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Abstract: In Lorentzian AdS/CFT there exists a mapping between local bulk oper-

ators and nonlocal CFT operators. In global AdS this mapping can be found through

use of bulk equations of motion and allows the nonlocal CFT operator to be expressed

as a local operator smeared over a range of positions and times. We argue that such

a construction is not possible if there are bulk normal modes with exponentially small

near boundary imprint. We show that the AdS-Schwarzschild background is such a

case, with the horizon introducing modes with angular momentum much larger than

frequency, causing them to be trapped by the centrifugal barrier. More generally, we

argue that any barrier in the radial effective potential which prevents null geodesics

from reaching the boundary will lead to modes with vanishingly small near boundary

imprint, thereby obstructing the existence of a smearing function. While one may have

thought the bulk-boundary dictionary for low curvature regions, such as the exterior

of a black hole, should be as in empty AdS, our results demonstrate otherwise.
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1 Introduction

The Lorentzian AdS/CFT [1–3] dictionary in extrapolate form gives a simple relation

between a bulk operator close to the boundary, and a boundary operator. If Φ(B) is

a bulk operator, where B denotes a bulk coordinate B = (r, t,Ω), and b is a boundary

coordinate b = (t,Ω), then [4–6]

lim
r→∞

r∆Φ(B) = O(b). (1.1)

This relates a local bulk operator at large r to a local boundary operator. But what is

the CFT dual of Φ(B) at finite r? A natural proposal is

Φ(B) =

∫
db′ K(B|b′)O(b′) +O(1/N), (1.2)

where K(B|b′) is some smearing function.

There is no reason a dictionary as simple as (1.2) has to be true. Our goal in this

paper will be to make progress on establishing when a mapping like (1.2) is and isn’t

possible. In pure global AdS, the smearing function K(B|b′) was found in [7]. We will
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show a smearing function as in (1.2) does not exist in AdS-black hole backgrounds, for

any bulk point B.

Eq. 1.2 is in some ways an extraordinary statement. It allows us to express an n-

point function of bulk operators Φ in terms of smeared n-point functions of boundary

operators O. Thus it says that the entire bulk state is encoded in terms of operators

O. Yet, the operators O are special: they are related via (1.1) to the large r limit of

local bulk operators. Most field theory operators, for instance Wilson loops, are not of

this form.1

Having the precise form of the smearing function K(B|b′) is an important com-

ponent of the AdS/CFT dictionary. For any bulk point B, K(B|b′) will presumably

have most of its support on some subregion of the boundary. Thus, K(B|b′) would

tell us, independent of the state, which subregion [8–10] of the global AdS boundary is

“responsible” for a bulk point B.2

As a result of (1.1), Eq. 1.2 has a purely bulk interpretation. It states that a bulk

operator at point B can be expressed in terms of smeared bulk operators at large radius.

Alternatively, in the Schrödinger picture it states that the bulk wavefunction restricted

to a large but fixed r = R and provided for some sufficient time extent, completely

encodes the bulk state for all r < R. It is not obvious if this is a true or false statement.

If a particle is sitting at the center of AdS, its wavefunction at large r will be small but

nonvanishing; perhaps that is enough to determine the wavefunction everywhere? Or

perhaps there are some states for which the wavefunction has vanishingly small support

at r = R, making (1.2) impossible?

While (1.2) is an operator statement, determining K(B|b′) is a classical field theory

problem: Given ϕ(b′) ≡ Φ(r = R, t′,Ω′), how does one reconstruct Φ(B)? This is a

nonstandard boundary value problem, with data being specified on a timelike surface.

However, having a smearing function is a more stringent requirement than simply

having an algorithm for deterimining Φ(B) for any given ϕ(b′). For instance, it may

be the case that for any particular bulk solution, even if ϕ(b′) is extremely small, one

can pick an appropriate resolution so as to see it and reconstruct Φ(B). However,

it could be that no matter how good a resolution one picks, there always exist field

configurations having a near boundary imprint ϕ(b′) that is below the resolution scale.

In such a case there wouldn’t be a smearing function; for a smearing function implies

a state-independent way of reconstructing. In a sense one has to pick the resolution

1One should keep in mind that in (1.2) we are smearing on the boundary over both space and time;

if one were to use the CFT Hamiltonian to evolve the right side of (1.2) to a single time then one

would generate an operator with Wilson loops. Nevertheless, the ability to avoid Wilson loops if one

is allowed to compute correlation functions of the O for different times is in itself nontrivial.
2We should note that in general K(B|b′) will not be unique.
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beforehand without knowledge of which field configurations will be under consideration.

As a CFT statement, the absence of a smearing function means that certain aspects of

the bulk are not well encoded in the smeared CFT operators O(b′), but rather in the

more general Wilson loops.

Constructing a smearing function is straightforward in static, spherically symmetric

spacetimes. One solves the bulk equations of motion through a mode decomposition:

Φωlm(r, t,Ω) = φωl(r)Ylm(Ω)e−iωt. The bulk is reconstructed mode by mode, using the

boundary imprint to extract the coefficient of each mode. In some cases this can be

used to construct a smearing function. However in other cases, for reasons discussed

above and which we will make precise in Sec. 2, the candidate smearing function is a

divergent sum. Pure AdS falls into the first category, while AdS-black holes are in the

second.

In AdS, just like in flat space, at small r there is a centrifugal barrier which reflects

the modes. However, black holes have the property that at a finite distance from

the horizon the centrifugal barrier peaks and the potential dies off as the horizon is

approached. Unlike in pure AdS, modes with ω � l become admissible, and are trapped

behind the centrifugal barrier. As l is increased with ω kept constant, the barrier grows,

and the imprint of the modes at large r decays exponentially in l.

