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Abstract

Single-scale approaches to the determination of the optical flow field from the time-varying brightness pattern
assume that spatio-temporal discretization is adequate for representing the patterns and motions in a scene. However,
the choice of an appropriate spatial resolution is subject to conflicting, scene-dependent, constraints. In intensity-
based methods for recovering optical flow, derivative estimation is more accurate for long wavelengths and slow
velocities (with respect to the spatial and temporal discretization steps). On the contrary, short wavelengths and
fast motions are required in order to reduce the errors caused by noise in the image acquisition and quantization
process.

Estimating motion across different spatial scales should ameliorate this problem. However, homogeneous
multiscale approaches, such as the standard multigrid algorithm, do not improve this situation, because an optimal
velocity estimate at a given spatial scale is likely to be corrupted at a finer scale. We propose an adaptive multiscale
method, where the discretization scale is chosen locally according to an estimate of the relative error in the velocity
estimation, based on image properties.

Results for synthetic and video-acquired images show that our coarse-to-fine method, fully parallel at each scale,
provides substantially better estimates of optical flow than do conventional algorithms, while adding little com-

putational cost.

1 Reliable Estimation of the Optical Flow

During the last decade there has been an increasing in-
terest in analyzing sequences of time-varying images
and in particular in determining the 2-D motion or
velocity field, which is the projection of the 3-D veloci-
ty field onto the image plane—see (Nagel 1978) and
(Verri & Poggio 1989) for reviews. The two main ap-
proaches that have been proposed for determining the
optical flow (the apparent motion of the brightness pat-
tern approximating the underlying motion field) are
intensity-based methods and methods based on the
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matching of tokens, such as zero-crossings or other
high-level features—for a review see (Ullman 1981) and
(Hildreth & Koch 1987). The intensity-based methods,
in turn, can be subdivided into two subclasses. Cor-
relation, second-order or spatio-temporal energy
models essentially multiply the linearly filtered inten-
sity value at a given point with the linearly filtered in-
tensity value arriving, delayed in time, from a neighbor-
ing receptor (Hassenstein & Reichardt 1956; Adelson
& Bergen 1985; van Santen & Sperling 1984; Poggio
& Reichardt 1973; Watson & Ahumada 1985; Reichardt
et al. 1988). Differential methods, on the other hand,
exploit the relationship between velocity and spatial and
temporal gradients in the image brightness (Fennema
& Thompson 1979; Horn & Schunck 1981; Hildreth
1984; Bulthoff et al. 1989; Nagel 1978; Yuille &
Grzywacz 1988; Wang et al. 1989; Uras et al. 1988).
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Both the correlation as well as the gradient approach
make a basic assumption about the scale of the velocity
relative to the spatial neighborhood and to the temporal
discretization step or delay. For instance, if the velocity
of the pattern is much larger than the ratio of the spatial
to the temporal sampling step an incorrect velocity
value will be obtained.

Direction-selective cells in the primate visual system
exhibit a range of spatial sizes, in particular if recep-
tive field size is compared between different cortical
areas, such as between the primary visual cortex (V1)
and the middle temporal area (MT;—see, for instance,
(Maunsell & Van Essen 1983). We were thus motivated
to study how integrating motion information across dif-
ferent spatial scales could help improving the estimate
of the optical flow—see also (Koch et al. 1989).

The multigrid algorithm with the “full approxima-
tion storage”’ scheme has been suggested as a way to
solve the differential equation in Horn and Schunck’s
method (Brandt 1977; Terzopoulos 1986). This
algorithm is computationally more efficient than single-
scale methods (it converges in a time proportional to
the number of pixels in the image) and leads to a con-
sistent result at different spatial scales. Unfortunately,
both the multigrid method and simpler coarse-to-fine
continuation schemes tend to suffer from their
homogeneous computational structure. In some cases
this causes the optical-flow detection process to oscillate
between different estimates at different scales or even
to converge to a wrong solution (Enkelmann 1988;
Glazer 1984). Indeed, if no explicit direction is given
in order to select locally the appropriate scale, different
scales will, in general, provide conflicting information.

We propose a method for tuning the discretization
grid to a measure of the reliability of the information
derived from a given scale. This measure will be based
on a local estimate of the relative error in the flow field
due to noise and discretization. The flow of control is
from coarse to fine scale. We present some relevant ex-
perimental results obtained with synthetic and real-
world image sequences.

The main qualities of our approach are its
algorithmic simplicity and its parallel nature at any
given scale, making it a valid candidate for real-time
vision systems as well as for the mammalian visual
system. Alternative approaches, based on local op-
timization and iterative registration, have been studied
by Kearney, Thompson, and Boley (1984).

