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Rüdiger Krahe,1 Gabriel Kreiman,2 Fabrizio Gabbiani,3 Christof Koch,2 and Walter Metzner1

1Department of Biology, University of California, Riverside, California 92521, 2Computation and Neural Systems Program,
Division of Biology, Caltech, Pasadena, California 91125, and 3Division of Neuroscience, Baylor College of Medicine,
Houston, Texas 77030

Neighboring cells in topographical sensory maps may transmit
similar information to the next higher level of processing. How
information transmission by groups of nearby neurons com-
pares with the performance of single cells is a very important
question for understanding the functioning of the nervous sys-
tem. To tackle this problem, we quantified stimulus-encoding
and feature extraction performance by pairs of simultaneously
recorded electrosensory pyramidal cells in the hindbrain of
weakly electric fish. These cells constitute the output neurons
of the first central nervous stage of electrosensory processing.
Using random amplitude modulations (RAMs) of a mimic of the
fish’s own electric field within behaviorally relevant frequency
bands, we found that pyramidal cells with overlapping receptive
fields exhibit strong stimulus-induced correlations. To quantify
the encoding of the RAM time course, we estimated the stimuli
from simultaneously recorded spike trains and found significant

improvements over single spike trains. The quality of stimulus
reconstruction, however, was still inferior to the one measured
for single primary sensory afferents. In an analysis of feature
extraction, we found that spikes of pyramidal cell pairs coin-
ciding within a time window of a few milliseconds performed
significantly better at detecting upstrokes and downstrokes of
the stimulus compared with isolated spikes and even spike
bursts of single cells. Coincident spikes can thus be considered
“distributed bursts.” Our results suggest that stimulus encoding
by primary sensory afferents is transformed into feature extrac-
tion at the next processing stage. There, stimulus-induced
coincident activity can improve the extraction of behaviorally
relevant features from the stimulus.
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A defining characteristic of topographic sensory maps is that
adjacent neurons process information about neighboring loca-
tions in the sensory environment (for review, see Kaas, 1997).
Hence, the activity of nearby neurons is often correlated (see for
example Usrey and Reid, 1999; Bair et al., 2001). So far, several
investigations have addressed the causes and effects of correlated
activity on information transmission by studying stimulus encod-
ing by multiple neurons, each of which quite faithfully followed
the stimulus time course (Warland et al., 1997; Dan et al., 1998;
Stanley et al., 1999; Nirenberg et al., 2001). Using pyramidal cells
in the hindbrain of weakly electric fish as a model system, we
considered cells that do not precisely follow the stimulus time
course but rather appear specialized to extract stimulus features
(Gabbiani et al., 1996).

Weakly electric knife fish, Eigenmannia, generate electric fields
by periodically discharging their electric organ at rates between
200 and 600 Hz and monitor distortions of the amplitude and
phase of the electric field for electrolocation and communication
purposes (for review, see Heiligenberg, 1991). The information
on amplitude and phase is relayed from electroreceptors embed-

ded in the skin to the electrosensory lateral line lobe (ELL) in the
hindbrain, forming three somatotopic maps. A subset of primary
sensory fibers, P-receptor afferents, encode changes in the electric
field amplitude by firing in a probabilistic manner (Scheich et al.,
1973; Hopkins, 1976; Bastian, 1981a). They synapse on E-type
pyramidal cells, which respond with excitation to increases in
stimulus amplitude. Via interneurons, P-receptor afferents inhibit
I-type pyramidal cells, which consequently fire spikes in response
to decreases in stimulus amplitude (Bastian, 1981b; Maler et al.,
1981; Saunders and Bastian, 1984). E- and I-units are therefore
analogous to ON and OFF cells in other sensory systems.

Previous studies of information encoding in the electrosensory
system showed that single P-receptor afferent spike trains encode
up to 80% of random amplitude modulations (RAMs) of the
electric field (Wessel et al., 1996). Single pyramidal cells, how-
ever, encode the stimulus time course only poorly. Instead, they
reliably indicate the occurrence of upstrokes and downstrokes in
stimulus amplitude by bursts of spikes (Gabbiani et al., 1996;
Metzner et al., 1998). Extending this line of research to multiple
pyramidal cells, we now asked three questions. First, how strongly
correlated is the activity of pyramidal cells whose receptive fields
overlap, and what is the source of this correlation? Second, is the
detailed information on the stimulus time course, which is avail-
able from the primary afferent spike trains, indeed transformed at
the level of the ELL, or can it still be read from the combined
activity of groups of pyramidal cells? Third, can correlations
between spike trains of multiple neurons enhance the extraction
of behaviorally relevant stimulus features?

To address these questions, we performed dual recordings in
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vivo from nearby pyramidal cells in the ELL with overlapping
receptive fields while presenting RAMs of a mimic of the fish’s
electric field. We characterized correlations between spike trains
of simultaneously recorded neurons by cross-correlation analysis.
Stimulus encoding and feature extraction were quantified using
reconstruction techniques and methods derived from signal de-
tection theory, respectively (Gabbiani et al., 1996; Rieke et al.,
1997; Metzner et al., 1998).

MATERIALS AND METHODS
Preparation. Forty-three specimens of the South American weakly elec-
tric knife fish, Eigenmannia sp., ranging in body length from 12 to 22 cm,
were used in this study. The animals were obtained from a tropical fish
wholesaler (Bailey’s, San Diego, CA). Animal handling and all surgical
procedures were in accordance with National Institutes of Health guide-
lines and were approved by the local Institutional Animal Care and Use
Committee. Preparation for the electrophysiological recordings has been
outlined in detail previously (Metzner et al., 1998). Briefly, after deter-
mining a fish’s electric organ discharge frequency, the animal was immo-
bilized, and its discharge amplitude was attenuated by intramuscular
injection of Flaxedil (gallamine triethiodide; Sigma, St. Louis, MO; �5
�g/gm body wt). The animal was then suspended in the center of the
experimental tank (water conductivity, 100–130 �S/cm, pH 7; tempera-
ture, 24–26°C) and respirated with aerated aquarium water. Under local
anesthesia (2% lidocaine; Western Medical Supply, Arcadia, CA), part of
the skull overlying the right caudal cerebellum was removed (�3 mm 2).
A Plexiglas rod was glued to the left parietal bone to stabilize the fish.

