A Caltech Library Service

Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device

Lucchetta, Elena M. and Munson, Matthew S. and Ismagilov, Rustem F. (2006) Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab on a Chip, 6 (2). pp. 185-190. ISSN 1473-0197. doi:10.1039/B516119C.

PDF - Published Version
See Usage Policy.

PDF - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


This paper characterizes a microfluidic platform that differentially controls the temperature of each half of a living Drosophila melanogaster fruitfly embryo in space and time (E. M. Lucchetta, J. H. Lee, L. A. Fu, N. H. Patel and R. F. Ismagilov, Nature, 2005, 434, 1134-1138). This platform relies on laminar flow of two streams of liquid with different temperature, and on rapid prototyping in polydimethylsiloxane (PDMS). Here, we characterized fluid flow and heat transport in this platform both experimentally and by numerical simulation, and estimated the temperature distribution around and within the embryo by numerical simulation, to identify the conditions for creating a sharper temperature difference (temperature step) over the embryo. Embryos were removed from the device and immunostained histochemically for detection of Paired protein. Biochemical processes are sensitive to small differences in environmental temperature. The microfluidic platform characterized here could prove useful in understanding dynamics of biochemical networks as they respond to changes in temperature.

Item Type:Article
Related URLs:
URLURL TypeDescription
Ismagilov, Rustem F.0000-0002-3680-4399
Additional Information:© Royal Society of Chemistry 2006. Received 14th November 2005, Accepted 16th December 2005. First published on the web 12th January 2006. We thank Nipam H. Patel (Department of Integrative Biology, Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California–Berkeley, Berkeley, CA 94720-3140, USA) for helpful discussions and for providing DP311 antibody. This work was supported by the Searle Scholars Program, the NSF MRSEC Program under DMR-0213745, and the MRSEC microfluidic facility funded by the NSF.
Funding AgencyGrant Number
Searle Scholars ProgramUNSPECIFIED
Subject Keywords:laminar; network; neurons; flows; gene
Issue or Number:2
Record Number:CaltechAUTHORS:20130821-160725195
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:40832
Deposited By: Whitney Barlow
Deposited On:27 Aug 2013 23:45
Last Modified:10 Nov 2021 00:09

Repository Staff Only: item control page