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FOREWORD

The research program under Contract N00014-67-A-0094-0007
was given to commence on 1 February 1966, and has been completed on
31 January 1969, This report concludes the work carried out under this
Contract, The objective of the present report is to indicate the scope of
work performed, to state the progress and contributions ac.hieved, and

to report the recent results obtained under this program.



ABSTRACT

The wall effects in ca\;ity flows past an arbitrary two-dimensional
body is investigated for both pure-drag and lifting cases based on an
inviscid nonlinear flow theory, The over-all features of various theo-
retical flow models for inviscid cavity flows undef the wall effects are
discussed from the general momentum consideration in comparison with
typical viscous, incompressible wake flows in a channel. In the case of
pure drag cavity flows, three theoretical models in common use, namely,
the open-wake, Riabouchinsky and re-entrant jet models, are applied to
evaluate the solution. Methods of numerical computation are discussed
for bodies of arbitrary shape, and are carried out in detail for wedges
of all angles., The final numerical results are compared between the
different flow models, and the differences pointed out, Further analysis
of the results has led to development of several useful formulas for
cdrrecting the wall effect. In the lifting flow case, the wall effect on the

pressure and hydrodynamic forces acting on arbitrary body is formulated

for the choked cavity flow in a closed water tunnel of arbitrary shape, and

computed for the flat plate with a finite cavity in a stfaight tunnel,



WALL EFFECTS IN CAVITY FLOWS

1. .Introduction

In correlating the experimental results of water-tunnel tests on
cavity flows with the corresponding unbounded flow case, it is necessary
to know the effects due to the presence of tunnelflow boundaries. The
wall effects in cavity flows have been generally recognized to be consider-
ably more important and more difficult to determine than those in the
wind-tunnel or water-tunnel tests of non-separated, single-phase flows
past a body. A primary reason for this is that the presence of a cavity
boundary renders the problem nonlinear, consequently the configuration
of the body-cavity system will change as the wall spacing or the cavitation
number varies, whereas in non-separated or non-~cavitating flows the body
shape always remains the same. Partly due to this difficulty., not an ac-
curate formula or rule for the wall correction has been established, at
least not in the general case of a finite cavity at‘tached to a body of arbitrary
bluntness, A principal objective of this study is to investigate thoroughly
the relevant flow parameters in order to establish a simple wall correction
rule.

The physical flow boundaries in the test section of water tunnels
may be classified in three different types: (a) rigid walls of closed tunnels,
(b) a free surface of constant pressure if the tunnel uses a free jet, and
(c) a combination of free and solid surfaces such as in a bounded jet
tunnel or in a free surface channel with a rigid bottom and sides, Presence
of these flow boundaries will introduce several significant effects: (i)

First, in dealing with the potential portion of the flow, these flow boundaries

will impose a condition either on the flow direction at rigid walls or on the



pressure at a free surface. (ii) In the case of closed tunnels, the boundary
layer built up at the solid wall surface will generate a longitudinal pressure
grﬁdiant in the working section, and may even produce, depending on the
configuration of the model installation and the tunnel cross-section, a
secondary flow which may further change the pressure field. Moreover,
the lateral constraint due to the tunnel walls will result in a higher velocity
outside the boundary layer and hence a greater skin friction at the wetted
body surface, In general practice, however, the characteristic Réynolds
number Re is sufficiently high such that the boundary-layer-induced pres-
sure field is of order O(Re _%) (or at most of order O(Re—%log Re)for lift-
ing flow experiments) and is hence of secondary importance. (iii) In case
the cavity boundary detachment from a curved body is smooth (i.e., with
a finite curvature, such as from a circular cylinder), the point of detach-
ment on the body will depend on both the cavitation number and the wall
spacing. In such cases, correlation between tunnel experiments and the
unbounded flow theory would be even more complicated. In the present
work, efforts will be aimed at investigating effect (i) for both the pure
drag and the lifting flows so that this primary effect can be clarified first,
Effect (ii} can be evaluated with some modifications of the present formula-
tion by taking the boundary layer into account. In practice, this viscous
effect arising in the presence of tunnel walls can be effectively compensated
for at one Reynolds number by having slightly diverging walls, or with
adjustable walls, Effect (iii) is however beyond the scope of the present
sfudy.

Several problems of wall effects have been discussed previously

for some special cases. The choked cavity flow case (i.e., when the

2

cavity is infinitely long in a channel or in a free jet) has attracted early



é£tention due to its relative simplicity. This problem has been treated for
symmetric wedges by Birkhoff, Plesset and Simmons (1950). For a sym-
metric body of cros‘s-sectional area A, placed symmetrically in the

tunnel, experiencing a drag D in a choked cavity flow which has upstream

velocity U and pressure Py’ let two drag coefficients be defined as

Cp = D/(-lz- pU?A) Cy = D/(% quzA) (1)