Electrophysiology. Initially, dual recordings from pyramidal cells were
obtained using two separate borosilicate glass micropipettes filled with 3
M KCl. After recordings from 25 cell pairs, we switched to Wood’s
metal-filled glass micropipettes with platinated tips (Frank and Becker,
1964). These extracellular single-unit recordings proved to be much more
stable, thus allowing us to determine whether the receptive fields of the
two recorded cells overlapped (see Stimulation).

Recordings for this study were restricted to pyramidal cell bodies
within the centromedial segment (CM) of the ELL. The layer of pyra-
midal cell bodies is easily identified using anatomical and physiological
criteria (Metzner et al., 1998). We verified that data collection was from
within CM by first physiologically mapping the border between the
adjoining medial segment (low-frequency sensitive) and CM and then
inserting electrodes only within 500 �m lateral of this border. At this
rostrocaudal level, this ensures that penetrations do not reach the later-
ally adjoining centrolateral segment. Initially, recording sites were also
verified histologically by setting small electrolytic lesions at the end of the
experiment.

Anatomy. To measure the terminal spread of single P-receptor affer-
ents in CM, we iontophoretically injected Neurobiotin (2% in 1 M KCl;
Vector Laboratories, Burlingame, CA) into the ganglion of the anterior
lateral line nerve. After survival times between 7 and 14 hr, the animals
were killed with MS222 (tricaine-methane sulfonate, pH 7; Sigma) and
perfused transcardially with saline followed by fixative (4% paraformal-
dehyde in 0.1 M phosphate buffer). The brains were post-fixed overnight,
sectioned at 50 �m thickness, and then underwent a standard ABC
(Vectastain Elite; Vector Laboratories) and DAB reaction (Metzner and
Juranek, 1997a). Terminal spread measurements were not corrected for
shrinkage of tissue because of fixation. Axons that did not contact
spherical cells were classified as belonging to P-receptor afferents (Maler,
1979; Maler et al., 1981; Carr et al., 1982; Heiligenberg and Dye, 1982;
Mathieson et al., 1987). The nomenclature of the brain structures used
for the light microscopic analysis follows that of Maler et al. (1991).

Stimulation. Stimuli were presented as described by Kreiman et al.
(2000). Briefly, the mimic of the fish’s electric field was presented be-
tween an electrode in the mouth of the fish and one close to the tail. The
frequency of the sinusoidal carrier signal ( fcarrier) was matched to the
fish’s individual electric organ discharge frequency as measured before
its attenuation. The voltage of the electric field mimic followed V(t) �
A0[1 � s(t)] cos(2� fcarrier t), with A0 being the mean amplitude of the
electric field, and s(t) being the RAM that modulated the carrier signal.
A0 took values between 1 and 5 mV/cm (peak to peak) measured at the
pectoral fin and perpendicular to the body axis. The mean amplitude was
set just above threshold for the spherical cells (located beneath the
pyramidal cells recorded from; see above) to fire with one spike per
stimulus cycle of the carrier signal (Heiligenberg, 1991). This usually

corresponded to a stimulus level 5–10 dB above what was necessary to
audiovisually identify a pyramidal cell response as belonging to the E or
I type. This assured that the field amplitude in the respective part of the
fish’s body surface was within the natural range, providing for normal
input to the direct and topographic feedback circuits (Bratton and
Bastian, 1990; Maler and Mugnaini, 1994; Berman and Maler, 1999),
which might affect correlations between nearby pyramidal cells (see
Discussion). The stimulus, s(t), had a flat power spectrum up to a fixed
cutoff frequency ( fc � 5, 10, or 20 Hz; in some experiments, cutoff
frequencies of 40 or 60 Hz were also used). The SD (or contrast), �, of
the stimulus was 25% of the mean amplitude for all fc. For fc � 5 Hz,
we additionally presented contrasts of 10, 15, 20, and 27.5% if time
permitted. The stimulus was digital-to-analog-converted at a sampling
rate of 5 kHz (PCI-MIO16E-4; National Instruments, Austin, TX). After
low-pass filtering (2 kHz; Rockland model 452; Wavetek, San Diego,
CA), a manual attenuator (839 attenuator; Kay Elemetrics, Lincoln Park,
NJ) was used to adjust the final stimulus amplitude. The duration of the
stimuli was 15 sec, which is shorter than the duration used in our previous
studies on pyramidal cells (Gabbiani et al., 1996; Metzner et al., 1998).
We therefore verified by cross-validation that this optimized duration
gave reliable results (Press et al., 1996).

To test whether the receptive fields of two simultaneously recorded
pyramidal cells were overlapping, we positioned a local electrode (Shum-
way, 1989a) close to the skin of the animal (distance, �1 mm) and
accepted a pair of cells only as having overlapping receptive fields if both
units gave robust responses to a sinusoidal amplitude modulation of 5 Hz
presented via the local electrode. The mouth electrode served as the
reference. We accepted cells only when, for the given stimulation site,
they displayed center responses; that is, they showed the same response
type (E or I) as for stimulation with the global field. Response strength
decreased dramatically within a few millimeters of the strongest center
activity, in line with previous measurements of receptive field sizes in
Eigenmannia (Shumway, 1989a). Recording time did not permit a de-
tailed mapping of the receptive fields.