In Sec. 2 we review the mode sum approach to obtaining a smearing function. In

Sec. 3 we rewrite the Klein-Gordon equation for a scalar field in a static, spherically

symmetric background as a Schrödinger equation. For large l, the potential has roughly

two competing terms: the centrifugal barrier and the AdS barrier ∼ r2. For any radius

r, no matter how large, there is an l sufficiently high so that the centrifugal barrier

dominates. In Sec. 4 we use WKB to show that in AdS-black hole backgrounds this

effect gives rise to the exponential behavior in l for the modes.

It may seem surprising that our ability to describe the bulk at large r, where the

metric is well approximated by pure AdS, could be affected by the presence of a small

black hole deep in the bulk. In Sec. 4.1 we show that while it is true the behav-

ior of the modes near the boundary is always well approximated by Bessel functions

r−d/2Jν(
√
ω2 − l(l + d− 2)/r), the relation between ω and l depends on the entire bulk

geometry. In pure AdS, ω is quantized as ωn = 2n+ l+ ∆, while in the AdS-black hole

ω is continuous and independent of l. As a result, ω � l is allowed for AdS-black holes,

leading the Bessel function to have imaginary argument and correspondingly exhibit

exponential growth.

In Sec. 5 we take the first steps towards generally establishing for which asymp-

totically AdS spacetimes a smearing function exists. In Sec. 5.1 we consider a static,

spherically symmetric spacetime and argue that only the behavior of the high l modes

is relevant for this question. We find in this limit the potential in the Schrödinger-
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like equation describing the modes simplifies significantly. We find that any barrier in

the large l potential leads to exponential behavior in l of the modes and prevents a

smearing function. Here the appropriate limit leading to an exponentially suppressed

tail involves sending ω to infinity as well sending l to infinity, while keeping the ratio

ω/l constant. Thus, we will find that even a small, dense star in AdS can prevent a

smearing function from existing for some bulk points. However, unlike the black hole,

we are not necessarily prevented from constructing a smearing function at large r in

general. In Sec. 5.2 we consider general spacetimes and examine the possibility of the

existence of trapped null geodesics (geodesics with neither endpoint on the boundary)

as a proxy for the smearing function not existing. We find that in static spherically

symmetric spaces the null geodesic equation is that of a classical point particle moving

in a potential identical to the one found in Sec. 5.1 as being relevant for the smearing

function question. Therefore a smearing function does not exist if there are trapped

null geodesics.

2 Smearing functions

We work in Lorentzian AdSd+1/CFTd with fixed boundary Hamiltonian, and corre-

spondingly all nonnormalizable bulk modes turned off. We let B denote a bulk coordi-

nate, B = (r, t,Ω), and b a boundary coordinate b = (t,Ω). If we consider a scalar field

Φ(B) in the bulk, then excited states are obtained by acting with Φ(B) on the vacuum.

As the boundary is approached, Φ(r → ∞) will decay to 0. However, we can extract

the leading term ϕ in the decay, Φ(B) → ϕ(b)/r∆, where the conformal dimension

∆ = d/2 +
√
d2/4 +m2. The extrapolate version of the AdS/CFT dictionary instructs

us to identify ϕ with a local boundary operator: ϕ(b)↔ O(b).

As a result we can construct a relation between Φ(B) and the CFT operators O(b)

by relating the tail ϕ of Φ at the boundary to Φ(B) through use of bulk equations of

motion. This is a nonstandard boundary value problem where the data is specified on

a timelike surface. Unlike usual time evolution where the field at point is determined

by the field in the causal past of that point, here we have little intuition about which

portion of the boundary is needed to determine Φ(B).

Smearing function as a mode sum

In the limit of infinite N , the bulk field operator Φ(B) obeys the free wave equation and

its reconstruction from boundary data can be implemented through Fourier expansion.

Letting Φk(B) be the orthogonal solutions to the Klein-Gordon equation (where k is a

collective index), we do a mode expansion of Φ(B) in terms of creation and annihilation
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operators ak,

Φ(B) =

∫
dk akΦk(B) + h.c. (2.1)

Taking B to the boundary and letting ϕk = Φkr
∆ gives

O(b) =

∫
dk akϕk(b) + h.c. (2.2)

In some cases the boundary mode functions ϕk(b) are orthogonal. If they are we can

invert (2.2)

ak =

∫
db O(b)ϕ∗k(b), (2.3)

where we have with hindsight chosen to normalize the modes Φk so that ϕk are or-

thonormal.3 Inserting (2.3) into (2.2) gives

Φ(B) =

∫
dk

[∫
db′ ϕ∗k(b

′)O(b′)

]
Φk(B) + h.c. (2.4)

Exchanging the integrals over k and b gives

Φ(B) =

∫
db′ K(B|b′)O(b′), (2.5)

where

K(B|b′) =

∫
dk Φk(B)ϕ∗k(b

′) + h.c. (2.6)

Potential divergences of the smearing function

Eq. 2.6 is the equation for a smearing function and will be the focus of the rest of the

paper. In all the cases we will consider, (2.3) will exist, but the integral in (2.6) may or

may not converge. In the limit of infinite N the question of the existence of a smearing

function in some background can therefore be equivalently stated as the question of

convergence of the integral in (2.6).4 In cases when a smearing function exists in the

N =∞ limit, one can then include corrections to (2.5) perturbatively in 1/N [11, 12].