In this article we do not discuss the introduction of
binary motion discontinuities a la Geman and Geman,

which are necessary in order to prevent smoothing over
different physical objects and preserve object boun-
daries (Battiti 1989; Geman & Geman 1984; Harris et
al. 1990; Hutchinson et al. 1988; Poggio et al. 1988;
Marroquin 1984). We discuss in another publication
both psychophysical and electrophysiological evidence
favoring the existence of a multiscale, coarse-to-fine
strategy for computing optical flow in the primate visual
system (Wang et al. 1991).

2 Shortcomings of Homogeneous Differential
Methods

Homogeneous differential methods estimate the optical
flow using a hierarchy of resolution grids and a solu-
tion process that is the same for all points in the im-
age. In the following, we first summarize Horn and
Schunck’s approach (Horn & Schunck 1981) showing
some well-known limitations related to quantization of
intensity values and estimation of derivatives with
discretized formulas. We will then motivate our alter-
native adaptive strategy.

Horn and Schunck start with a definition of the op-
tical flow given by the following brightness constancy
equation—see also (Fennema & Thompson 1979; Nagel
1978)

Lji—lj= u+ Eyv+ E =0 (1)

with the optical flow given by (u, v) = (dx/dt, dy/dt)
and E,, E,, and E, denoting the spatial and temporal
brightness derivatives. This, of course, yields only one
linear equation in two unknowns, giving rise to the well-
known aperture problem (Marr & Ullman 1981). In this
way of formulating the optical flow, the problem is ill-
posed (Poggio et al. 1985). Horn and Schunck used a
membrane-type of smoothness constraint to regularize
the problem, leading to the minimization of the follow-
ing functional:

$ = ff (Eu + Ey + E)
Image
+ @i + uj + v + v)dedy (2

with the regularization parameter « controlling the
amount of smoothness. This functional embodies the
conflicting demands of faithfulness to the data and
smoothness. The appropriate Euler-Lagrange equations
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(E + Ey + E)E, = a?Au 3)
(Eu + Ey + E)E, = a?Av @)
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give a necessary condition for an extremum of &. The
algebraic system obtained after discretization can be
solved using local and iterative “‘relaxation’’ methods.
The solution method used throughout this work is
Gauss-Seidel lexicographic relaxation. During an up-
dating cycle the new approximation (x"*!, v"*1) of
the flow field can be determined from the estimated
brightness derivatives (Ex, E‘y, and EI) and from the
local average (", u") of the previous flow estimate
by

un+1 =g" - Ex(Ex’Zn + Ey‘jn + Et) (5)

(a2 + E2 + E?)

Vn+1 -yt Ex(ExI’—tn + EN‘y‘;n + Et) (6)
(2 + E? + E?)

Free boundary conditions are given by zero normal
derivative. In the present scheme, computation starts
from a field equal to zero on the coarsest scale, while
in a real-time continuous scheme it should start from
the previously determined field.

The basic assumption made in solving equations (3)
and (4) using discretized versions (5) and (6) is that
the spatial and temporal sampling steps are small with
respect to the given image features and motion ampli-
tudes. If the brightness changes rapidly on the scale
given by the discretization step, the accuracy of the
formulas for derivative estimation decreases, because
in this case the step cannot be considered infinitesimal.

In the one-dimensional case, the derivative estima-
tion problem can be illustrated by considering a one-
dimensional sinusoidal intensity profile sin (2#/L)
(x — vr) of wavelength L moving with velocity v. The
brightness constancy equation determines the optical
flow uniquely and the measured velocity v is given by

TR
E,
sin@a/L)(x + vt + vAr) — sin(2w/L)(x + vt — VAL)
. 2At
 sin@a/L)(x + vt + Ax) — sin2w/L)(x + vi — Ax)
2Ax

_ sin [2w/L)vAt] Ax
sin [(2#x/L)Ax] At

(N

where Ex and E, are the three-point approximations of
the spatial and temporal brightness derivatives obtained
using the spatial and temporal discretization steps Ax
and Ar. Three-point derivatives provide a better
estimate than the standard two-point forward difference
formula (O(Ax)? versus O(Ax)). Moreover, the tem-
poral and spatial derivatives are estimated at the same
point—no phase shift is present, as explained by Little
and Verri (1989). Figure 1 shows some characteristic
graphs of the relative error in the velocity as a func-
tion of the true velocity v for different values of the
dimensionless ratios vA#/L and Ax/L.

