second, the value given by Chwolson.
In column 10 the symbols indicate the characteristics
of the different levels as explained in § 4; it will be seen
that in most cases a level is anticlastic, but when the tem-
perature decreases upward it is quite common for all
rays which start horizontally at a given level, to be re-
fracted upward. In order that rays may go up into the
air and down again it is necessary that the total change in
wind velocity in ascending to some level should be

eater in magnitude than the decrease or negative
mcrease in the velocity of sound. So far no case has been
found, in the summer, in which rays starting nearly hori-
zontally are brought down to the ground for every hori-
zontal direction; but in January when the wind velocity
is low suclf cases do occur. '

TaBLe 1.—Velocitics of sound and characteristics of different levels in
5ivz bg::is based on actual data secured at Drexel Aerological Stiation,
(1 . ;

(1) April 11, 1916. (Supplement No. 7, p. 9.)

‘Wind.
: | Tem-
Alti- Al | Pres- | Vap. | Velocit Sym-|

Time. \i1de. pore-! 100, | sure. pre:;. of sound. bol#| Remarks

ure, Dir. | Val.
m. | °C. | °C. | mbar, |mbar.| m. p. s. m.js.

A, M,

9:39..... 306 | 19.0 §....... 966.7 | 7.69 | 345.326 | se 8.9 l...... All rays re-

......... 500 | 18.5 |.......| 955.0 | 7.67 | 345.036 | se 8.1 — - fract, up-
......... 750 | 17.2 |.......[ 927.1 ] 7.26 | 344.252 | se 9.7 - werd.

(2) May 13, 1916. (Supplement No. 7, p. 27.)
P. M.

12:45....) 306 | 12.4 |....... 964 |13.82 | 341.815 | ese 8.3 |...... Some rays are
......... 500 | 11.8 |.......| 952 |[13.20 | 341.431 | ese 80| % brought
12:50 743 | 10.5 | 0.55 | 924.7 [12.08 { 340.592 | se 120} =+ down to the
......... 750 | 12.6 |.......| 924 |13.86 | 341.979 | se 10.1| + ground.
Ii15..... 871 | 14.4 |—3.05 | 910.6 {15.42 | 343.180 | sse 85| + .

(3) May §, 1916. (Supplement No. 7, p. 22.)

A, M,

...... 396 | 13.2 |.......| 963.3 50 | 341.935 | sw 5.4 |......| Some rays are
6:10..... 487 | 20.5 1—8.02 | 955.1 [10.61 | 346.419 | sw | 14.1 | + brought
......... 500120.5{.......[ 954 |10.37 | 346.404 | sw | 13.9 | =+ down to the
......... 750 { 20.5 {.......| 926.1 | 8.20 | 346.231 | sw 1.4 + ground,

(4) May 19, 1916. (Supplement No. 7, p. 29.) -

P. M,

5:49..... 396 | 13.8 |....... 9687.8 [13.55 | 342.511 | se 4.0 l...... Some rays are

......... 500 { 12.8 |.......] 955.6 [13.01 | 342.008 | se 49| * rought
......... 750 1 10.7 1.......] 927.7 |11.45 | 340.6687 | se 7.3| * own to the
6:51..... 937 | 9.2 0.81 | 907.2 (10.48 | 330.710 | se 8.9 ground.
6:52..... 983 | 10.4 |—2.28 | 902.2 111.35 | 340.502 | se 891 +

(5) Jan. 3, 1916, (Supplement No. 5, p. 8.)

A M,

8:54.....} 396 |—4.1 |....... 080.4 | 4.07  331.147 | 8 4.9 |...... All rays re-
......... 500 |—1.4 |.......{ 967.2 | 4.62 | 332.847 | 8 v 55| + fracted down-
901..... 669 | 2.9 ;—2.56 | 947.4 | 5.27 | 335.519 | s : 6.6 +

(6) May 4, 1916. (Supplement No. 7, p. 21.)

A, M.

6:49..... 396 | 10.0 |....... 959.5 | 7.98 | 339.986 | ssw | 10.3 {...... Some rays are

......... 500 | 14.4 |.......| 948.1 1 9.51 | 342.730 [ ssw | 17.2 | * brought

8:51..... 613 | 19.1 |—4.19 | 935.1 [11.28 | 345.655 | ssw | 24.6 | downdto the
groun

* Z is positively (+) or negatively (—) syneclastic, or anticlastic (4:), (Seep. 8.)
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9. The magnitude d_of the error in sound ranging.—Let us
consider the reduced problem in which the time is given
for two stations A and B, then G lies on one branch of a
hyperbola with 4 and B as foci. Let a be the semi-
major daxis of this hyperbola and let AB=2¢c, then the
equation of the h)}per ola, when the origin is taken at 0,
the middle point of AB, is—