where d. is the constant velocity at the cavity boundary. In the case of
a flat plate set broadwise to the flow, the theoretical results of Birkhoff,
Plesset and Simmons show that the conventional drag coefficient CD is
almost insensiﬁve to the width of the free jet (down to the body width) but
depends strongly on the spacing of the channel walls, whereas C]'3 is
found to be insensitive to either the channel spacing or the width of the
free jet, (Of course, for a plate in a free jet the two velocities U and
q. are equal.) These results had been predicted earlier by Valcovici
(1913) based on methods suggested by Prandtl, -Now, by Bernoulli's

theorem,

1 2 1

1 1
P+-2-qu=Pw+§PUZ=PC+quC=Pb+7PVZ=Ps (2)

where P, is the cavity pressure, P the stagnation pressure, and Py,
is another reference pressure associated with a third reference velocity

v, CD and CI; are seen to be related by

- 21 !
= (qC/U) CD = (1+cr)CD (3)
where o is the conventional cavitation number,

P (% pU*)=(q /UF-1 . | (4)



In view that CI; is nearly constant (which is 0,88 for the flat plate) and
the factor (1+0) gives an accurate dependence of Cp on o for a flat
plate in an unbounded flow (for 0<o <1, see, e.g., Gilbarg (1961),
Wu (1968) ), this result has led Birkhoff (1950) to assert the stronger
"principle of stability of the pressure coefficient': that for an obstacle
of given shape in a water tunnel (or jet) the pressure coefficient

P-P 2 P-P 2
C'E—-——-C—- =1__£1_ , instead of C E———_o.i_zl_(c_l_., ,
p P o U U .

Wy

2
C
(5)

is insensitive to the presence of walls and changes in the cavitation number
o. This principle, elegant and useful it may be for blunt bodies, un-
fortunately does not possess a general validity. In fact, as the result of

this work will show later, the wall effects on both C and CD', at fixed

D
cavitation number o above its choked flow value, are rather insignificant
for blunt bodies, For symmetric wedges, the wall effect on CD increases
with decreasing wedge angle and this effect on CI') is actually more

pronounced than on C Furthermore, even in the unbounded flow case,

D
the nonlinear deviation of CD(G) from the factor (l+o) becomes greater,
the thinner the body becomes, or the smaller is the incidence angle of a
lifting surface (see Wu (1956), Wu and Wang (1964a) ). This feature of
the dependence of CD on ¢ weakens further the argument underlying the
prin;iple mentioned above. Another exceptional case is tﬁat when a flat
plate is situated outside of the mouth of a bounded jet, this principle is
appreciably violated, as shown by the numerical results of Birkhoff,

Plesset, Simmons {1950),

For the more general case of a finite cavity formation behind a



given body placed symmetrically in a bounded stream, various attempts
haye been made with resort to different theoretical flow models, The
Riabouchinskf modgl has been adopted by Cisotti (1922) for cavity flow
past a plate in a channél, by Caywood (1946) for wedges, by Birkhoff,
Plesset and Simmons (1952) for a plate either in a channel or in a free
jet. The re-entrant jet model has been used by Gurevich (1953) for a
wedge in a channel, The open wake model of Joukowsky and Roshko, which
turns out to be the simplestin numerical details, has not been employed
before (insofar as the authors are aware bf). This is taken ué here with
the other models in formulating the general problem of an arbitrary body
placed in a channel,

An entirely different approach to this problem for thin bodies at
small incidences is based on the linearized cavity flow theory.' This
linearized theory has been developed for wall effect problems by Cohen
and Di Prima (1958),Cohen and Gilbert (1957), Cohen, Sutherland and Tu
(1957), and by Fabula (1964). Some comparison between the nonlinear and
linear theories will be made in this study.

The problem of wall effects on lifting cavity flows is more complicated
due to the lack of a basic symmetry. The case of choked flow past an
inclined flat plate within a straight channel has been investigated by Al
(1965)., A linearized theory for choked flows past vented or cavitating
hydrofoils has been developed by Fabula (1964). Ai's theory is generalized
here to account for a body of arbitrary shape. A general formulation is
presented here to treat the finite cavity flow based on the open wake model,

Recently, Brennen (1969) evaluated the wall effect for axi-sym-
metric flows with a finite cavity past a disk and a sphere; he also obtained

some new experimental results, In his theory the Riabouchinsky model



is 'adopted to represent the finite cavity. One important aspect of
Brénnen's_ relaxation method is that the flow is bounded laterally by a
concentric cylin&er of‘variOus sizes, down to the smallest that produces
the choked flow at a given.cavitation number, and the unbounded flow case
is reached by extrapolation, The numerical results therefore furnish
useful information about the wall effect in three-dimensions,

Experimental studies designed to investigate primarily the wall
effects in cavity flows have received increasing attention recently, A
review of these activities has been given by Morgan (1966). Dobay (1967)
investigated experimentally the blockage effects on cavity flows past a
circular disc, set normal to the flow, of three different sizes., These
extensive experiments showed that choking occurred even with these
vrelatively small discs (disc diameter-to~-tunnel down to 1/36)., Similar
findings have been reported by Barr (1966), A recent survey and discus~
sion of this subject has also been given by Waid (1968)..