While in the limit of L converging to infinity, equa-
tion (7) converges to the correct velocity v, the relative
error in the computed velocity becomes of the order
of 100% even for small velocities when the wavelength
is less than approximately three spatial sampling steps
(L < 3Ax). When the wavelength is between one and
two sampling steps (Ax < L < 2Ax), motion reversal
may occur (depending on the magnitude of vAf), that
is, sign (V + sign (v)) = — 1. If the grid size Ax goes
to zero, the velocity estimate in equation (7) converges

to
. 2
sin [ T vAt]

2TAL
L

Thus, reducing the grid size to very small values while
leaving the temporal sampling rate fixed, will not
necessarily lead to a better velocity estimate. In fact,
the estimated velocity v is equal to the true velocity
vonly if Ax = vAz, that is if the grid size is identical
to the interframe motion!

To deal with this problem one can consider a resolu-
tion pyramid—see Burt (1984) and the contained
references. Because the high spatial frequencies are at-
tenuated at lower spatial resolution, the spatial and tem-
poral derivatives of the brightness are smoothed and
their estimate is more accurate, provided that discretiza-
tion errors do not become dominant. There has been
some previous work on multiscale determination of the
optical flow (Enkelmann 1988; Glazer 1984; Ter-
zopoulos 1986). Terzopoulos applied the multigrid
algorithm to the Euler-Lagrange equations (3) and (4).
The idea of the multigrid method consists of starting
from an approximation with smoothed error obtained
by relaxation on the fine grid and in determining a cor-
rection of this approximation on the coarser grid. This
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Fig. 1. Estimated relative error, (v — v)/v in the case of a single
moving sinusoidal pattern f(x, ) = sin Qa/L)(x — v) (with v =
1), as a function of the relative spatial Ax/L and temporal sampling
steps vA#/L. The error diverges for Ax/L = 0.5. The estimated velocity
v was computed following equation (7), based on the three-point ap-
proximation for the spatial and temporal derivatives. The 3D plot
illustrates that the error is zero along the diagonal Ax = vAt. In other
words, the velocity estimate is optimal if the spatial sampling step
is identical to the interframe motion. The relative error becomes
negative (motion reversal) for all points Ax > vAt, is positive for
Ax < vAt (for Ax < 0.5), and diverges for Ax = 0.5. The second
plot shows lines of constant relative error spaced 0.2 apart. For points
falling on the diagonal Ax = vAt (dotted line), the error is zero. We
indicated schematically the situation occurring with the use of three
spatial and one temporal sampling intervals.

is computationally less expensive and can be done
recursively by relaxation on the coarse grid with cor-
rection on the next coarser grid. The fine-to-coarse and
coarse-to-fine intergrid transfers are realized using,
respectively, restriction and interpolation operators with

local averaging properties. Note that the starting ap-
proximation itself can be obtained in a coarse-to-fine
fashion, using nested iterations. Terzopoulos reported,
for the case of an expanding Lambertian sphere, a
substantial speed-up with respect to the single-scale
relaxation (Terzopoulos 1986). It is important to point
out that this result applies to an image that contains a
unigue dominant spatial frequency (related to the sphere
diameter). Because in this special case the velocity is
parallel to the brightness gradient, the first iteration is
already sufficient (in the absence of noise) to recover
the correct optical flow. However, the multigrid method
turns out to be much less effective for more complex
images with superposed frequencies, or even for single
frequencies if, as will be shown, a grid coarser than
the finest one provides a better estimate. This difficulty
has also been encountered by Glazer (1984) and Enkel-
mann (1988) and is relevant to any homogeneous multi-
scale scheme, when conflicting information is present
at different scales.

An example is given in one dimension by consider-
ing two scales with a 2 : 1 resolution and an intensity
profile which is the sum of two sine waves of different
wavelengths L, and L,. Suppose that, in terms of the
fine grid spatial step, L; = 3, L, = 6, and the inten-
sity profile velocity is equal to 2 (in the following, for
simplicity, At is equal to 1). On the coarse grid the
higher frequency is almost completely suppressed by
the smoothing operation preceding the subsampling
process and the measured velocity is equal, according
to equation (7), to the true velocity v = 2. Figure 2
shows that on the fine scale there is at least a 50% error
in the velocity for any combination of the two frequen-
cies. In particular, the measured velocity is equal to
1 for an intensity profile with only the low frequency
and it has an opposite sign when the ratio between the
high and low frequencies is greater than 0.5. It is worth
noting that if v = 1, the correct velocity would be
recovered at the fine scale.

Typically, the image brightness is a superposition
of different frequencies corresponding to the different
objects and textures in the scene. Thus, a multiscale
scheme a la multigrid, involving a bidirectional infor-
mation flow from high-to-low and low-to-high resolu-
tion, is not appropriate because it is likely to mix in-
coherent information from the different scales. The
scheme may not converge or it may converge to an in-
correct result.!