Data analysis. Let x A(n) and x B(n) represent two simultaneously
recorded spike trains after binning, where x(n) � 1 if and only if there is
a spike in bin n (n � 1, . . . , N, where N is the total number of bins in
the spike trains). We computed cross-correlograms:

RxAxB��� � �
n�1

N��

xA�n� xB�n � �� ,

between pairs of pyramidal cell spike trains. The spike trains as well as
� were binned using bin sizes of 3, 6, and 9 msec. We did not observe any
significant differences among these bin size values; our conclusions were
therefore robust to changes in the analysis parameters. The statistical
significance in departures from random coincident firing was assessed as
described by Palm et al. (1988). We also estimated the deviation of the
cross-correlograms from the null hypothesis of independent firing by
computing the shuffle correctors, that is, the cross-correlograms for
successive nonsimultaneous responses to repetitions of the same stimulus
(Palm et al., 1988; Brody, 1999). To assess the properties of the corre-
lated firing, each cross-correlogram was fitted by a cubic spline with an
upsampling factor of 10 (Dierckx, 1993; Press et al., 1996). The width at
half-height, area, and peak values were computed from this interpolated
cross-correlogram.

Next, we computed the extent to which the stimulus, s(t), could be
linearly reconstructed from the recorded spike trains. A linear estimation
of the stimulus, ŝ(t), was obtained by convolving the spike train with a
filter h(t):

ŝ�t� � �
n�0

N

h�t � n� x̃(n),

where x̃(n) is the spike train after subtraction of the mean value. h(t) was
chosen to minimize the mean square error, � 2, between the stimulus and
estimated stimulus (Bialek et al., 1991; Poor, 1994; Wessel et al., 1996;
Rieke et al., 1997; Gabbiani and Koch, 1998). This method was extended
to multiple spike trains (Poor, 1994; Warland et al., 1997; Dan et al.,
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1998). The linear estimator ŝ(t) can be obtained by convolving each spike
train with a separate filter:

ŝ�t� � �
n�0

N

H�t � n�X�n�,

where the matrix H contains as many filters (i.e., columns) as the number
of recorded spike trains, and the matrix X represents the binned spike
train of each neuron in a separate row. The filters are again chosen to
minimize the mean square error, � 2, between the stimulus and its
estimate.

The quality of the reconstruction was expressed as the coding fraction,
	, defined by:

	 � 1 �
�

�
,

where � is the SD of the stimulus (Gabbiani, 1996; Wessel et al., 1996;
Gabbiani and Metzner, 1999). This is a normalized measure that ranges
from 0 (the estimation is at chance level) to 1 (perfect estimation).

The order of the repetitions of each stimulus was randomized. Assum-
ing independence between different trials and identical neurons, succes-
sive responses of the same unit to the same stimulus can be conceived to
represent the firing of adjacent neurons of similar firing properties. In
this light, we extrapolated our estimation of the stimulus by computing
the coding fraction from several repetitions as discussed previously
(Kreiman et al., 2000). For this extrapolation, a separate filter was
allowed for each repetition, effectively treating each response as a sep-
arate “unit.” It should be noted that the firing properties of pyramidal
cells are at least in part a function of the depth of their soma within the
pyramidal cell layer (Bastian and Courtright, 1991; Berman et al., 1995;
Bastian and Nguyenkim, 2001), thus restricting the general validity of our
extrapolation. For our set of cell pairs, however, we found no statistically
significant difference between the average coding fraction computed for
two simultaneously recorded spike trains of same-type cell pairs and the
average coding fraction for two successively recorded spike trains of
single pyramidal cells.

In previous work, we computed the performance of isolated pyramidal
cell spike trains in extracting upstrokes and downstrokes of amplitude
modulations (Gabbiani et al., 1996; Metzner et al., 1998). Briefly, for any
time interval, [t � �t;t], let 
t � 1 if and only if there was a spike in the
interval. Furthermore, let us define the stimulus vectors preceding these
time bins by st � [s(t � 100�t), . . . , s(t)]. We computed the mean
stimulus before bins containing a spike (m1) and the mean stimulus
before bins not containing a spike (m0). The Euclidian classifier, f � m1
� m0, was used to discriminate stimulus vectors preceding spikes against
stimulus vectors preceding no spikes. The typical Euclidian feature for an
E-unit was a strong upstroke in stimulus amplitude; for an I-unit it was a
strong downstroke (Gabbiani et al., 1996; Metzner et al., 1998) (see Fig.
4a). We performed a receiver operating characteristic analysis (Green
and Swets, 1966) to quantitatively assess the performance of this classi-
fier in predicting the occurrence of a spike. A spike was detected
whenever the projection of the stimulus segment onto the Euclidian
feature was larger than a certain threshold, �. Thus, the projection can be
conceived as a measure of the similarity between the feature and the
stimulus segment preceding a spike. The probability of correct detection,
PD, and the probability of false alarm, PFA, were obtained for each
threshold by integrating the tails of the probability distributions:

PD � P�f T � st � ��
t � 1� PFA � P�f T � st � ��
�0),

where the superscript T indicates the transpose, and � indicates the dot
product. Performance in the feature extraction task was quantified by
minimizing Perror � 0.5 PFA � 0.5 (1 � PD), yielding the value defined as
the probability of error, pE (Gabbiani et al., 1996; Metzner et al., 1998).
If pE � 0, the occurrence of the stimulus feature is perfectly predictable,
whereas pE � 0.5 indicates performance at chance level. Next, we
considered the performance of spikes correlated between pairs of pyra-
midal cells. For that purpose, for a given time window w we separately
considered those spikes fired by cell A, which occurred within 	w msec
of spikes in cell B, x Aw. Similarly, we considered those spikes in cell B
that occurred within w msec of spikes in cell A, x Bw. We used the
following values of w: 5, 10, 20, 50, and 100 msec. With a coincidence
time window of 100 msec, the analysis included almost all spikes pro-
duced by the two cells (see Fig. 4c). Time windows of �5 msec were not

used, because the number of spikes coinciding within such a time frame
was too small to yield reliable results.