A clear understanding of the wall effects in-<wake or cavity'flows
is necessary to interpret correctly the experimental result, Grove et al
(1964) investigated experimentally the steady separated flow past a
circular cylinder (of diameter d) in an oil tunnel (of spacing h) with the
Reynolds number R up to about 300, For the case d/h = 0,05, the
rear pressure coefficient was found to reach the asymptote -0.45 for
R>25 (upto R =177), Itis further conjectured that the pressure pro-
file for d/h = 0.05 has already reached the limiting form as d/h —~0
(the unbounded flow case). This final extrapolation seems misleading
since a simple estimate (e.g. by using Eq. (10) below) indicates that the
flow state at hand is right in the neighborhood of the choked flow state,

Finally, it may be mentioned here that a series of experiments



has been carried out by Meijer (1967) in an investigation (collaborated
with one of the present authors, TYW) of the tunnel wall effect and the
viscous effect at a sharp corner of the body. An empirical method for

correcting the wall effect was chosen, which is based on a different pres-

sure coefficient C; and cavitation number o", defined as
c" = P'Pb -1 - q 2 ol = Pb"PC cn = D
P }_ VZ A\ ’ 1_ Vz ’ 1_ VZA ’
zP z P z.P

,Wheré Py is the minimum pressure and V is the corresponding méximum
veloci.ty on the tunnel wall (measured at a point on the tunnel wall opposite
to the maximum cross-section of the cavity, see the point B in Fig. 3

of the RiaBouchinsky model). This C;(O'") has been found to correlate
very satisfactorily with the.theoretical valués of CP(O') for an unbounded
flow, as supported by a number of tests with models of fh;'ee different

sizes. Some theoretical justification is being sought in this study.
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2, Theoretical Models for Inviscid Cavity Flows;
Momentum Considerations

It has been known that the theoretical models in common use for
treating steady inviscid cavity flows can predict hydrodynamic forces
acting on blunt obstacles with differences so small that they are usually
beyond the limit of experimental accuracy (see, e.g., Gilbarg (1961) ).
It is also known that these models, when applied to unsteady cavity flow
problems, have yielded appreciably different results (see Wang and Wu
(1963) ). Since the viscous effects of the real fluid in the wake are ap-
proximated by different artifices in different models, and the cavity drag
is distributed at different rates in different regions, it should be of value
to examine these models in the presence of strong wall effects, This
will be done in two parts., First, the over-all features will be studied in
the light of simple momentum consideration, The rest will be left with
the detailed analysis, The final results exhibit significant differences
between the three models tried out, when applied to thin obstacles, This
finding therefore sets the stage for further experimental investigations
for a crucial appraisal of the theoretical models,

Before we deal with the inviscid cavity flow or wake flow movdels,
let us consider a typical viscous, incompressible flow produced in an
infinitely long straight channel by a blunt body which is propelled along
the channel axis by an external force, moving at sufficiently high
Reynolds number Re such that a recirculating near wake (or a finite
cévity in a two-phase flow) is established. For simplicity, the additional
viscous effect due to the boundary layer built up along the channel walls
will be singled out by assuming that the walls can be made to move with

an appropriate tangential velocity so as to eliminate the boundary layer
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altogether. Then, with respect to the body frame, the upstream velocity
will be denoted by U, and the pressure by p_ (sce Fig.la). At large
distances downstrea‘m (Say for x » pUZSEIZ/D, where S 1is the cross-
sectional area of the channel and D is the drag of the body), so that after
the turbulent far wake has spread uniformly across the channel, or even
after the turbulence is dissipated and degenerated inte a laminar flow,

the mean velocity will again be uniform, equal to U on account of the
continuity, but the pressure, after full recovery of the kinetic enérgy,
will be Py, say, which must be lgss than Py since by the simple

momentum consideration

- PuPy A
S

D=(p, -p,)D , or C_ = cp (7)

0

A being the body section area and CD being defined by (1). Thus the
wall effect here is to I;educe the momentum defect to zero, and to give
rise to an under-pressure in the downstream, This underpressure co-
efficient C;) diminishes in proportion to the ratio A/S, as A/S —0,
since CD must remain finite, (In plane flows, S 1is replaced by the
channel spacing h, and A by the body width £ )

We now turn to consider the cavity flow models for an arbitrary
body placed in a straight channel, with a finite cavity formation. Although
they have been applied exclusively to plane flow analysis, the following

momentum theorems hold also valid for the three-dimensional case so

long as the flow is symmetric abouta z = 0 plane,

2.1 Open wake model

According to this model, which is due to Joukowsky (1890),
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Ros‘hko (1954), and Epplef (1954) and modified by Wu (1962), the dividing
streamline starts with a uniform velocity U and pressure p  atup-
stream infinity, flows tangentially to the body surface (ED and ED' in
the cross-sectional view of Fig, lb), detaches from the body at D and
D' to form a cavity boundary DC and D'C' over which the flow speed
assumes a prescribed constant value Qe and the pressure P.s then
proceeds downstream along CB and C'B', approaching asymptotically

parallel to the walls so that the flow cross section becomes k (=k + k
2

1
in Fig. lb), velocity becomes V, and pressure Py - The shape of CB
and C'B' is so determined that there will be no net contribution from

this variable pressure part of the boundary to the force on the body. Both

V and k are unknown a priori, but must satisfy the continuity equation
Uh = Vk . (8)