The previous examples and considerations suggest
a new strategy. It starts by estimating the flow field at



Computing Optical Flow Across Multiple Scales An Adaptive Coarse-to-Fine Strategy 137

Egtimated velocity
<

+
. .5

+ J
1.5 2.

Ratio short / long wavelenght component

Fig. 2. Measured velocity at the fine scale (Ax = 1) for two superimposed sinusoidal patterns as a function of the ratio of the amplitude of
the short to the amplitude of the long wavelength components. The correct velocity, equal to 2, is recovered at the coarser scale (Ax = 2);

dashed line).

a reasonably coarse scale. This approximation is then
improved on successive finer scales only in regions of
the image where its estimated error is greater than a
predefined threshold. We therefore obtain a local in-
homogeneous approach, where areas of the images
characterized by different spatial frequencies or by dif-
ferent motion amplitudes are processed at the ap-
propriate resolutions, avoiding corruption of good
estimates by inconsistent information from a different
scale.

3 Estimation of the Flow Field Error

Let us now derive an estimate for the relative error in
the flow field. The effects caused by spatial and tem-
poral quantization (finite-grid step in the derivative
estimation formulas) and intensity quantization are
discussed separately. The error estimate will be derived
in the one-dimensional case and then extended to two
dimensions using rotational invariance.

3.1 Error in Derivative Estimation

We first consider the contribution to the flow-field error
due to the approximation of the brightness derivatives.

Let f(x — w) be a one-dimensional translating
brightness profile. Taylor’s expansion yields the three-
point approximation to the first derivative

f(y + h)z_hf(y — h) :f,(y) +fm(6y)h2 4 O(h“) (8)

In 1-D, the brightness constancy equation reduces to
Ev + E, =0, where E(x, t) = f(x — vt) (see equa-
tion (1)). It is easy to show (see appendix) that, neglect-
ing higher-order terms, the three-point approximations
of the temporal and spatial derivatives are given by

B~ f - L= ey

E

X

fot
6

U

©)

where Ax and At are the spatial and temporal sampling
steps. By substitution in the brightness constancy equa-
tion, we obtain an approximate expression for the
measured velocity as a function of the correct velocity

so JE L _nouresye

E, f F f(Ax)?/6

which leads (by second-order Taylor’s expansion) to the
relative error
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Thus, provided that higher-order terms can be
neglected, the relative error in the flow field due to the
three-point approximation of the brightness derivatives
is close to zero when the interframe motion vAt is of
the order of the spatial sampling step Ax. In particular,
for a sinusoidal brightness profile sin 2a/L)(x — vf)
of wavelength L, we have

6v 27r

R

[(vm)z - (Ax)z] ‘ an

Ivi vl

((Ax)z - (vAz)2] ‘ (12)

Notice that the approximation inherent in equation (9)
breaks down for large values of Ax and vAr.

3.2 Quantization Error

We shall now estimate the flow field relative error due
to the quantization of the intensity levels. This provides
an upper bound on the relative error due to the noise
in the image brightness. Under the assumption that the
errors have a Gaussian distribution and therefore

- (e (2]

and assuming that the one-dimensional constancy equa-

tion v = — E/F, holds (where v is not null) we ar-

rive at the following expression for the relative error:
"Sv| JGEJE) + GEJE)? , (13)
v

where 6F, and 8E, are the errors on the temporal and
spatial derivatives respectively. We here assume that
the image intensity is an integer going from 0 to a max-
imum value n, so that the maximum quantization error
in the intensity is less than 1. If we consider the errors
induced by the quantization process using the three-
point estimate of the derivatives, we have
1 1

OF, = — and 6F, = — (14)
2Ax 2At

Because we are interested in an upper bound on the
error, we have used the maximum error instead of the
average discretization error or the standard deviation.
These quantities can be calculated using a statistical
model for the considered images, as explained by
Kamgar-Parsi and Kamgar-Parsi (1989). Because |v| =
|E/E,|, we can rewrite

v J(@E)* + (BE/v)?
|v| |E,]
J1/Q2Ax)% + 1/(2vAL)?

=~ (15)
|E,|

In the following we shall denote the spatial and temporal
differences with A E and A,E, respectively, that is,

AE = Ex + Ax, ) — E(x — A&x, 0
AE = E(x, t + Ar) — E(x, t — Af)

Now |E,| = |AE/2Ax| and therefore

§_v~ =~ ,\/ ! + ! (16)
vl (AE? (2vEAp?

Using the constancy equation, we arrive at
oy = \/ 1 + ! 17
vl (AE? (QEAN?

and because E, = AE/2At,
o =~ \/ 1 + 1 18)
vl (AE)? AE)?