2P ®

If the times vary slightly on account of errors in timing,
while A and B remain fixed, ¢ varies and the hyperbola 18
changed into a confocal hyperbola while the increments
of z,y,a, are connected by the relation

2zdz  2ydy z? 9 _ cy
@ e —q 20d a«+~—“<c=_a=>=]‘2%[l+'<a=—;7>‘=]'

The total displacement of @ is least when

N
de=32y dy=—571L, N=ada,

and then

z? y? i s ]
ds = \/{dz)* + (dy)* =ada) 5+ zgf_—azyz] =dﬂ[1 + (;;:7,;)3]-
If, on the other hand, dz=0, we have

To get an idea of the magnitude of these quantities let us
take the case when ¢=2a?,

cid1+27 Y P
then ds=def 1+% ], day~ -Zaa 1421

If V=1,100 feet a second, an error in timing of 1/100
second may mean an error in 2¢ of 11 feet.

The following table then gives the magnitude of the
error in ranging for different values of the ratio y:c.

TaABLE 2.— Magnitude of error in ranging.

'H3 ds dy
Feet. Feet.
V2 163} 243
ViZ 38} 55
v 3 101
120 2254 3156

When the wind is blowing, the points A and B are dis-
placed slightly from their true positions on account of
the error in timi.nﬁ; but if the wind velocity is as large as
20 feet a second the displacement caused by an error of
1/100 second in timing is only 2 feet.

Let us now estimate the magnitude of the error intro-
duced when the asymptote of the hyperbola is used
instead of the hyperbola. Since the equation of the
asymptotes is :

z’
PR e
we find on subtracting from (8) that 2ydy=c*—a.
Writing ¢* =2a? as before, we find that if AB=2¢=1,000
feet, ¥ = 10,000 feet, dy =6} feet.
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The error introduced by using the asymptote of the
circular cubic, in the method in which the velocity of
sound is eliminated, is more difficult to determine; it is
probably larger than in the cese just discussed but still
not large enough to be important.

To get some idea of the error in time arising from the
circumstance that sound may travel through the upper
air instead of a.longha. horizontal path, let us consider the
simple case in which there is no wind and the velocity of
sound increases upward. The range is now given by
the formula

2o ginh &
o 2
Taking ¢ =0.04, =10 seconds, we have
7 =0.2, sich %=0.20134, K =55,000 X 0.20134,

—g-—t-so % 0.00134 = 0.067.
1]

The difference in time is thus about 7/100 second in a
range of about 2 miles and may cause a serious error in
sound ranging if no attention is paid to the effect of the
meteorological conditions.

MEAN VALUES OF FREE-AIR BAROMETRIC AND VAPOR
PRBESSURES, TEMPERATURES, AND DENSITIES OVER THE
UNITED STATES.

By WmLis Roy GrEGG, Meteorologist in Charge.
[Dated: Division 'o( Aerologieal Investigations, Weather Bureau,Jan. 31, 1918.)

Although numerous free-air observations have been
made, and are being made, in different parts of the
United States, mean values of certain reduced data have
thus far not been published. Temperature, humidity,
and wind data, as observed at Mount Weather, Va., have
been summarized in the Bulletin of the Mount Weather
Observatory, 1913, v. 6, pts. 4 and 5, and similar sum-
maries of observations by means of sounding balloons
at different points in this country have been presented
in the same publication, v. 4, pt. 4, and in the MoNTHLY
WeatHer Review, July, 1914, and May, 1916. A
Bt;per on_‘“The Planet: System of Convection”’ by

. (now Major) Wm. R. Blair, appeared in the MoNTHLY
WeaTHER REVIEW, April, 1916. e conclusions reached
in the latter paper were based on all available free-air
observations made in the United States and in other
parts of the world. More recently a brief summary,
with special reference to the needs of aeronauts, has been
gl;'epared by Maj. W. R. Blair and published by the

ational Advisory Committee for Aeronautics as Re-

ort No. 13. None of these summaries has included
ree-air pressures and densities. As a knowledge of these
data is of great importance in connection with aviation
and the firing of projectiles, it has been thought best
to publish in brief tabular form their average values as
determined from all available observations thus far
made by the U. S. Weather Bureau in this country.
At a later time similar tables will be furnished for addi-
tional stations which are now being established.

Table 1, below, gives mean monthly, seasonal, and
annual free-air pressures, temperatures, vapor pressures,
and densities as observed at Mount Weather, Va.
Pressures and vapor pressures are expressed in both
metric and dynamic units, temperatures on the centi-
grade and approximate absolute (273 + ¢°C) scale, and