We will only be concerned with the smearing function at infinite N .

The bulk modes Φk that appear in (2.6) need to be normalized so that the bound-

ary modes ϕk they asymptote to are orthonormal. This is at the heart of the problem

3One is of course free to choose any normalization for the Φk; however if the ϕk are not orthonormal,

(2.6) will get modified by the appropriate factor.
4There is a potential loophole. The smearing function could exist without the integral (2.6) con-

verging. If this were the case, the smearing function would have to be a function whose Fourier

transform is not well-defined.
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of constructing smearing functions. When we decompose some bulk solution Φ(B) in

terms of modes, we generally don’t expect each mode to be weighted equally. Rather,

there are some modes which may have small coefficients. However, the smearing func-

tion is state independent and has no way of knowing which modes will get small weight.

When working in a general background, not all modes are equal. Some modes may

need to pass through enormous barriers in the potential on their way to the boundary

and consequently suffer a huge damping. All the modes Φk are normalized so that

the ϕk ≡ Φkr
∆ they asymptote to on the boundary are orthonormal. As a result,

modes that had to pass through a large barrier will be extremely large at small r. For

any particular solution this wouldn’t bother us, as these modes would have a small

expectation value of ak. As a result, (2.4) would converge. However, without having

the small ak to dampen the modes at small r, the integral (2.6) appearing in (2.5)

might diverge. As we will see later, this is precisely what happens in AdS-Rindler and

in AdS-Schwarzschild.

Pure AdS smearing function

The metric for global AdSd+1 can be written as

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−1. (2.7)

The smearing function K(B|b′) was constructed in [7] (see also [13, 14]).5 Notably, it

has support on boundary points b′ that are spacelike (or null) seperated from B (shown

in Fig. 1). It takes a different form in even and odd dimensions, and is simpler when

d+ 1 is even:

K(B|b′) =
[√

1 + r2 cos(t− t′)− r cos(Ω− Ω′)
]∆−d

. (2.8)

The spacelike support ofK(B|b′) gives it some peculiar features. If one usesK(B|b′)
to construct Φ(B) through (2.5) and considers the limit of taking B to the boundary, it

is not manifest that Φ(B)→ r−∆O(b). In fact, UV/IR [15] seems to suggest one should

only need some compactly supported portion of the boundary to construct Φ(B) if B

5To avoid any potential confusion, we note that in Lorentzian AdS/CFT the smearing function

problem is distinctly different from the one Witten’s bulk-boundary propagator [2] addressed in Eu-

clidean space. The Lorentzian version of Witten’s bulk-boundary propagator is a bulk Green’s function

with one point taken to the boundary (as a result, unlike (2.8) it does manifestly approach a delta func-

tion for coincident points). However, it is a smearing function for the nonnormalizable modes, which

are dual to sources for the CFT; whereas we are interested in a smearing function for normalizable

modes.
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(a)

B

p

q

(b)

Figure 1. To construct the bulk operator Φ(B), the CFT operator O(b′) is smeared with the

smearing function K(B|b′) as indicated in (2.5). (a) The support of the pure AdS smearing

function K(B|b′) is all boundary points b′ spacelike separated from B (hatched region). (b)

Had the AdS-Rindler smearing function existed, it would have only made use of the boundary

region that overlaps with J+(q)∩ J−(p) (the intersection of the causal future of q and causal

past of p), where q and p are chosen so that J+(q) ∩ J−(p) just barely contains B. Any

changes outside this bulk region J+(q) ∩ J−(p) would have been manifestly irrelevant for

computing Φ(B).

is close to the boundary. However, the smearing function (2.8) does not reflect this

intuition. Indeed, the limit of (2.8) when B is close to the boundary,

K(r →∞, t,Ω |b′)→ r∆−d [cos(t− t′)− cos(Ω− Ω′)]
∆−d

(2.9)

is not at all peaked at small t− t′ and Ω− Ω′.

AdS-Rindler smearing function

Perhaps the smearing function (2.8) is not optimal and uses more boundary data than

actually necessary? The minimal possible boundary region (shown in Fig. 1b) can

be found by picking boundary points p, q such that B is just barely contained in the

intersection of the causal future of q with the causal past of p, J+(q) ∩ J−(p). The

intersection of J+(q) ∩ J−(p) with the boundary yields the smallest boundary region

allowed by causality [16]. A convenient coordinate system to use which covers only this
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region is AdS-Rindler, which in AdS3 takes the form

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dx2. (2.10)

In Ref. [7] construction of a smearing function of this form was attempted, but the

procedure fails. The solution for the modes in terms of a hypergeometric function is [17]

Φωk(r, t, x) = r−∆

(
r2 − 1

r2

)−iω/2
F

(
∆− iω − ik

2
,
∆− iω + ik

2
,∆,

1

r2

)
ei(kx−ωt).

(2.11)

For k � ω the modes have an exponential growth in k. As a result, the integral (2.6)

doesn’t converge. Note that although AdS-Rindler asymptotes to the Poincare Patch at

large r, modes with k � ω are forbidden in Poincare Patch but allowed in AdS-Rindler.

Had an AdS-Rindler smearing existed, it would have guaranteed a smearing func-

tion for points B in the large r region of any asymptotically AdS geometry. The field

and metric at any point outside of J+(q)∩J−(p) would have been manifestly irrelevant.

In the absence of an AdS-Rindler smearing function, all we have is the global smearing

function. Since it makes use of the entire spacelike separated region from B, changes

to the field anywhere in the bulk could potentially have an impact on reconstruction

of Φ(B). While we wouldn’t expect a small perturbation of the metric at the center of

AdS to have a significant impact on the form of the smearing function, a black hole in

the center is a major change to metric and the existence of a smearing function is no

longer guaranteed.