3.3 Overall Relative Error

To quantify the overall relative error, we add the er-
ror term due to the three-point approximation of the
derivatives to the error term caused by the quantiza-
tion of the image intensity. Thus,

Y ol @aB? — AER + g+ —
g AE? (AE
(19

where the function C(x) depends on the first and third
brightness derivatives at the image point x under
consideration.

The first term refers to the approximation of the
derivatives and can be obtained from equation (11) using
the constancy equation and the two basic expressions
E, = AFE2A, and E, = AE/2Ax. Because this term
does not depend on the number 7 of brightness quan-
tization levels and since AE as well as AE are pro-
portional to n, the function C(x) must be proportional
to 1/n2 This proportionality can be easily shown for
a sinusoidal intensity profile. In this case, the first term
of equation (19) can be rewritten, according to equa-
tion (12), as
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27%(Ax)? [ [A,E] 2 IJ 20
E AE

Let us introduce the parameter p (fractional range of
intensity values in a given image), defined by p =
(maximum-intensity-minimum-intensity)/n. The typi-
cal scale for the value of the brightness derivative is
given by the range of intensity values of the sinusoid
on, divided by the wavelength L (i.e., A E/Ax =
pn/L). This relation implies that (Ax/L)? = (A E/on)?,
which leads—by substitution in equation (20)—to the
inverse relation between C(x) and n2 After completing
this substitution, we obtain the following relative er-
ror estimate:

v

vl

1 1
+
(BB (AE)
@D

C
~ —J(AEP ~ (AEP| +
pn

where the value for C is 27%/3 as suggested by the
above argument. For a general image, the fractional
range of the image p was estimated using the standard
deviation ¢ in the distribution of intensity values (o0 =
a/n). Other values of C are possible, for instance de-
rived by considering the average magnitude of the
derivative of a sinusoidal pattern, but change little the
overall result.

Paradoxically, the first term in equation (21), which
explicitly includes n, does not depend on n, while the
second term, in which n does not appear, does depend
on n. The “‘difference’” terms (like AE) grow
linearly with the number of discretization levels n,
whereas p remains constant. Therefore, because C is
a constant, the first term in expression (21) will not
depend on n, while the second term, which expresses
the contribution due to the quantization process, has
a 1/n? dependency. Thus, the amplitude of quantiza-
tion errors can be reduced by increasing the number
of quantization levels. It is clearly difficult to
determine—and even to estimate—the third derivative
of the intensity at every point in the image; but our
tests show that, as a working hypothesis, we can con-
sider it as a constant independent of the image posi-
tion. In practice, we shall use the constant estimated
for sinusoidal gratings given in equation (21). Note that
approximations are necessary since it is not possible
to evaluate the error in the optical flow accurately
without knowing precisely the optical flow itself. It is
important to point out that the final result in equation
(21) presents in a concise way the trade-off between
the two kinds of errors introduced.

According to equation (12), there is an optimal scale
at which the error contribution from the derivative
estimation will be zero. The spatial discretization step
should be equal to the interframe motion, that is, Ax
= yAt. The error caused by an incorrect estimate of
the image brightness derivatives will increase both
above and below this scale. The second error term due
to discretization, on the other hand, can be made
smaller by going to finer and finer scales. Because the
overall error estimate itself may become erroneous if
very high spatial frequencies are present, the optimal
scale for a given pixel is defined as the coarsest scale
where the relative error is less than a selected
threshold. We therefore arrive at a coarse-to-fine
approach.

The two-dimensional estimate of the overall relative
error is obtained from equation (21) by rotational in-
variance, substituting (A,E)? with the sum of the
squared differences in the two dimensions (A F)? +
(AyE)*. This amounts to measuring the field unreli-
ability according to the error on the component of the
velocity that is parallel to the brightness gradient.

4 The Error-Based Adaptive Multiscale Scheme

Preliminary processing consists in building the Gaus-
sian pyramid associated with successive images (Burt
1984). This is a 2 : 1 resolution pyramid using three
or four different spatial resolution levels computed
from a sequence of three images. The coarser versions
of these images are obtained by local averaging using
the 5-point mask proposed by Burt (1984). The pro-
cedure is then repeated iteratively to construct the low-
resolution versions of the three images. For an ap-
propriate choice of the mask, this result closely approx-
imates the convolution of the original images with
Gaussian filters (Burt 1984). In the tests that we car-
ried out, the finest scales contained 129 by 129 pix-
els. The number of layers depends on the image size;
in our experiments we usually used three resolution
layers. The spatial and temporal derivatives of the
brightness are then calculated independently at each
level of the pyramid using the three-point approxima-
tions (Little & Verri 1989).