Application of the longitudinal component of the momentum theorem to the

flow region gives
D = {p;p.)h (Py, p )k + pU%h - pV7k

which becomes, upon using Bernoulli's equation (2) and continuity con-

dition (8),
2 .
q
— D h(|Vv c
D %pUZI L\ 0 ) \

where £ denotes the lateral body width for plane flows or the body cross
sectional area in three-dimensional flows,
It is of particular significance to consider the limiting case when

the cavity becomes infinitely long (the so-called choked flow) as V



13

- inicreases towards q.- Let the corresponding limit of U, CD and the
cavitation number o, with h/f and q,. held fixed, be denoted by U,,

CD* and o, respeétively, then

q 2
C _h(_c -1} - hiTe, - 12 (10)

D, I

o, is called the choking cavitation number, or the blockage constant.

From (10) it follows that

o=

¢ ST )
h™ "D, Ik Cp,)> 2

s

+ = cD*) (11)

It is to be noted that o, provides a lower limit of ¢ below which the
flow is physically infeasible, and that the right hand side quantity in (11)
is a quite accurate estimate of o, for large h/fL. Thus, to achieve

o = 0.1, we musthave h/f > 400 if CD=

N )
Another point of interest is that the choking drag coefficient can

be expressed in terms of the geometry by using (8). Since U,h = qck,

(10) and (3) become

q 2
h c h k
cp —E—(k-l) =(TJ:,:)CDJI=I-(1_E)
(12)
In the case of bluff bodies C'D is insensitive to £/h, then
kK . [t~ )
R - 1 (-—5 CD*) (13)

gives an estimate of k/h versus {£/h,

When the cavity is finite in length, we must have U<V < 9e- For

sufficiently large h/f so that V~U (see Eq. (9)), the under-pressure
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coefficient at the downstream end becomes

ZCD

——

- ©>0,) , (14)

c; = (o, - 2y (3 pU*]= (v/uP -1~ (g]

thus CI; is proportional to £/h, in agreement with (7) which is based
on the viscous flow argument, However, when the cavity is also long,

then by (11),

- |z %
Cp [}T CD*) (o=0,) (15)
which decreases much slower withdecreasing £ /h atthe chokedflow state,

2.2 Re-entrant jet model

Description of the main features of this model, which has been
attributed independently to Kreisel, Gilbarg and Efros, can be found in
the book article of Gilbarg (1960). As shown in Fig, lc, let the down-
stream uniform state be characterized by velocity V and pressure Py
and let the jet flow upstream through the cavity into a second Riemann
sheet, terminating with the cavity surface velocity q. across a constant
section of area Ej’ inclined at an angle y with the upstream flow direc-

tion. Then the continuity condition requires

(U-V)h = qclj . (16)
In contrast to the open-wake maodel, we now have V < U and hence

\
Py, > Pg (an over-pressure at the downstream! ) as the momentum defect

is partly carried off by the jet, Since the longitudinal momentum flux in

the jet is (—pqccosy)(qclj ), we now have the momentum equation

- - - 2 _yr2 2
D = (PP ) 1Py, -p  Jhtp(U*-Vi)htpt ;g (cos y
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which is reduced upon using (16) and (2) to

N N T A A
CD—lpUzz = (1 i (1+ U+2-‘{TCOSY . (17)
2

The choked flow state cannot be readily derived from the above
formulas (it can however be deduced from the analysis later), but this
limit must evidently be the same as (10) and (11) in virtue of the
momentum consideration, if applied directly to this state. Before the
flow is choked, the over pressure at the downstream end is

Py -P
i - Pz <1 [Tl

1y o8
+ <F CosY . {18)

N =~

2,3 Riabouchinsky model

The main features of this model are shown in the typical case of
Fig. 3. Since there is no more than one distinct uniform flow state, the
simple momentum argument cannot be effected to determine the drag,
albeit the choked flow state must also agree with the other models, On
the other hand, this model has an advantage of providing readily a point
(point B in Fig, 5) at which the velocity is maximum, and pressure mini-
mum over the entire tunnel wall, This velocity is to be used in calcula-

ting Ci)' as defined by (6).
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I. Pure Drag Cavity Flows

In this pért we consider the pure drag cavity flow past a sym-
metric body of an arbitrafy shape, placed symmetrically in a straight
channel of width h, with a finite cavity attached to the body, the flow
being assumed to be symmetric about the central plane of the channel,
The characteristic Reynolds number and the Froude number based on
the body dimension are both assumed to be so large that the viscous and
gravitational effects may be neglected., The solution will be determined

by using three different flow models,

3. Open Wake Model

This semi-infinite open wake model has already been described
in the previous section. As shown in Fig. 2, the boundaries CB and
C'B' of the variable pressure part of the open wake now become straight
and parallel to the x-axis by virtue of the flow symmetry. The flow
region in the strip |¢| < L|,11 = Uh/2 of the complex potential plane
f=¢ + i), ¢ being the velocity potential and § the stream function, is

mapped into the upper half of the parametric plane { = § + in by

af AL A = L Unb?-a?) (19)
€ great)g24b?) i

in which the coefficient A is determined by the jump of { across the
flow about the upstream or downstream infinity (point A or B). The cor-
responding regions in the z, f, and { -planes are shown in Fig, 2,