Our goal will be to understand in which circumstances the smearing function does

and doesn’t exist; when (2.6) does and doesn’t converge. In the following section we

analyze the bulk modes in an AdS-Schwarzschild background.

3 Solving the wave equation

In this section we rewrite the wave equation for a scalar field in the form of a Schrödinger

equation, allowing us to easily analyze the solutions.

We consider a scalar field Φ(B) in a static, spherically symmetric background,

ds2 = −f(r)dt2 +
dr2

h(r)
+ r2dΩ2

d−1. (3.1)

To leading order in 1/N the field Φ satisfies the free wave equation

1
√
g
∂µ(
√
ggµν∂νΦ)−m2Φ = 0. (3.2)
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Figure 2. The wave equation can be recast as a Schrödinger equation (3.5). We plot the

global AdS4 potential (3.8) for l = 3 for a massless field. The plot on the left is in terms of

the radial coordinate r appearing in the AdS metric (3.7). The plot on the right is in terms

of the tortoise coordinate r∗, and is the one relevant for solving (3.5). The two are related

through r = tan r∗. The tortoise coordinate has the effect of compressing the potential at

large r, while leaving small r unaffected. The AdS barrier occurs at r∗ very close to π/2; its

narrowness allows the modes to decay only as a power law: φ ∼ r−∆.

Separating Φ as

Φ(r, t,Ω) = φ(r)Y (Ω)e−iωt (3.3)

gives for the radial field φ(r),

ω2

f
φ+

1

rd−1

√
h

f
∂r(
√
fhrd−1∂rφ)− l(l + d− 2)

r2
−m2φ = 0. (3.4)

Letting φ(r) = u(r)/r
d−1
2 and changing variables to a tortoise-like coordinate dr∗ =

dr/
√
fh turns (3.4) into a Schrödinger-like equation

d2u

dr2
∗

+ (ω2 − V (r))u = 0, (3.5)

with a potential

V (r) = f

[
(d− 1)

4r

(fh)′

f
+

(d− 1)(d− 3)

4

h

r2
+
l(l + d− 2)

r2
+m2

]
. (3.6)

We examine the form of the potential in global AdS and AdS-Schwarzschild:
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Figure 3. A plot of the AdS4-Schwarzschild (r0 = 1) potential (3.10) as a function of the

radial coordinate r. The plot on the left is for l = 4, and the one on the right for l = 10.

Unlike for pure AdS, ω is not bounded from below by l; for a fixed ω, l can be arbitrarily

high. The barrier an ω mode must pass through grows as l increases. This results in the

ω � l modes having exponential behavior in l. Intuitively, these modes become ever more

confined near the horizon with increasing l.

Global AdS

Global AdSd+1 has the metric

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−1, (3.7)

and correspondingly a potential

VGlobal(r) = (1 + r2)

[
d2 − 1

4
+m2 +

(d− 1)(d− 3) + 4l(l + d− 2)

4r2

]
. (3.8)

The potential for global AdS is plotted in Fig. 2. The potential is dominated

at small r by the angular momentum barrier l(l + d − 2)/r2, and at large r by the

AdS barrier proportional to r2. At intermediate radius, these terms balance and the

potential attains a minimum set by the angular momentum l. The minimum of the

potential, which at large l is approximately l(l + d− 2), sets the lower bound on ω.

AdS-Schwarzschild

AdS- Schwarzschild is of the form

ds2 = −
(

1 + r2 −
(r0

r

)d−2
)
dt2 +

dr2

1 + r2 −
(
r0
r

)d−2
+ r2dΩ2

d−1. (3.9)
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giving a potential

VBH(r) =

[
1 + r2 −

(r0

r

)d−2
] [

d2 − 1

4
+m2 +

(d− 1)2

4

rd−2
0

rd
+

(d− 1)(d− 3) + 4l(l + d− 2)

4r2

]
.

(3.10)

The potential for AdS-Schwarzschild is shown in Fig. 3. For large r the behavior is

the same as for pure AdS. However, the behavior is different for r close to the horizon:

the factor of f vanishes at the horizon, forcing the potential to vanish as well. The

vanishing of the AdS-Schwarzschild potential at the horizon allows ω to be arbitrarily

small, regardless of the value of l. This is in contrast with pure AdS.

BTZ

A nonrotating BTZ black hole has a metric similar to AdS-Rindler (2.10). In the form

of (3.1), f(r) = h(r) = r2 −M , giving a potential

VBTZ(r) = (r2 −M)

(
3

4
+m2 +

l2 +M/4

r2

)
. (3.11)

The BTZ potential has similar properties to that of AdS-Schwarzschild.

4 Black hole smearing functions and large angular momentum

modes

In this section we explain why global AdS admits a smearing function while AdS-black

hole backgrounds do not. The reason is simple: if a black hole is present, modes with

l � ω (and l arbitrarily large) become allowed. These modes are highly suppressed at

large r by the centrifugal barrier. An attempt to calculate the smearing function via a

mode sum immediately gives a divergence when performing the sum over l at a fixed

ω. We will show there is no smearing function in two ways. First in Sec. 4.1 we show

the existence of these l � ω modes in itself, independent of the details of the metric,

prevents a smearing function for bulk points at large r. In Sec. 4.2 we use WKB to

directly solve for the modes, showing there is no smearing function for any bulk point

B. We should note that there are other cases where a smearing function fails to exist,

even without a horizon and the associated l� ω modes, as we will show in Sec. 5.