Our strategy is based on a coarse-to-fine continua-
tion scheme, and the locally adaptive discretization is
implemented using an inhibition flag associated with
each point in the pyramid. This flag is set whenever
the estimated optical flow at the corresponding pixel
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is considered sufficiently accurate (with respect to the
selected threshold). Once the preliminary processing
is terminated, the Horn and Schunck relaxation
algorithm described in equations (5) and (6) is applied
at the lowest resolution for a selected number of cycles.
After the relaxation cycles are completed, the relative
error in the flow field—according to equation (21)—is
calculated for every pixel at the lowest resolution. This
quantity is then used to decide about the local reliability
of the optical flow. For every pixel a test is done to see
whether the error is below a defined threshold T,,,. If
the test is satisfied, the grid point corresponding to this
pixel at the finer resolution in the pyramid and its im-
mediate four neighbors (in the east, west, north, south
directions) are inhibited. The optical flow values are
then interpolated (with bilinear interpolation) to the next
finer scale where they are used as initial approxima-
tion for further local relaxations. Inhibited pixels will
not participate in the relaxation process and will main-
tain the optical flow values interpolated from coarser
resolutions, thereby preventing the corruption of a
reliable estimate due to poor derivative approximations
at the new scale. This procedure is then repeated
iteratively, such that the optical flow is only updated
at those locations where no flag is set. If a flag is set,
the associated point at the next finest grid and its
neighbors will be inhibited. The optimal grid structure
for a given image is translated into a pattern of active
and inhibited grid points in the pyramid, as illustrated
in figure 3. The final result of the computation is a
reconstruction of the optical flow at the different spatial
resolutions, together with the estimate of the relative
error.

5 Experimental Results

To measure in a quantitative way the correctness of the
derived optical flows, a series of synthetic images with
known velocity fields were generated. We also used
natural images, acquired via a video camera, with a
measured spatial displacement. Both cases allow us to
compare our estimated optical flow field against the
correct velocity field.

5.1 Two-Dimensional Sinusoidal Patterns

The generated images show a “plaid” pattern, a super-
position of sine waves of different wavelengths in the

@ ACTIVE POINTS

Fig. 3. Adaptive grid and activity pattern in our adaptive multiresolu-
tion pyramid. Absence of an active point at any. particilar location
signifies that the value of the optical flow at that particular location
is simply interpolated frorm the corresponding point in the next coarsest
level.

vertical and horizontal directions. The intensity of a
pixel with coordinates (i, j) obeys

_ 255
41 + Ry

X |1+ R+ sin [2—‘”1] + R sin 2—7ri
L l
X [1+R+sin [2—5]) + Rsin [27‘”]]}

(22

1G, )

The relative amount of short versus long wavelength

-component is determined by the parameter R, the in-

tensity is normalized to obtain values in the range

*(0-255). The first example illustrates thé ba‘is}i@;difﬁculty

aristhg in 4 muftiscale strategy. The parameter R is 1.0,
the long and short wavelengths are 7.5 and 3.22 The
resulting image is displayed in figure 4. This pattern
was moved in the plane in the north-east direction, with
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Fig. 4. The two-dimensional plaid pattern with long (L = 7.5) and
short (L = 3.2) wavelengths (see equation 22).

a velocity equal to (1, 2). Comparison of the results
of the homogeneous versus the adaptive coarse-to-fine
strategy are shown in figure 5. Ten iterations are car-
ried out on every discretization grid, bilinear interpola-
tion of results is applied before relaxation is initiated
on a finer grid.

Relaxation on the coarsest grid produces an optical
field whose difference with the correct motion flow in-
creases as a function of the iteration number. This is
caused by large quantization errors on this grid (the
intensity is almost constant and discretization errors are
large). The situation is better on the intermediate grid.
In spite of incorrect initial values obtained from the
coarser grid, the error is rapidly reduced after the first
relaxations. Error in derivative estimation reaches in
this case the minimum value (motion on this scale is
less than the dominant wavelength).

After interpolation to the finest grid, the
homogeneous scheme continues the relaxation process,
driving the result to a worse solution. This is caused
by bad derivative estimation (motion on this scale is
not small in comparison with the shorter wavelength).
On the contrary, the adaptive scheme recognizes that
the error on the intermediate scale is less than the given
threshold 7., (0.4 in this case) in most of the cor-
responding image pixels, so that no further updating
of the optical flow at this particular location at finer
scales is necessary. Thus, relaxation at the next finer

Translating Plaid Pattern

relative error

1 i T ‘homogeneous
8 — - adaptive

1 t 1 | | ! |
0.00 2.00 4.00 6.00 8.00 10.00 12.00

work units

Fig. 5. Comparison of homogeneous versus adaptive multiscale
strategy using the translating “plaid” pattern of figure 4. Graphs show
the relative error in the optical flow as a function of work units (a
work unit is defined as the amount of computation used for a com-
plete relaxation at the finest scale). Line (a): multiscale homogeneous
strategy (with no adaptation; top curve). Line (b): multiscale adaptive
strategy (curve at bottom). The adaptive algorithm “freezes” the result
at the intermediate grid because the error measure is below the
threshold T, and interpolates to the finest grid. Notice the log-

err
arithmic ordinate.

scale is inhibited and the error in the final optical flow
is similar to that on the middle scale.