Let 
t
Aw � 1 if and only if there was a spike in x Aw (i.e., coincident

spike) in the interval [t � �t;t] and 
t
Bw � 1 if and only if there was a spike

in x Bw in the interval [t � �t;t]. We then computed the conditional
probability distributions for the projections of the stimulus segments
preceding such coincident spikes or no spikes within these restricted
spike trains onto the original Euclidian feature vectors for each cell:
P( f A

T � st � 
t
Aw � 1) and P( f B

T � st � 
t
Bw � 1). The probabilities of correct

detection and false alarm were computed by integration over the tails of
these probability distributions (see above). Note that we used the original
feature vectors fA and fB. We did not recompute the feature vectors for
the coincident spikes to avoid overfitting the data. Following the same
procedure described for the one-cell scenario, we computed the mini-
mum probability of error for each cell and for each size of the coinci-
dence window w: pE

Aw and pE
Bw.

A typical property of pyramidal cells is their tendency to fire spikes in
short bursts (Gabbiani et al., 1996; Metzner et al., 1998; Bastian and
Nguyenkim, 2001). The interspike interval distributions generally
showed a sharp peak at short intervals and a broader peak at longer
intervals. The separation between these two peaks was used to determine
the maximum interspike interval for spikes within a burst (Gabbiani et
al., 1996; Metzner et al., 1998). Action potentials that were not part of a
burst were termed “isolated spikes” (Gabbiani et al., 1996). We sepa-
rately considered the performance of bursts of spikes and isolated spikes
in the extraction of stimulus features.

RESULTS
We performed simultaneous extracellular recordings from 39
pairs of pyramidal cells in the ELL, of which 29 were used for
data analysis. Thirteen pairs were composed of opposite types of
pyramidal cells (one E- and one I-unit) and 16 pairs were of the
same type (seven E–E pairs and nine I–I pairs). For 11 pairs, we
confirmed that their receptive fields overlapped (four E–E, three
I–I, and four E–I pairs; see Materials and Methods). For the
remaining pyramidal cell pairs, we positioned the tips of the two
recording electrodes in the same way but did not verify the
receptive field overlap. Because cross-correlation analysis (see
next paragraph) yielded no differences between the two data sets,
they were pooled for all of the following analyses.

Characteristics of correlated activity in ELL
pyramidal cells
The spiking activity of pairs of pyramidal cells of the same type
(E–E or I–I) was clearly correlated when driven by RAMs of the
electric field surrounding the fish (Fig. 1a). To quantitatively
evaluate the degree of coincident firing, we computed the cross-
correlograms of the activity of all pairs recorded simultaneously.
For pairs of pyramidal cells of the same type, the cross-
correlogram showed a strong positive peak (Fig. 1b). In this
example 
50% of the spikes produced by these two I-units
coincided within a time window of 	50 msec. This peak was
much stronger than would be expected by random coincidences
from homogeneous Poisson processes (Fig. 1b, horizontal dashed
line). For pairs of pyramidal cells of opposite type (i.e., one E-
and one I-unit), the cross-correlograms displayed a central trough
instead of a peak; that is, the probability of one cell firing an
action potential was reduced for a short time when the other cell
fired (Fig. 1c).

The maximum of the cross-correlogram of the I–I pair oc-
curred at a time lag of 6.3 msec (Fig. 1b, vertical arrow), and the
minimum of the opposite-type pair occurred at �0.2 msec (Fig.
1c). Both of these values are well within the distribution of time
lags found for our population of cell pairs (Fig. 2a): the peaks
occurred near a lag of 0 msec, ranging from �33 to 55 msec
(median, 0.30 msec). We quantified the strength of the correla-
tions for pairs of the same type by measuring the width at
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half-height and the peak value of the cross-correlograms. The
peak and width of the correlograms varied depending on the pair
of cells recorded from but also on the stimulus bandwidth and
contrast. Overall, the peaks in the raw cross-correlograms ranged
from 0.5 to 19 coincidences/sec (Fig. 2b); the width varied be-
tween 41 and 162 msec (Fig. 2c), with no statistically significant
differences between E-unit pairs and I-unit pairs ( p 
 0.1, two-
tailed t test). In 11 of the 16 cell pairs of the same type, a strong
increase in peak strength correlated with increasing bandwidth
(average r2 � 0.79 	 0.17), whereas one cell pair showed a
decrease in the correlogram peak with bandwidth (r2 � �0.56).
For the remaining four pairs, no clear change was observed.
Stimulus bandwidth was also clearly correlated with the width of
the correlograms. For 10 cells pairs, the width decreased with
increasing stimulus bandwidth (mean for r2 over the entire sam-
ple � �0.85 	 0.09), indicating that for higher stimulus frequen-
cies, spike timing correlations became more precise. For the
remaining six cell pairs, no clear correlation was found between
stimulus bandwidth and the width of the cross-correlograms. The
time at which the peak occurred did not correlate with bandwidth
in any of the 16 cell pairs of the same type.

To determine whether the correlated activity was stimulus-
induced or caused by shared synaptic input to the simultaneously
recorded cells, we computed the shuffle corrector, that is, the
cross-correlogram for spike trains that had not been recorded
simultaneously but successively for consecutive presentations of
the same stimulus. After subtraction of the shuffle corrector, the

correlograms of most cell pairs studied were virtually flat (98% of
cross-correlograms for the 95% confidence limits and 100% of
cross-correlograms for 99% confidence limits; see examples in
Fig. 1b,c, insets). We also computed the cross-correlograms for
spontaneous firing: none of the cell pairs of our study showed
correlated activity without being driven by amplitude modula-
tions (data not shown). These findings indicate that the correla-
tions observed in our data set were almost entirely attributable to
time locking of spikes to the stimulus.