By denoting the x, y-velocity components by u, v, and the com-

plex velocity by
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.W:u-iV =‘g_—.fi-:qe s CI':IWI ’ 9:tan-1(v/u) ’ (2'0)

physical problems can be stated by prescribing 6 at the body surface,

6 =B(s) say, s being the arc length measured from E along ED, and
by prescribing q = d. along the cavity boundary DC and D'C'. For
brevity, q. will be normalized henceforth to unity., In terms of the
logarithmic hodograph variable

1

©=T+i0=log = , 7 =log , (21)

2
q
the problem becomes the following Riemann-Hilbert boundary value

problem:.

6(t,0+) = 67(&) = B(s(E) ) (el <1)

T(€, 0+)

"

0 (el >1) (22)

o(L/t) as |t]| =ew |,

£
"

in which we specify s(-£) = -s(£), and B(-s) = -B(s). We shall also
designate B(§)= B (s'(g) ), with B(-£) = -B(E). The solution of this

problem is

1
1 3 d
o) = &= @17 § 1 BEIE (1t > 0) (23)
TTE-L)(1-E%)
1
in which the function ({%-1)? is analytic in the { -plane cut along the
£ -axis from -1 to 1, and tends to { as I?;,I -+, It is noted that the
last condition in (22) is also satisfied since the integral in (23) is of order
2

0" %) as |{| = by virtue of BI(£) being odd in £. Finally, the

boundary conditions of w at the upstream and downstream infinity require
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: 1 1
log § =wia) = 2 et | _BERAE »
. ) o (gZ_*_aZ}(l_gz)%
1 1
log 17 = w(ib) = TZT (14b%)? BEXAE ’ (25)

1
©(ER4pP)(1-52)°
Equations (19) and (23) provide a parametric solution f = f({{),

w = w({ ). The physical plane is given by quadrature,

4 ~ L
Z(g) = g‘ i,— gg—fd; :5 ew(g) gg—f . (26)
* o}

(¢]

Let the base chord DD' be of length £, then £ = Im(z(l) - 2(-1) ), or

1
2 :Img e dl g (27a)

and hence, after substituting (19) in (27a),

>
i

~ 1
- Im Y 5 e‘*’(“[ SR ]gdr, . (27b)
m £ 2+a? £ 2+b?

Now on the body surface, as n = 0+,

| 1 .
w(E+i0) = TYE) + iB(E) , (€)= 111_§ 1 (i-gﬁ )2 ﬁt(-tg)dt 28)
-1 \1-t

where C over the integral sign indicates the Cauchy principal value,

Hence the arc length s, measured from E along ED, is

3
sig)= | T I g RIS (29)

o



19

The drag coefficient is given by (9), or after setting q =1,
c

Cp =T 7 (1

—Zl—pUzl 5 -1] (-[_J_l\_,. -1) . (30)

I#

D

The above solution may be regarded either as a direct (physical) or an

inverse problem. The direct problem is prescribed by the quantities
P[B(s), 0, \] (31)

in which P(s) is @ known function of the arc length s, ¢ is taken to be
greater than the blockage constant o, for fixed M= £/h) < 1. The inverse

problem is specified by
P'[B(g).a,Db] (-1<E<1) (32)

in which B(£) is a given function of £ and 0 <a <b. The inverse prob-
lem is seen to be fully determined, since if the quantities P' are pre-
scribed, then (24), (25) provide U and V, (23)determines ({), (27)

fixes £/h, z is given by (26), and finally the C., follows from (30). On

D
the other hand, in the direct problem with fixed detachment (from a sharp
corner of the obstacle), s(g and B(E) = P(s(E) ) ‘are not known & priori.
Consequently its solution involves a nonlinear integral equation (29) for
s(§) together with two parameters a, b, which must be evaluated under
two functional conditions {24) and (27) for fixed U and £/h. (Note that
= (l+0‘)-%). In the case of smooth detachment (when the body curvature
is finite on both sides of the detachment point, such as detachment from a
circular cylinder), an additional condition is requiredl. The classical

condition is that of Villat (1914), which can be written as

1
(% -1Pwt) =0 as L >~ 1. 1t should be noted that V
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cannot Be arbitrary in problefn P, instead it is fixed by (25) after a, b
and p(g’) afe sol’ved. The numerical methods of solution for calculating
the direct problem have been established and discussed for the unbounded
flow case by various authors (see e. g., Birkhoff and Zarantonello (1957),
Gilbarg (1960), Wu (1968) ) and will not be further elaborated here.
Furthermore, the approximate numerical scheme devised by Wu and Wang
(1964b) has been found to be very effective. These methods can also be
applied to the present problem of wall effects..