In Sec. 4.1 we review how in pure AdS modes oscillate as eiqz where z = 0 is the

boundary and q2 = ω2−l(l+d−2). If modes existed with q2 < 0, then they would grow

exponentially as eκz where κ2 = −q2. Since black hole backgrounds asymptotically

approach pure AdS, their q2 < 0 modes will display this exponential behavior in l.
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Connecting with the discussion in Sec. 2, this means the sum in (2.6) will not converge,

and hence these modes forbid a smearing function for bulk points near the boundary.

In Sec. 4.2 we show that in the limit of high l, the potential (3.6) considerably

simplifies, with only the centrifugal barrier remaining. Using WKB we solve to find

the modes. The result shows an exponential behavior in l for these l � ω modes, for

any bulk point. Thus we find there is no smearing function for any point in any static

spherically symmetric spacetime with a horizon.

4.1 Asymptotic behavior of the wave equation

For an asymptotically AdS space, at large r the f(r), h(r) in (3.1) have the limit

f(r), h(r)→ r2. Changing variables to z = 1/r, we write the metric as

ds2 =
−dt2 + dz2 + dΩ2

z2
. (4.1)

For small angles (4.1) resembles the metric of the Poincare Patch. The wave equation

for the radial modes is

z2φ′′ − z(d− 1)φ′ + (z2q2 −m2)φ = 0, (4.2)

where q2 = ω2 − l(l + d− 2). Substituting φ(z) = zd/2ψ(z) yields

z2ψ′′ + zψ′ + (z2q2 − ν2)ψ = 0, (4.3)

where we defined ν2 = m2 + d2/4. For ω2 > l(l + d − 2) this gives ψ(z) = Jν(qz) and

hence

φ(z) = zd/2Jν(qz), (4.4)

which resembles the usual solution in the Poincare Patch.6 Modes with ω2 < l(l+d−2)

have negative q2. Of course these modes don’t exist in pure AdS, but they do in AdS-

Schwarzschild. Defining κ2 = −q2, we get ψ(z) = Jν(iκz) ≡ eiνπ/2Iν(κz).7 Since the

Bessel function Jν(x) oscillates, Iν(x) grows exponentially. We can see the exponential

growth directly. Letting φ(z) = z
d−1
2 u(z), (4.2) becomes

u′′ −
[
κ2 +

ν2 − 1/4

z2

]
u = 0 . (4.5)

6The other solution, Yν(qz), is discarded because it doesn’t have the correct behavior φ→ z∆ near

the boundary that is expected of a normalizable mode.
7In the context of Euclidean AdS/CFT in the Poincare Patch one has this scenario of q2 < 0.

There are two solutions: Iν(κz) and Kν(κz). The Kν(κz) solution is kept while the Iν(κz) is discarded

precisely because of its exponential growth in the bulk. Of course, for us Kν(κz) cannot be kept since

it grows exponentially as the boundary is approached and so is nonnormalizable.
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In the limit of z �
√
ν2 − 1/4/κ, Eq. 4.5 is solved by u = eκz. Thus, we see that for

large l and l� ω the modes behave as

φ(z) = z
d−1
2 elz. (4.6)

Our use of the pure AdS metric is justified for sufficiently small z. However for

any z > 0, there exists an l sufficiently large such that z �
√
ν2 − 1/4/κ is satisfied.

Since computing a smearing function involves summing over l arbitrarily large, we are

guaranteed to reach regime (4.6) at sufficiently high l.

Smearing function for static spherically symmetric spacetimes

In the case of static spherically symmetric spacetimes, the solutions (3.3) can be inserted

into the smearing function (2.6), giving

K(r, t,Ω|t′,Ω′) =

∫
dωeiω(t−t′)

∑
l,mi

φω,l(r)Ylmi
(Ω)Y ∗lmi

(Ω′) , (4.7)

where mi denotes all the angular quantum number, m1, ...,md−2, and we have nor-

malized the time dependent piece with respect to the boundary Klein-Gordon norm.

The radial modes φω,l are solutions to the radial wave equation (3.5) and should be

normalized so that φωl → r−∆ as r → ∞. For AdS-Schwarzschild, the energies ω are

continuous and so we have written an integral over ω; for global AdS this would be

replaced by a discrete sum over n as ωn = 2n+ l + ∆.

If only modes with ω >
√
l(l + d− 2) are allowed then, as we saw above, the near

boundary solution (4.4) is, when properly normalized,

φωl(r) = 2νΓ(ν + 1)
Jν(q/r)

rd/2qν
. (4.8)

Inserting the φωl(r) into (4.7), we see the sum converges. On the other hand, for modes

with ω <
√
l(l + d− 2), and in particular the high l ones with solution (4.6), the sum

over l in (4.7) is hopelessly divergent.

4.2 Large angular momentum and WKB

Our goal here is to directly show the exponential behavior in l of the modes φωl(r) for

large l and l � ω for any bulk point. The smearing function doesn’t exist due to the

modes with arbitrarily large l, which is why this is a sufficient limit to consider. We

will also see how the details of the metric become irrelevant in the large l limit, with

the centrifugal barrier dominating the potential (3.6).
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Modes with energy ω have a turning point at r = rt which satisfies V (rt) = ω2. In

the limit of l � ω, the turning point approaches the horizon, rt ≈ rh. For r > rt the

modes always have ω2 < V and thus decay. For r > rt, we can use WKB:

u(r) =
1
√
p

exp

(
−
∫ r

rt

p dr∗

)
, (4.9)

where p2 = V − ω2.