Encoding of the time course of RAMs
Previous studies using stimulus reconstruction techniques showed
that individual P-receptor afferents reliably transmit information
on the detailed time course of RAMs of the electric field sur-
rounding the fish (Wessel et al., 1996; Metzner et al., 1998;
Kreiman et al., 2000). Single spike trains yielded coding fractions
up to 80% depending on the spectral properties and the contrast
of the stimulus. For a stimulus with a bandwidth of 5 Hz and a
contrast of 25%, the mean coding fraction for P-receptor afferents
was 0.46 (Kreiman et al., 2000) (Fig. 3, lef t bar). In contrast, and
confirming previous results, we found that single pyramidal cells
performed only poorly at encoding the detailed time course of
amplitude modulations, yielding coding fractions of 0.11 	 0.01
for the same stimulus condition (Fig. 3) (also see Gabbiani et al.,
1996; Metzner et al., 1998). We then asked whether the informa-
tion on the detailed stimulus time course could be represented by
the combined activity of groups of pyramidal cells. For this

Figure 1. Correlated activity of simultaneously re-
corded pyramidal cells. a, Representative raster plot
segments of the spike trains of two simultaneously re-
corded I-units with overlapping receptive fields. The top
trace shows the time course of the random amplitude
modulation (cutoff frequency, fc � 10 Hz; contrast,
25%). Action potentials occurring within a burst of
spikes are indicated by the thick bar. The same stimulus
was repeated five times, yielding five raster lines for
each neuron. b, Cross-correlograms of the responses of
the two I-units computed with a bin size of 3 msec. The
x-axis indicates the time lag between the coincident
spikes. The strong peak centered at 6.3 msec indicates
that these two I-units fired coincident spikes within
small time windows. The horizontal dashed line gives the
expected value for two homogeneous Poisson neurons
of the same firing rates as the recorded units firing
independently. The peak and width (37 msec) of the
responses are marked by vertical and horizontal arrows,
respectively. Inset, Shuffle-corrected cross-correlogram.
The horizontal line at 0 indicates the expected value for
independent responses, and the dashed lines show the
2� confidence limits under this null hypothesis (see
Materials and Methods). Because the solid curve fell
between these bounds, we conclude that the coincident

activity is primarily stimulus induced. The average firing rates for the two units were 9.4 and 15.2 spikes/sec, respectively. c, Cross-correlogram of the
responses of one E- and one I-unit. The center trough shows that these cells of opposing response type fired in anticorrelation. The minimum occurred
at �0.2 msec; the width at half-height was 10 msec. Inset, Shuffle-corrected cross-correlogram. The average firing rates for the two units were 17.3 and
12.3 spikes/sec, respectively.

Figure 2. Properties of the cross-correlograms for pairs
of units of the same type (n � 16). a, Distribution of the
time lags at which the maximum occurred. Bin size, 5
msec. b, Distribution of the maxima of the cross-
correlograms. Bin size, 0.25 coincidences (coinc/s). The
x-axis was cut at five coincidences/sec for clarity; there
were three values beyond the axis limit (at 7.2, 9.3, and
19.1 coincidences/sec). c, Distribution of the widths at
half-height of the peaks. Bin size, 25 msec. a–c, fc � 5 Hz.
For each neuronal pair, values for five stimulus contrasts
are included.
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purpose, we applied a simple extension of the stimulus recon-
struction algorithm used for single-cell spike trains (Bialek et al.,
1991; Rieke et al., 1997; Gabbiani and Koch, 1998) to simulta-
neously recorded activities of pairs of pyramidal cells (Poor, 1994;
Warland et al., 1997; Dan et al., 1998; see Materials and Meth-
ods). Indeed, the fraction of the stimulus encoded increased from
an average of 0.11 for reconstructions from single-cell spike trains
to 0.15 for reconstructions based on the combined activity of E–E
or I–I pairs (Fig. 3). Compared with single cells, the coding fraction
for cell pairs of opposite type (E–I) almost doubled (Fig. 3).

To determine whether increasing the number of simultaneously
decoded spike trains could capture more of the information about
the amplitude modulations, we extrapolated our data on pyrami-
dal cell pairs. Hence, we reconstructed the stimulus from up to 10
successive responses of any given pair by effectively treating the
successive responses to the same stimulus by a single cell as spike
trains simultaneously recorded from different neurons. This as-
sumption seemed justified because the average coding fraction for
two successively recorded spike trains of single neurons was
statistically indistinguishable from the coding fraction for two
simultaneously recorded spike trains of same-type cell pairs ( p 

0.1; two-tailed t test). It should be noted that this analysis also
assumes that there are no higher-order correlations between
spike trains of nearby cells. Increasing the number of spike trains
of pyramidal cells of the same type increased the coding fraction
on average up to 0.27 	 0.12. Combining the responses of pyra-
midal cells of E and I type increased the encoding up to 0.36 	

0.13. Although these values represent a clear gain over the single-
neuron performance, they are, however, still at least 20% lower
than those achieved by single P-receptor afferents (Fig. 3).

Feature extraction by multiple pyramidal cells
Single pyramidal cells in the ELL have been shown to reliably
transmit information about the occurrence of upstrokes and
downstrokes in stimulus amplitude (Gabbiani et al., 1996;
Metzner et al., 1998). Here, we studied how well the correlated
activity of pairs of pyramidal cells driven by the same stimulus is
able to transmit this information.

For each individual unit of a pyramidal cell pair (composed of
neurons A and B) we computed a feature vector, f, which pre-
dicted the occurrence or nonoccurrence of a spike in this unit
(see Materials and Methods). As described previously (Gabbiani
et al., 1996; Metzner et al., 1998), the typical feature for an I-unit
was a strong downstroke in stimulus amplitude (Fig. 4a), whereas
for an E-unit it was a strong upstroke in amplitude. We then
selected those spikes from neuron A for which there was a
coincident spike within a certain coincidence time window in
neuron B (Fig. 4b,c). Interestingly, a large proportion of the
coincident spikes occurred in bursts of spikes fired by the indi-
vidual cells (63 	 15%, mean 	 SD for a coincidence window of
5 msec; Fig. 4c, white bars; burst spikes marked in Fig. 1a by thick
lines in the raster plot; for the definition of burst spikes, see
Materials and Methods).