The difference in the qualitative structure of the
derived optical flow can be appreciated in figure 6.
Finally, figure 7 shows a display of the estimated error
(according to equation (19)) on the different scales. The
quantization error is largest at the coarser scale, while
the derivative estimation error is largest at the finest
scale. The total error reaches the minimum on the mid-
dle scale. Furthermore, for the range of images we have
considered, our adaptive coarse-to-fine continuation
method shares with the standard multigrid algorithm
its speed. Using our coarse-to-fine strategy reduced the
computational time for our images by a factor of 50100,
when the latter converged to the correct solution.

5.2 Tuning Curve for Natural Images

The images used for this test show a pine cone moving
in the upward direction (figure 8). They were acquired
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Fig. 6. Reconstructed optical flow for the translating “plaid” pat-
tern of figure 4. (a) homogeneous multiscale strategy; (b) adaptive
multiscale strategy; (c) active (black) and inhibited (white) points.
Only locations at the finest grid are inhibited.

with a S-VHS video camera and a Targa frame grab-
ber. Movement was executed by adjusting a tripod sus-
taining the object by 0.25 cm every frame. Measured
velocity in pixels is 1.6 pixel / frame. Tests were car-
ried out for sets of three images taken every one, two,
and three frames. Thus, the effective velocity was 1.6,
3.2, and 4.8 pixels per frame. The average velocity (on
a window centered on the pine cone) obtained with the
homogeneous multiscale algorithm is compared with

Fig. 7. Estimated error on different scales for the “plaid” pattern
of figure 4. The intensity value is proportional to the error. Errors
in the derivative estimation (top panel), quantization errors (middle
panel), and the total error (sum of the two; bottom panel) are shown.
Errors in estimating the spatial and temporal derivatives are minimized
at the coarsest scale by low-pass filtering. However, the large grid
spacing at this scale causes relatively large quantization errors. The
total error is minimized at the intermediate grid.

that obtained with the adaptive version. While this sec-
ond version always produces a better estimate, the dif-
ference is particularly significant for large-motion
amplitudes, as shown in figure 8. In this case the fine-
scale derivative information is completely erroneous.
For the large-amplitude motion this, in fact, leads to
motion reversal where the algorithm signals motion in
the direction opposite to the direction of true motion.
This is recognized by the adaptive scheme that freezes
the solution obtained at coarser grids, producing a much
better final estimate. We used our adaptive algorithms
with both 3 and 4 grids; thus, in the latter case, the
image was being analyzed on grids ranging from
129 X 129 pixels to 17 X 17 pixels. It is obvious that
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/
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Fig. 8 Optical flow obtained using a mechanical setup. The pine
cone (top panel) was translated upward by 1.6, 3.2, and 4.8 pixels
per frame. The resultant optical flow field at the three different scales
is shown in the middle panel. The average estimated velocity in the
central area of the pine cone, obtained using the homogeneous method
(open squares) and using our adaptive multiscale method with three
(open circles) or four grids (open circle in upper branch), is plotted
against the true velocity. It is clear that the adaptive multiscale method
does substantially better than the homogeneous method, effectively
employing only a single scale.

larger-motion amplitudes require corresponding coarser
and coarser grids for optimal performance. The correct
velocity corresponds to the dotted line.

6 Discussion

Our motivation for this research was to study how the
velocity range over which motion algorithms give a

reliable estimate of the optical flow can be expanded.
Both intensity and token-based motion algorithms only
estimate the magnitude of the optical flow correctly
within a range of velocities, a range dictated by the
spatial and temporal discretization steps used. If, for
instance, the interframe motion, vAr, is much larger
than the spatial discretization step, the estimate of the
spatial and temporal derivatives will be incorrect and
the computed velocity will be very different from its
correct value (see equation (7)). While the standard
multigrid algorithm—see (Enkelmann 1988; Glazer
1984; Terzopoulos 1986; Brandt 1977)—speeds up the
convergence times of gradient-based motion algorithms
by orders of magnitude, it does not improve the situa-
tion from the point of view of velocity range. While
inspection of figure 5 illustrates that the relative error
in the magnitude of the velocity is minimal at some in-
termediate grid size, the error increases for the stan-
dard, homogeneous multigrid algorithm at the finer grid
size. In effect, the algorithm is limited by the spatial
step size of the finest grid used.