We will only be interested in the exponential term, so we drop the 1/
√
p prefactor.

As discussed in Sec. 2, in order to compute the smearing function we need to normalize

all the bulk modes so that their boundary limit (upon stripping off r∆) is normalized

with respect to the boundary norm. In terms of u(r), we need its coefficient to approach

1 as r →∞. Thus,

u(r) = exp

(∫ ∞
r

dr′√
f(r′)h(r′)

√
V (r′)− ω2

)
, (4.10)

where we used the relation between the radial coordinate and the tortoise coordinate,

dr∗ = dr/
√
fh.

The key point is that for any point outside the horizon, r > rh, there is an l

sufficiently large such that the potential (3.6) can be approximated by

V (r) = f
l2

r2
, (4.11)

where for simplicity we used l(l+ d− 2) ≈ l2. In (4.10) it is sufficient to only integrate

for some finite distance δ away from r to see the exponential behavior in l,

u(r) > exp

(∫ r+δ

r

dr′√
f(r′)h(r′)

√
V (r′)− ω2

)
. (4.12)

For any δ we want, there is an l sufficiently large such that the potential (3.6) can be

approximated by (4.11) for all radii between r and r+ δ. Thus, using the approximate

potential (4.11) and neglecting ω2 we get,

u(r) > exp

(
l

∫ r+δ

r

dr′

r′
√
h(r′)

)
. (4.13)

This demonstrates the exponential growth in l of the modes. This is true for any bulk

point r; the only difference is the larger r, the greater the l before the exponential

growth (4.13) sets in.

– 14 –



In the limit of large r we can approximate f(r) ≈ h(r) ≈ r2. This yields u(r) →
el/r. Recalling φ = u/r(d−1)/2, this reproduces (4.6). Additionally, (4.13) matches the

exponential growth in l of the exact hypergeometric function solution (2.11) found in

[17] for the BTZ black hole.

5 Smearing functions for other spacetimes

We have seen if there is a horizon the potential (3.6) vanishes at the horizon and

consequently any frequency ω > 0 is allowed. The arguments of the previous section

show there is no smearing function. In this section we examine more generally when

a smearing function exists. In Sec. 5.1 we consider a general static spherically sym-

metric spacetime (3.1), and find a simple criteria on the metric (5.4) which gaurantees

there will be modes with exponential behavior in l for high l, and hence there will not

be a smearing function for some bulk points. In Sec. 5.2 we examine the possibility

of trapped null geodesics as a proxy for a smearing function not existing for an ar-

bitrary spacetime. In the special case of static spherically symmetric spacetimes we

demonstrate that the existance of trapped null geodesics prevents a smearing function.

5.1 Static spherically symmetric spacetimes

In this section we examine the existence of a smearing function for spacetimes of the

form (3.1) which do not possess horizons.

The question of the existance of a smearing function is the question of the conver-

gence of the sum (4.7) over ω and l at a given value of r. To answer this question, we

will need to estimate the size of each mode with a given ω and l, for every ω that is

allowed. It is convenient to divide the (ω, l)-plane into three regions, shown in Fig. 4,

according to the sizes of ω and l relative to certain large values ω0 and l0 which depend

only on f and h and will be defined carefully below. Region A consists of all modes

with l > l0, region B consists of all modes with ω > ω0 and l < l0, and region C consists

of the remaining modes with ω < ω0 and l < l0.

Approximating the potential

To aid our calculation, we will approximate the behavior of the potential for large,

small, and intermediate values of r.

Large r

Since the metric approaches pure AdS at large r, we can approximate f(r) ≈
h(r) ≈ r2 for r > R, where R is some sufficiently large radius that depends on f and
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A

B

C

(a)

Figure 4. We are interested in finding for which static spherically spacetimes without

horizons a smearing function exists. The smearing function involves the sum (4.7) over modes,

which can be grouped into 3 different regimes. Only A posses a threat to the convergence

of (4.7). At large r the metric, and consequently the potential (3.6), looks like that of pure

AdS (5.1). At smaller r, in regime A the angular momentum l is so large that all terms in

the potential except for the centrifugal barrier (5.3) are irrelevant.

h. The potential for r > R thus takes the form

V (r) ≈ l(l + d− 2) +

(
d2 − 1

4
+m2

)
r2, r > R. (5.1)

Small r

As r → 0, h(r) → 1 to avoid a conical singularity, and f(r) → f0 > 0. Thus we

can find some small ε > 0 such that

V (r) ≈ f0

(
l(l + d− 2) + (d− 1)(d− 3)/4

r2

)
, r < ε. (5.2)

Note that the form of the potential implies that ω is quantized. Aside from the constant

f0, the potential for r < ε does not depend on the details of the geometry.

Intermediate r

For ε < r < R it will be useful to do a separate analysis for modes lying in the

three different (ω, l)-regions shown in Fig. 4.

A: Since f , h, and their derivatives are bounded functions for r < R, we can find

an l0 sufficiently large so that for all l > l0 all terms in the potential (3.6) except the

centrifugal barrier are irrelevant for all r < R,
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l(l+d-2)

(a)

Figure 5. The wave equation can be recast as a Schrödinger equation (3.5) with a potential

V (r) and an energy ω2. Here we sketch a possible potential (3.6) for which a smearing

function doesn’t exist. At large r, r > R, the the potential looks like that of pure AdS (the

figure has been compressed; the distance between r2 and R is really much larger). At smaller

r the potential, for large l, is approximated by (5.3). If f(r)/r2 ever has positive slope, as

shown above, some of the modes ω (dashed line) will have to tunnel through the barrier.