To quantify the reliability of coincident spikes in indicating the
occurrence of downstrokes in stimulus amplitude, we computed
the probability of misclassification, pE, for coincident spikes. pE is
the average of the probability that coincident spikes are produced
without a downstroke occurring in stimulus amplitude (false
alarms) and the probability that a downstroke fails to elicit spikes
in both neurons (misses). We found that the probability of mis-
classification decreased with decreasing size of the coincidence
time window (Fig. 5a). Restricting the analysis to spikes coincid-
ing within a time window of 	5 msec improved the feature
extraction performance with respect to all spikes by 22 and 21%
for units A and B, respectively. In general, pE decreased with the
size of the coincidence window. In most cases, the best window
size was 5 msec. In a few cases, however, the lowest values of pE

were found for a window size of 10 msec (for example, see Fig. 5a,
unit B).

As reported previously (Gabbiani et al., 1996; Metzner et al.,
1998), the feature extraction for single pyramidal cells improved
significantly when only bursts of spikes were considered instead of
isolated spikes or all spikes (Fig. 5b). Analyzing the coincident
firing of pairs of pyramidal cells, we found that feature extraction
improved even more: the minimum misclassification error for
coincident spikes was significantly smaller than that achieved by

Figure 4. Euclidian features and coincident
spikes for the pair of I-type pyramidal cells
depicted in Figure 1. a, Euclidian (Eucl.) fea-
ture for each of the two cells. b, Raster plot
example highlighting those spikes that occur
synchronously within a time window of 	5
msec as thick bars. c, The proportion of coin-
cident spikes with respect to the total number
of spikes for neuron A (top) and neuron B
(bottom) is shown as black bars as a function of
the size of the coincidence window. The per-
centage of spikes that occur in bursts and co-
incide are shown as white bars. The overall
percentage of bursting spikes is indicated as a
gray bar at the right.

Figure 3. Summarized results of stimulus estimation from spike trains of
P-receptor afferents (P-aff.), single pyramidal ( pyr.) cells, and pairs of
simultaneously recorded pyramidal cells of the same type (E–E and I–I)
and of opposite (opp.) type (E–I). The accuracy of the information
transmitted about the time course of a stimulus is characterized by the
coding fraction. Error bars indicate SD. fc � 5 Hz. n, Overall number of
experimental conditions (contrasts) for all cells or cell pairs analyzed.
Data for P-receptor afferents taken from Kreiman et al. (2000).
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bursts of spikes of either cell alone ( p � 0.01, two-tailed t test)
(Fig. 5, compare a, b).

Our findings on feature extraction by single versus pairs of
pyramidal cells are summarized in Figure 6 for all cell pairs
analyzed. Feature extraction by the coincident activity of pairs of
E-units and pairs of I-units was significantly improved compared
with spike bursts fired by single cells of the respective cell types
( p � 0.01 in both cases, two-tailed t test). The overall gain for
coincident spikes versus spike bursts of single neurons reached
values up to 54% (mean 	 SD, 10 	 16%). Compared with
isolated spikes of single cells, the gain was up to 58% (29 	 10%).
Similar to findings for single pyramidal cells (Gabbiani et al.,
1996; Metzner et al., 1998), pairs of I-units performed better than
pairs of E-units ( p � 0.01). None of the cross-correlation mea-
sures yielded any clear indication of the origin of this difference.
A possible reason, a difference in connectivity of E- and I-type
pyramidal cells, has been discussed previously (Gabbiani et al.,
1996; Metzner et al., 1998). For opposite-type pairs, feature
extraction was close to chance performance ( pE � 0.5; Fig. 6,
rightmost two bars), which is not surprising considering that their
responses were virtually anticorrelated (Fig. 1c).

To determine whether shared synaptic input from P-receptor
afferents or from feedback connections to both pyramidal cells of
a given pair had an effect on feature extraction, we also computed
pE for coincident spikes after shuffling of trials. For same-type as
well as opposite-type cell pairs, shuffling did not affect the prob-
ability of misclassification (Fig. 6). This supports the results of the
cross-correlation analysis and suggests that the gain in feature
extraction performance found for coincident spikes of same-type
cell pairs was attributable to correlations induced by the stimulus.

Terminal spread of single primary afferents
The physiological finding that the correlations between simulta-
neously recorded pyramidal cell spike trains were primarily
stimulus-induced suggests that there is only little shared input
from P-receptor afferents to pyramidal cells, i.e., a low degree of
afferent divergence. To obtain an anatomical estimate of the level

of divergence of P-receptor afferents, we measured the spatial
spread of Neurobiotin-labeled single-fiber terminals in CM. We
only measured the terminal spread of cells, which clearly did not
make contact with the somata of spherical cells, thus excluding
T-receptor afferents from the analysis (Maler, 1979; Maler et al.,
1981; Carr et al., 1982; Heiligenberg and Dye, 1982; Mathieson et
al., 1987). The average spread for five fibers was 76 	 14 �m along
the rostrocaudal axis and 77 	 34 �m in the mediolateral axis
(Fig. 7). This is within the range of previous estimates (Shumway,
1989b) of terminal spread for P-receptor afferents (rostrocaudal,
115 �m; mediolateral, 60 �m). When relating this terminal spread
to the area covered by the entire CM, the number of pyramidal
cells contained in it, and the width of the basilar dendrite of
E-units (Maler, 1979; Carr et al., 1982; Shumway, 1989b), we
estimate a divergence of one afferent fiber onto three to eight
pyramidal cells.

DISCUSSION
In the present study, we showed that the noise in the spiking
responses of pyramidal cell pairs with overlapping receptive fields
is independent and that their stimulus-induced correlated activity
can carry important information about behaviorally relevant stim-
ulus features. These upstrokes and downstrokes in electric field
amplitude are essential cues, in particular, for eliciting a certain
electrolocation behavior, the jamming avoidance response (Hei-
ligenberg, 1991). They can be extracted significantly more reliably
from the coincident activity of a neuron pair than even from the
best responses of single cells (Fig. 6).