We here provided a substantial improvement by
locally computing an estimate of the relative error in
the optical flow. This error is simply the sum of an er-
ror term due to the estimation of the velocity using the
ratio of the temporal to the spatial intensity gradient
and an error term due to the quantization of the image.
The error estimate is simple to compute, being a func-
tion of the square of the temporal and spatial differences
of the image intensity—see equation (21)—and does not
depend on any particular assumption about texture or
patterns. It contains one free parameter, C, governing
the relative importance of the two error terms. We adopt
a value of C on the basis of the heuristic sinusoidal-
wave assumption. The flow field is computed at the
coarse scale using Horn and Schunck’s method and is
improved at successive finer scales in those areas of
the image where the relative error estimate is greater
than a predefined threshold. We did not experiment with
mixed coarse-to-fine-to-coarse strategies, having found
that a single coarse-to-fine sweep leads to excellent
results while still preserving the order of magnitude
speedup experienced with multigrid algorithms
(Enkelmann 1988; Glazer 1984; Terzopoulos 1986).
Our adaptive scheme is parallel at any given scale; and
deals with multiple motions and/or multiple patterns
and textures across the visual scene. It leads to a
substantially improved estimate of the optical flow and
results in a substantial speedup with respect to the stan-
dard Horn and Schunck single-scale algorithm (almost
two orders of magnitude for our images).
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An important issue is the optimal number and size
of the spatial grids used. Specifically, the coarsest
spatial grid used should be matched to the maximum
expected motion amplitude. Furthermore, the factor «
by which the spatial sampling size Ax is reduced when
going from one scale to the next coarsest, influences
how close the algorithm approximates the optimal grid
which minimizes the error expression equation (21).
We here always use o = 2; however, a factor of Vo
(obtained by rotating each grid by 45 °) will most likely
lead to better results.

‘We do not discuss here the use of analog or binary
line discontinuities, which greatly improve the final op-
tical flow, particularly in the presence of multiple, in-
dependently moving objects (Hutchinson et al. 1988;
Poggio et al. 1988; Harris et al. 1990). It is straightfor-
ward to implement motion discontinuities within our
multiscale framework—see, in particular, (Battiti 1989
and 1990). ~

Kearney et al. (1984) previously proposed an
“iterative registration technique,” for optimizing
gradient-based optical-flow algorithms using up to four
different resolution grids. Their method proceeds by
computing a first estimate of the optical flow at any
particular location. This flow estimate is then used to
register the frame pair of each successive iteration of
the estimation procedure. As the optical flow usually
differs across any image, this procedure must be
repeated at every image point. Our method, on the other
hand, is fully paraliel and involves a much simpler, one-
step, operation; that is, computing a simple scalar func-
tion of the square of the temporal and spatial intensity
differences, A E and AE.

We have limited the discussion here to the gradient
method of estimating optical flow. Recently proposed
methods, such as (Uras et al. 1988 and Yuille &
Grzywacz 1988) share the same derivative estimation
and noise problems we have described. However, as
the relative error in equation (21) does not depend on
the actual computation of the flow estimate, but only
on directly observable image properties, correlation-
based optical-flow methods as well as the mathematical-
ly equivalent spatial-temporal energy methods will also
profit from a similar adaptive multiscale approach.
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Notes

1. It may oscillate between two different grids with conflicting in-
formation, for example.

2. These represent *‘generic’” wavelengths (not multiples of the grid
step to avoid particular effects), chosen to give different ‘‘domi-
nant”’ components at different scales.

Appendix: Three Point Approximation of
Derivatives

We shall derive the third-order expressions for the
three-point approximations of the temporal and spatial
brightness derivatives. Let f(x — vt) be a one-
dimensional translating brightness profile. Taylor’s ex-
pansion provide the three-point formula for the first-
order brightness derivatives:

fO+hm-fo-h = ') L LToR Oh*)
2h 6

The approximation of the temporal derivative is given
by

i _ [ = vt + AD) — flx — v ~ Ap)
t 2At

which becomes, by setting y = x — vz,

E _fO — vA) — fy + vAp "
2At

which can be transformed, using the above Taylor ex-
pansion, to

= LB oy
Since f; = f'(x — vt)(~v) = —vf' we arrive at
E=f- V6W (vADy?

where the higher-order terms are neglected. A similar
expression holds for the approximation of the spatial
derivative

B =f +Ji6— (Ax)2

where Ax is the spatial sampling step.