Consequently, the sum (4.7) will diverge for r < r2.

V (r) ≈ f(r)
l(l + d− 2)

r2
, r < R and l > l0. (5.3)

This potential agrees with our small-r approximation above when r < ε. Note that the

potential in this region has an overall scaling with l.

B: We choose an ω0 sufficiently large such that ω2
0 � V (r) for all ε < r < R and

l < l0. For modes in region B the potential is negligible at intermediate values of r.

C: For modes in region C all of the details of the potential are important, and

there is no useful approximation.

Convergence of sum for smearing function

Since ω and l are quantized, there are only a finite number of modes in region C, so that

part of the sum (4.7) converges. In region B the modes experience the same potential

as in pure AdS (aside from an inconsequential scaling of f0 at small r), so that part of

the sum will converge as well. This only leaves region A to analyze.
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Let us suppose the potential (5.3) has positive slope for some range of r,

d

dr

(
f(r)

r2

)
> 0 for some r. (5.4)

We will now show if this occurs then there is no smearing function for some bulk

points due to an exponential divergence in region A. In Fig. 5 we sketch an example

of potential for which (5.4) occurs. Consider the limit of large ω and large l. This is

the classical limit of the Schrödinger equation (3.5), as can be seen from the fact that

the range of r∗ is finite and fixed, while the potential V (r) and energy ω are getting

large. Thus, it is guaranteed that there exists a mode ω lying within any classically

allowed energy interval. If (5.4) is satisfied in a neighborhood of r = r1, then that

neighborhood consists of classical turning points for an interval of possible values of ω.

Let r2 > r1 be any point in the classically forbidden region for these values of ω.8 Then

the field at any r in the range r1 < r < r2 (or any r in the classically allowed region

r < r1) is larger than that at r2 by a WKB factor of

exp

(∫ r2

r

dr√
fh

√
V − ω2

)
= exp

(
l

∫ r2

r

dr√
fh

√
f

r2
−
(ω
l

)2
)
. (5.5)

There is a subtlety here: in addition to this decaying solution, there is also an

exponentially growing solution and the eigenstate will in general be a linear combina-

tion of the two if there is a second classically allowed region when r > r2 (as in the

scenario of Fig. 5). If both solutions contribute with comparable coefficients, then the

eigenstate will not be exponentially larger at r than it is at r2 as we have claimed.

That phenomenon occurs, for instance, in the symmetric double well potential familiar

from quantum mechanics. However, that kind of behavior is special to the symmetric,

degenerate case. As long as the energy differences between approximate eigenstates

localized on either side of the barrier is larger than the exponentially small tunneling

factor, the true eigenstates of the system will be exponentially well localized on one

side of the barrier, and we can restrict attention to those localized in the r < r1 region.

It is clear that (5.5) can be made arbitrarily large by making l large. Speficially,

let α = ω/l where ω and l are the modes considered above which are suppressed and

give behavior (5.5). Now consider the portion of the sum (4.7) concentrated on the line

of fixed α. Thus, (4.7) will not converge and there will not be a smearing function for

points r < r2. We should note that unlike the black hole case considered earlier, which

8We treat r1 and r2 as if they are less than R for the puprose of approximating the potential.

However, if they are larger than R it makes little difference. In the large-l limit the extra terms in

(5.1) become irrelevant for r < r2.
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did not have a smearing function for any bulk point, for a potential like in Fig. 5 there

is a smearing function for bulk points at large r.

A remaining question is the converse of our statement: if f(r)/r2 has non-positive

slope for all r, is the smearing function guaranteed to exist? In this case there are no

turning points at intermediate values of r, and hence no opportunity for exponential

WKB factors. However, it is possible that the magnitude of the slope of f(r)/r2 is

small for some range of r, and then the 1/
√
p factor in (4.9) can become large. It is

conceivable that one could still make sense of (4.7), despite power law growth in the

summand, through regulation and analytic continuation. This requires further analysis,

and is something we intend to investigate in subsequent work.

5.2 Trapped null geodesics

We have established a smearing function does not exist in a black hole background. In

a general static spherically symmetric spacetime, we have shown that it does not exist if

the metric has the property (5.4). In a more general spacetime without a high degree of

symmetry, the mode sum approach to constructing a smearing function is inapplicable.

This motivates us to search for a simply proxy for the existence of a smearing function.

In this section we explore the following proposal: there is a smearing function iff all

null geodesics have at least one endpoint on the boundary.

A smearing function allows one to make the statement (1.2) about the mapping

between bulk and boundary operators. However, finding a smearing function is a

classical field theory problem. At the level of individual modes we saw a smearing

function for a point B in the bulk fails if there are modes whose imprint on the regulated

boundary is exponentially small compared to their value B. Throughout this paper we

held the boundary imprint fixed and saw the value at B grow arbitrarily large, causing

(2.6) to diverge. Keeping the field value at B fixed, this would correspond to modes

with boundary imprint becoming arbitrarily small.

Since field configurations are built out of modes, we can state this as: a smear-

ing function fails to exist if there are bulk field solutions Φ(B) with arbitrarily small

boundary imprint. When one takes the geometric optics limit, field solutions become

arbitrarily well localized along null geodesics. At a heuristic level, this motivates the

simple criterion of trapped null geodesics, which we will now explore quantitatively..9

9In [18, 19] it was shown for a large class of hyperbolic differential equations that the diagnostic

if reconstruction of a bulk field depends on boundary data continuously (for a particular choice of

boundary norm) is that there not be any trapped null geodesics. In [20] null geodesics were explored

in the context of subregion dualities due to these results and with the motivation of establishing if a

collection of boundary observes can physically reconstruct the bulk field in a subregion of AdS. This

question is of secondary concern to us here; our interest is rather in the nature of the bulk-boundary
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r

U

(a)

r

U

(b)

Figure 6. The equation for a null geodesic is that of a particle traveling in a 1-d potential

(5.7). The potential is plotted for (a) pure AdS and (b) AdS-Schwarzschild (M = 1 in AdS4).