Figure 5. Feature extraction by the same pair of I-type pyramidal cells
illustrated in Figure 1. a, Minimum probability of misclassification, pE , by
those spikes of neurons A and B, respectively, which had a coincident
spike on the respective other neuron plotted against the size of the
coincidence time window. pE is the average of two error probabilities: in
the case of this I-unit pair, these are the probability that coincident spikes
are fired even when there is no downstroke in stimulus amplitude (false
alarms) and the probability that a downstroke occurs but fails to elicit
coincident spikes (misses). pE decreased with decreasing size of the
coincidence time window, indicating that spikes coinciding within a time
window of 	5 msec transmit the information on the occurrence of
stimulus features more reliably than spikes of single neurons. Filled
symbols, Neuron A; open symbols, neuron B. b, Single-neuron perfor-
mance of units A and B, respectively. isol., Isolated.

Figure 6. Summary diagram of feature extraction performance by ELL
pyramidal cells. From lef t to right, bars indicate the average pE for
coincident spikes of E–E pairs and I–I pairs, for coincident spikes of E–E
and I–I pairs after shuffling of trials, for spike bursts of single E- and
single I-units, for isolated spikes of single E- and I-units, and for coinci-
dent spikes of E-I pairs before and after shuffling of trials. Single I-units
and pairs of I-units performed better than single E-units and pairs of
E-units, respectively ( p � 0.05 and p � 0.01, respectively, two-tailed t
test). Pairs of cells of the same type performed better than bursts of spikes
of single pyramidal cells ( p � 0.01 for both E- and I-type neurons).
Bursts, in turn, performed better than isolated spikes fired by the respec-
tive units ( p � 0.01 for both E- and I-type neurons). Feature extraction
by opposite-type pairs was close to chance performance ( pE � 0.5). pE
computed for shuffled spike trains was not significantly different from pE
calculated for simultaneously recorded spike trains. The mean values of
pE were computed from the lowest values of pE observed regardless of the
size of the best time window. Time windows of �5 msec were not used,
because the number of spikes coinciding within such a time frame was too
small to yield reliable results (Fig. 4c). Error bars indicate SEM. The
numbers above the bars give the overall number of stimulus conditions
(cutoff frequencies and contrasts) for all cells or cell pairs analyzed.
pairs-nsh, Simultaneously recorded spike trains (trials not shuffled); pairs-
sh, pair data with trials shuffled; single-bursts, burst spikes of single
pyramidal cells; single-isol., isolated spikes of single cells.
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Source of correlated activity
Correlated activity of neuronal ensembles can have several causes
(for review, see Usrey and Reid, 1999). First, cells may engage in
coherent oscillations of large neuronal ensembles (MacLeod and
Laurent, 1996; Singer, 1999). In our sample, we could exclude this
possibility, because no oscillations were observed in the cross-
correlograms (Figs. 1b,c). Second, it can be attributable to intrin-
sic connections between cells, as found, for example, in the retina
of cat (Mastronarde, 1989) and salamander (Brivanlou et al.,
1998). In this case, one would expect tight correlations on a
millisecond time scale, with the correlogram peaks being shifted
away from zero and persisting in the shuffle-corrected cross-
correlogram. Neither of these effects was observed in our sample.
Third, correlated activity can be caused by divergent feedforward
or feedback input. Shared feedback input seemed a likely source
of correlated activity in ELL pyramidal cells, considering the
strong direct and topographical feedback that the apical dendrites
of pyramidal cells receive from the nucleus praeeminentialis
(Bratton and Bastian, 1990; Maler and Mugnaini, 1994) (for
review, see Berman and Maler, 1999). However, the fact that the
shuffle-corrected cross-correlograms did not exhibit significant
peaks (Fig. 1b,c) made it unlikely that direct feedback increased
the level of correlated activity under the stimulus conditions used
in the current study. It also excluded that a large proportion of the

feedforward input from P-receptor afferents was shared among
the pyramidal cell pairs recorded in our study. This leaves the
fourth potential source of correlated activity, the stimulus itself.
Indeed, the cross-correlation analysis suggested that the major
source of correlated activity in our sample was the stimulus (Fig.
1b,c). The notion that nearby pyramidal cells were firing inde-
pendently was reinforced by the bandwidth dependence of the
cross-correlogram peak and width and by the lack of correlations
when firing spontaneously.

According to our anatomical estimate for the spread of
P-receptor afferents, an individual afferent fiber may diverge onto
three to eight pyramidal cells. Therefore, we had expected to find
evidence for shared input in the cross-correlation analysis. The
lack of significant peaks in the shuffle-corrected cross-
correlograms (Fig. 1b,c, insets) could have two causes. First, the
cells of our pairs may have been close enough to be driven by the
same local stimulus but too distant from each other to share input
from the same afferents. Second, the effect of single P-receptor
afferent spikes on the joint-firing probability of two target pyra-
midal cells may be weak considering the multitude of inputs
converging onto pyramidal cells; it has been estimated that be-
tween 6 and 15 P-receptor afferents converge onto a single
pyramidal cell (Bastian, 1981b; Carr et al., 1982; Shumway,
1989b). Apart from that, pyramidal cells receive excitatory and
inhibitory input from many other sources (intrinsic and commis-
sural interneurons and extrinsic feedback circuits; for review, see
Berman and Maler, 1999).

In conclusion, even for pairs of pyramidal cells with overlap-
ping receptive fields, coincident activity seemed to be attributable
to largely separate, but spatially overlapping, primary afferent
inputs driven by the same stimulus. Thus, the electrosensory
system should be of great interest for comparisons with other
systems that display strong circuit-induced synchrony (Dan et al.,
1998; Singer, 1999; Nirenberg et al., 2001).

Encoding of stimulus time course
Stimulus reconstruction techniques have been widely used to
assess the transmission of information concerning the stimulus
time course by spike trains (Bialek et al., 1991; Wessel et al., 1996;
Rieke et al., 1997; Stanley et al., 1999; Machens et al., 2001;
Nirenberg et al., 2001). In previous work, we showed that single
pyramidal cells poorly encode the time course of RAMs com-
pared with the performance of primary afferents (Gabbiani et al.,
1996; Wessel et al., 1996; Metzner et al., 1998). We extended this
approach to analyze whether the stimulus time course is pre-
served in the combined activity of groups of pyramidal cells.
Indeed, we found a significant gain in the quality of stimulus
reconstructions when the stimulus time course was estimated
from simultaneous spike trains of pairs of neurons (Fig. 3). This
gain was relatively small for pairs of the same type (E–E or I–I)
and much larger for pairs of opposite type (E–I). The fact that
the coding fraction for opposite-type pairs was almost doubled
compared with that for single cells indicates that E- and I-units
encode different aspects of the stimulus independently of each
other.