Of particular interest is the simple case of symmetric wedges
since in this case P is constant and the parameters become uncoupled
(U is a function of ™"a'' only, see (24) ). Consequently the solution is
greatly simplified by considering a mixed type problem Pu[B,0,b] so
that the direct problem can be solved by simfple cross plotting. We pro-

ceed to evaluate the details in the following.

3.1 Symmetric wedge -

For a symmetric wedge of half vertex angle fm we have
B(E) = const. = Bm (0<E<1) . (33)

Then (23) can be readily integrated, giving

. 28
e W o TIBT 4
W(g) =€ =€ (1—+——1—:£—2-) . (34:)

Hence conditions (24) and (25) become

1 1
U = [a/(1+11+a? )]2_‘3 or a” = —é— ,{U 2B _ U ZTS—},(35)
\
1 1

V = [bf (1471407 1P or b = %-\
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Furthermore, (27) gives the base-chord to channel-width ratio as

1 g% 2R 1-2B
(sinBm)(b? - a? SI (1+11-% ) pé d
o (L% +a?(L? +1b?)

A

¢ . (37)

n

£ _2U

h ~ v

For the direct problem P[B,o0,£/h], first a can be computed from (35)
i

noting that U = (140} 2, next b can be determined from (37), and finally

V 1s given by (36), and C_ by (30). For arbitrary f, the integral in

D
(37) cannot be integrated in closed form. When B = m/n, m and n being
integers, appropriate changes of variables can reduce the integrand to a

rational fraction, which can then be evaluated in closed form. In particular,

for the flat plate, P = 1/2, the result is rather simple

A R I

However, for a wide range of B, itis more convenient to evaluate the
integral numerically.

In order to determine the lower limit of o for fixed £/h, we
consider below the asymptotic limit of choked flow.

The choked flow state is reached as b o, or equivalently, as
V =~ 1. The corresponding limit of a and U, for fixed f and £/h, will
be denoted by a, and U, which are related by U, = U(a,), U(a) being
given by (35). By letting b = « in (37), we obtai;m

2U 1
= _* sinpm § (L471-g2)2Pgl-2B 46 (39
T o §2+a‘_.f

SIES

which determines a, = a,(f/h,p). The corresponding drag coefficient at

the choked condition is

C =%.(_1._1)2=%-[41+0'*-1]2 . (40)
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In partiqular: we deduce from (38) for the flat plate, B = 5

é = ((1-UQ [- — (14U )tan” 1U*] . (41)

The choked flow results (39} and (40) have been computed numerically for
several values of B, as shown in Fig. 3. In general, it can be seen (for
example, by differentiating (39) with respect to a, and by some appropriate
partial integrations) that for 0 <p <1, £/h decreases monotonically with
increasing a, f{or U,). It can also be seen (but more involved) that CD,.,
decreases with U, increasing (or o, decreasing). These salient i
features can be clearly seen from Fig. 3.

From this behavior of £/h it also follows from (37) (for example,
by partial fraction and comparison) that before the tunnel is choked, the
following inequalities a <a,, U <U, (and hence o >0o,) must hold. The
wall effect on CD has been computed, with U < U*, for several values
of B and £/h, the final results will be presented in Section 6 together
with the other two flow models for comparison and discussion.

The wall effect diminishes as £/h —+0; this limit is reached as
b ~a (or V —U). In this limit, the drag coefficient CD(G,B,Z/h) tends
to its value in unbounded flow, (O' B), which can be deduced from (30),
(36) and (37) by applying 1! Hospltal s rule, giving

Cp (o:P) = = 5 - LB_L ab‘_

U

_ uTlu  }2(140)
sinf3T U-l/B_Ullﬁ /’a4co ’
1 —3 .28 ,1-2p
o =S' (1+71-02) 7' g ar . (42)
o} o (é2+a2)2

‘This result has been obtained previously by Wu and Wang (1964a). The
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above drag coefficient CD (0,B) for unbounded flow is shown in Fig. 4
: o
for comparison with the results based on the Riabouchinsky and re-entrant

jet models.
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4. Riabouchinsky Model

We now apply the Riabouchinsky model to evaluate the pure drag
cavity flow past a symmetrical body of an arbitrary shape placed in a
channel. The particular case of the flat plate has been dealt with by
Birkhoff, Plesset and Simmons(1952).

The corresponding regions in the z- and f-planes are shown to-
gether with the parametric {-plane in Fig. 5. The upper half strip in the
f-plane is mapped into the upper half {-plane by the general Schwarz-

Christoffel transformation (see Gilbarg 1949) ):