In pure AdS all null geodesics have an endpoint on the boundary, as can be seen from the

figure on the left. This is in contrast to spacetime with horizons (right figure) which have

some null geodesics which are trapped as a result of the potential U vanishing at the horizon.

More generally, whenever there are trapped null geodesics, then there is no smearing function

for some points in the bulk.

Geodesic equation

To find the motion of null geodesics in the spacetime (3.1), we note that the timelike

Killing vector gives the conserved quantity E = f ṫ, and the Killing vector in one of

the angular directions, θ, gives L = r2θ̇. Here we are using the notation ẋµ ≡ dxµ/dλ

where λ is the affine parameter.

The geodesic equation can be written as

f

h
ṙ2 + L2 f

r2
= E2. (5.6)

This is just the Newtonian energy conservation equation for a particle with position-

dependent mass moving in a potential

U = L2 f

r2
. (5.7)

In black hole backgrounds the potential (5.7) vanishes at the horizon, leading to trapped

null geodesics. More generally, (5.7) tells us there are no trapped geodesics iff U ′ < 0

for all r.

It is interesting to note that even a small dense star in AdS can have trapped null

geodesics. All the star needs is to have a radius R which lies in the range 2M < R <

dictionary (if (1.2) is possible).
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3M . The metric for r > R is described by the Schwarzschild metric. Since for the

Schwarzschild metric U ′(r) > 0 for r < 3M , null geodesics will get trapped at small r.

Trapped null geodesics ⇒ no smearing function

In 5.1 we saw that for the question of the existence of a smearing function, only the

behavior of the high l modes was relevant. In this regime (labeled A in Fig. 4) the

potential in the Schrödinger equation for the modes was well approximated by (5.3).

Yet this is exactly the same as the classical particle potential (5.7) for a null geodesic.

Our condition for a smearing function not existing (5.4) is the same as the condition

for the existence of trapped null geodesics. Thus we conclude that if there are trapped

null geodesics, then a smearing function does not exist.

We note that since null geodesics are only sensitive to the local metric, trapped null

geodesics cannot tell us for which regions of the bulk there is no smearing function.

If a null geodesic is confined to r < rt, this indicates there is no smearing function

for r < rt, but it says nothing about a smearing function for r > rt. The existence

of a smearing function for r > rt depends, as we explained above, on the existence

of additional classically allowed regions with V (r) < ω2 for r > rt. A classical null

geodesic confined to r < rt cannot probe these aspects of the potential.

6 Conclusions

In this paper we have further explored one of the approaches to establishing the dic-

tionary between bulk and boundary operators. In this approach, a bulk operator is

expressed in terms of bulk operators at asymptotically large radius, which are then

mapped to local boundary operators through (1.1). While this approach works in pure

global AdS, we have argued it can fail if there are bulk modes which have an arbitrarily

small tail at large radius. We have shown that AdS-Schwarzschild backgrounds are a

case where this smearing function approach fails as a result of modes with arbitarily

high angular momentum l, but fixed boundary energy, ω.

Understanding in general when a spacetime has a region for which a bulk operator

cannot be expressed in terms of smeared local boundary operators remains an important

future problem. We have shown that for static, spherically symmetric spacetimes, this

question can be answered by considering the behavior of modes with large ω and large l.

These modes satisfy a Schrödinger-like equation with a potential that is the same as the

potential experienced by classical null geodesics. These results suggest that a smearing

function may not exist for some bulk points in any spacetime which has trapped null

geodesics .
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The extent to which the absence of a smearing function modifies the bulk-boundary

dictionary remains to be seen. It is possible one can obtain an approximate smearing

function by imposing a cutoff in the bulk and excluding high l and high ω modes

from the sum (4.7) defining the smearing function. Additionally, as we discussed, the

existance of a smearing function is a more stringent requirement than simply being

able to reconstruct a bulk field solution given some particular boundary data. To this

extent, even though (2.5) may not exist, (2.4) exists at N = ∞. However, unlike a

smearing function, it is unclear that (2.4) can be generalized to situations with broken

spherical and time-translation symmetry, and so may be of limited use. Another option

would be to try to construct a smearing function which uses the complexified boundary,

as done in [7] for AdS-Rindler, and perhaps this would gives clues as to what the real

spacetime representation of the bulk-boundary map is.

When a smearing function does exist, it means that bulk data provided at large

radius for a sufficient time extent completely determines the bulk everywhere. In a

way, it makes holography seem less powerful; a spatial direction has just been replaced

by a time direction. Of course, the power of AdS/CFT is due to the CFT Hamiltonian

which one can use to evolve the right side of (2.6) to a single time. The resulting

operator is highly nonlocal and known as a precursor [21]: an operator which encodes

what happened deep in the bulk long before casuality allows a local operator O(b) to

know about it.

The absence of a smearing function makes the holographic dictionary more elusive.

Bulk evolution combined with boundary evolution are not even in principle sufficient

to answer the question of what the precursers are. Other methods must be developed

to find the dictionary between bulk operators and nonlocal boundary operators.
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