The separation of information flow into independent comple-
mentary channels is a feature of many sensory and motor systems
(Metzner and Juranek, 1997b). So far, a doubling of information
transmission has been demonstrated for pairs of sensory inter-
neurons in the cricket cercal system coding for opposite directions
of air movements (Theunissen et al., 1996), and for combinations
of ON and OFF retinal ganglion cells in salamanders (Warland et

Figure 7. Terminal spread of P-receptor afferents. Top, Transverse sec-
tions at hindbrain level in two preparations (lef t, right, respectively). The
locations of the terminal fields of two Neurobiotin-filled P-receptor af-
ferent fibers within CM are indicated by the boxes. Bottom, Magnified
views of the respective cells. In both cases, the terminal fields were
reconstructed from three consecutive transverse sections (thickness, 50
�m) of the ELL. The section at the lef t corresponds to level �6, and the
section at the right corresponds to level �9 of the brain atlas of Maler et
al. (1991). C, Cerebellomedullary cistern; CCb, corpus cerebelli; CM,
centromedial segment of ELL; CL, centrolateral segment of ELL; d,
dorsal; g, granular cell layer of ELL; l, lateral; L, lateral segment of ELL;
M, medial segment of ELL; MLF, medial longitudinal fasciculus.
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al., 1997). To assess whether larger ensembles of pyramidal cells
are able to capture more of the stimulus time course, we extrap-
olated decoding from pairs of same- and of opposite-type cells
using spike trains recorded consecutively in response to multiple
repetitions of the same stimulus. Although we did not observe a
clear saturation of information transmission with increasing en-
semble size, coding fractions remained significantly lower than
those computed for single primary afferents even when the stim-
uli were reconstructed from up to 20 spike trains. This contrasts
with results from geniculate neurons in the cat visual system, in
which ensemble sizes of 12–16 relay cells were sufficient to satis-
factorily reconstruct natural-scene movies for a given pixel (Stan-
ley et al., 1999).

Potentially, our linear approach of stimulus reconstruction may
have underestimated pyramidal cell performance by missing
some nonlinear transformation performed by pyramidal cells. In
our previous work on single pyramidal cells, however, we could
not find significant gains in the coding fraction when the recon-
struction was based on several linear and nonlinear transforma-
tions of the stimulus or when we applied a quadratic reconstruc-
tion algorithm (Metzner et al., 1998). Thus, it seems unlikely that
the information on the detailed stimulus time course is preserved
by the pyramidal cells of the ELL.

Extraction of stimulus features by “distributed bursts”
As shown previously, spikes produced by pyramidal cells reliably
indicate upstrokes and downstrokes in stimulus amplitude (Gab-
biani et al., 1996; Metzner et al., 1998). Action potentials occur-
ring in short bursts perform significantly better than isolated
spikes. Here, we showed that the reliability of feature extraction
further increased when the analysis was based on spikes from a
pair of neurons of the same type coinciding within a time window
of 5–10 msec (Figs. 5, 6). If the electrosensory system uses
coincidence detection to analyze correlations between pyramidal
cell spike trains, this can occur at the next level of electrosensory
processing, i.e., the torus semicircularis of the midbrain (Carr et
al., 1981; Maler et al., 1982). A series of studies has described the
temporal filtering properties of toral neurons (Rose and Call,
1992; Fortune and Rose, 1997, 2000; Rose and Fortune, 1999),
but so far none has directly addressed feature extraction or the
effect of coincident input from ELL pyramidal cells.

Studies of visual processing have demonstrated that thalamic
relay cells can switch between two modes of firing, tonic and burst
(for review, see Sherman, 2001). Because bursts as well as spikes
generated in tonic mode encode visual information, it was sug-
gested that bursts signal the detection of objects to the cortex,
whereas tonic firing may serve in the encoding of object details
(Guido et al., 1995; Reinagel et al., 1999; Sherman, 2001). Inter-
estingly, both bursts of single cells and coincident spikes fired by
two relay cells with overlapping receptive fields are able to
efficiently drive layer IV simple cells (Alonso et al., 1996; Usrey
et al., 2000). Both mechanisms are thought to make information
transmission to the cortex more reliable. Additionally, coincident
activity may contain improved spatial information. Enhanced
spatial resolution has been demonstrated for the coincident ac-
tivity of pairs of visual cortical cells in cat with overlapping
receptive fields (Ghose et al., 1994) and has also been suggested
for concerted firing patterns among salamander retinal ganglion
cells (Meister, 1996). Similarly, correlated activity may improve
spatial information in weakly electric fish.

The time scales determined for interspike intervals within
bursts of single neurons (7–15 msec; Gabbiani et al., 1996;

Metzner et al., 1998) and for the optimal coincidence time win-
dow for feature extraction (5–10 msec) (Fig. 5) are remarkably
similar. This suggests that integration of both burst-like spike
patterns arriving on single neurons and coincident spikes on
groups of pyramidal cells may contribute to the detection of
stimulus features. Therefore, temporally correlated activity of
groups of pyramidal cells may be considered distributed bursts. It
has even been suggested that coincident bursts of spikes may
constitute the “best neural code” used for synaptic transmission
and information coding (Lisman, 1997). Indeed, our data support
this notion, because a large percentage of the coincident spikes
occurred in bursts (63 	 15%, mean 	 SD for a coincidence
window of 	5 msec) (Fig. 4c). Studying postsynaptic effects of
pyramidal cell spike patterns on their target neurons in the
midbrain torus will help elucidate the physiological significance of
such distributed bursts.
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