_C% = AL - , A= % Uh(bz-az)% , (43)
(L2+ad) (L2 +b2)2

in which the coefficient A is determined by the local behavior of f at
the point { =ia. The function (§,2+bz)% is analytic in the {-plane cut
from ¢ = -ib to { =ib, and (zﬁ+bl)%~»r, as | ¢} ~w. The boundary
values of . w= T+ 16 again assume the same form as (22), though the
symbol § = £ + in must be referred to the present problem. (Here we
note that 8 = 0 on BC due to the flow symmetry.) It therefore follows
that the pa;ametric solution w = w(f), the velocity condition w(ia) = -logU,
z = z({), the base chord £, the arc length s(f) can again bekexpressed
formally by equations (23), (24), (26), (27a), and (29) respectively. The
velocity V now gives the magnitude of the flow velocity at point B,
which is the maximum value achieved by the velocity along the entire
wall. Thus formally the numerical solution for an arbitrary body shape
can be carried out by the same procedure as described in the previous

case, except with df/d{ replaced by the above equation. This completes
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our solution.
The drAag on the body can be calculated by integrating the pressure

over the body surface, .giving

: ZD 1 1
? -WW 1 df
ZE o w o
(44)

4.1 Symmetric wedge

For a symmetric wedge of half vertex angle Bw, w({) is again
given by (34), and (35) remains valid to assure w(ia) = U. The ratio £/h,

by (27a), now becomes

b14diogz 2P 2-28

2y <sinpw><b2-a’->%§

4
2y . T
(t2+a?) (L2 +pH)?

de . (45)

Finally, (44) gives the value of the drag coefficient

. 1 1 _ 2 2;3_ - '___—-2_ Zﬁ -
Cp= Z.S;%P"(%}(bz_az)z‘§ (47147 )™ (1-71-¢2 )7 1-2p 4,

1
2

© (42+a2)(L%4b?)
| (46)

The numerical method of solution for arbitrary angle B 1is again very
much the same as described in the previous case. In particular, for the
flat plate, f = 1/2, the above integrals can be evaluated in terms of the
complete elliptic integrals and elementary functions. The details will
however be omitted here.

The choked flow state is reached as b >o. The limit of £/h as

b — ®© is obviously identical to (39). Furthermore, we derive from (46)



26

the corresponding limit of CD as

C_ - Zsinpm (h)gl etz PP i |2 gat
Dy~ WO, M St 2 Jer+az

L (47)
\U::: |

| o

upon integration with appropriate change of variables (t=(1-w{_1_-—§_i)/§,
and integrating in the complex t-plane with use of the theorem of residues).
This result agrees with (10) which was obtéined by using the momentum
theorem, as should be expected.
To the other extremit'y, the unbounded flow limit is obtained as
b —~a, with the corresponding drag coefficient given by
I..
Cp (B,0) = (1+0) [1 - ﬂ (48)

where

1 =5‘1 (21g?)2P 12
+

o (§Z+a2)3/2 dg

This result is shown in Fig. 4 togefher with two other flow models. The
final numerical result of _CD(G,(B, A} for o> g, will be presented and

discussed in Section 6.
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5. Re-entrant Jet Model

The re-entrant jet model has been adopted by Gurevich (1953) to
evaluate Symmetric( ca{zity flows past a wedge placed in a straight channel.
In what follows the general case of a symmetric body of an arbitrary shape
is treated by using this model, and the detailed numerical results of the
wedge problem are further explored.

The corresponding regions in the z- and f-planes are shown in
Fig. 6. Though a parametric plane similar to those of the previous two
models (that is, with the body surface and cavity boundaries span the
entire real axis of the parametric plane) can also be constructed, the
presenf { = £ +in plane has certain simplifications. The upper half
strip of the f-plane is mapped into the second quadrant of the {-plane by

the transformation

df | _Atlk’-c’) (49)
d
S (gF-at)L-nY)
where A is a positive real constant. By this formula { can be continued
analytically into the entire {-plane (by virtue of ¢ =Imf =0 on § = 0).

From the local singular behavior of f at { =a,b, and o it follows

that
Uh = wA(c?-a®)/(b%-a%) , _ (50)
Vh = mA(c?-b%)/(b%-a?)} , (51)
ﬂj = A . (52)

Condition (51) assures that the flow at the downstream channel is simply

covered. From (50) and (51) it also follows that
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V/U = (c?-b%)/{(c?-a’%) . (53)

From equations (50) - (52) follows also the continuity condition (U-V)h={j.

The boundary conditions of w= T+ 160 are

6% (g) = B(E#0) = - m (£ < -c)
=0 (-c <& <-1) (54)
= B(§) (-1 <£<0)
70, =0 (n>0)

The last condition of (54) enables (L) to be analytically continued into
the first quadrant of the {-plane by w(-T) = - w{f}, thatis, 7T is odd
and 0 is evenin £. (w({)} can further be continued into the lower half
¢-plane by (@) = AT} so that O is odd in m. The lower half flow field
then corresponds to the fourth quadrant of £he {-plane.) After this con-
tinuation, 0 1is prescribed as an even function of £, for the entire
g-axis. The solution w({) is then given by the Poisson integral

0  t O |
we) = & (7 ClEE C-4+%‘S_l___ﬁé§>§d§ . (55)

Hence,

) = o EEARLIS

B(E)dE
i : (56)

!
SRR I = o

The boundary conditions of w at point A and B require that

_(c-a )e-Q(-a) LV =(E_'£ e'ﬂ'b) (57)

“lcta ct+b
Upon substituting the above U, V into (53), there results

(ct+b)/(cta) = exp {%— [Q2(-a)-~b)] (58)
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from which itis convenient to determine ¢ as a function of a,b; ¢ will
be regarded as such in the sequel.

The physical plane is given by

- (e (-t )t -c)
z(¢) _S_l T A ‘5-1 e v(ta,b)dt , v = Tratnrend . (59)

The half-base chord is £/2 =Im 2(0), and hence, upon using (50),

~n0
Im | 28 o by . (60)
-1

2U bF-a?
k)

cz-az

L
h
The arc length s measured from E along ED is

e g (11
s(£) = AS 1 el B)yigia,b)de , TE) = %5,1 %ﬁ. i (61)

For the inverse problem with prescribed P'[f(£),a,b], ¢ is determined
by (58), U by {57), £/h by (60) and s(f) by (61). Solution of the direct
problem P[B(s),0,£/h] can proceed along the same method as described
earlier for the other two models; it is however more complicated than
the previous two models since this solution contains an extra parameter
in the first place.

The drag coefficient has been derived for the general asymmetric
flows by applying the momentum theorem (see (17} ). For the present

problem, q. = 1, y=0,

co- T2 -3 Bl 2 &

5.1 Symmetric wedge

For a symmetric wedge of half vertex angle fw, @ can be
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integrated to yield

£-1
Q = = 63
which is defined in the {-plane cut along the £-axis from { = -1 to 1l so

that Q —=-2B/t as f{,( . Hence, by (57),

B B
c- 1 c-b}/b-1
R o A = s (64)
and (58) becomes
/2 p/2
kb-a a-1 b+1

R e " 5‘a+l) {b-l (65)
Upon substituting (63) in (60),

£ 2U , . . bz-a 14¢ L(L4c)?

=== g 1) S\ dt . (66)

h T sSinig C ( _az)(gz-bz)

Equation (64) - (66) determine U, £/h in terms of a,b, and vice versa,
The choked flow state is approached as ¢+, and b —~ o, When

both b and c are large compared with a, we deduce from (65) the

relation
a,-1,P72
- K [1 0|2 ith o 67
I el R {F)] wit A s ' (67)
Using (67) in (64), we obtain for b » a,
U,=«* , V,=2k-1 | (68)
The corresponding limit of £/h is simply
2U
’ ¥
L= sinB SI (1+§ edt (69)

2;2
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By substituting (68) in (62}, we find

CD* :Z}‘](TJL - 1)2 (70)

which is in agreement with the previous two flow models. From the

requirement 'U* <1l and V_ > 0 itfollows that Kk must lie in the range

%—< k <1, and hence a, > (1+y)/(1-y), v = 2-2/6.

The unbounded flow limit can be derived by letting b ~ a, and by

applying 1'Hospital's rule to (65) giving

1

c = (a®-1)-a , (71)

™|

hence by (64),

_ _a*-1-2ap '
0 (@a-1)! Pyt e

We further obtain for the drag coefficient,

2

CD - Tr(1.+U) c?-a? ) C)%— _ w(1+U) 1T (73)
o aU®sinBw a®-1 UsinB
upon using (71), where
1 B '
=) P g (74)
o -4 (L 2-a2 ) -

This result of C is shown in Fig, 4 with the previous two flow models,

D
o
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6. Discussion and Analysis of the Results

From Fig. 4 we see clearly that insofar as the drag coefficient

C for unbounded flows is concerned, the discrepancy between the

D

o}
three cavity flow models considered here is rather insignificant for

moderate and large wedge angles (say Bw > 45°), but becomes quite ap-
preciable for small values of B,
For sufficiently large f (say PBn > 60°), the dependence of CD

, o
on 0 can be approximated by the relationship

Cp (B,o)=(l+0+e(@l?)Cpy (B,0) (75)
o o
in which € is a number very small compared with unity. Take the flat
plate for example (B =1/2), ¢ = [8(w+4)] "' for both the Riabouchinsky
and the re-entrant jet models and e = [ 6(w+4)] "' for the open-wake mecdel
(see Wu(l1956) ) which will make (75) a good approximation for o <1, in

’ modifies the result by at most 90.8% .

which range the nonlinear term eo
Blunt bodies of arbitrary shape generally also satisfy the above relation-
ship., The slightly less accurate dependence of CD (0,B) on o ,with the
linear factor (l+o), 1is notorious, °

For smaller values of B, the general trend is that, for fixed f

and o, the open wake model yields the largest CD whereas the re-
o
entrant jet model gives the smallest CD of the three models. Further-
o :
more, when B is very small ( <1/18, or 3w < 10°), the open wake

model is noted to posses the following simple relationship (see Fig. 4)
1
Cp (B,o)=0 (0> (Bn), B «1) (76)
o :

which is accurate to a high degree. This finding thus indicates that the
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cavity flow approximation of Betz (1930), namely CD (B ,o‘):CD (B, oMo,
though too crude in general,becomes nevertheless a fa(.)irly good c:.Lppro:»cirna,--
tion in the above range of the parameters o and . This feature of the
open wake model and the fact that the differences between these flow
models becomes increasingly more appreciable with decreasing wedge
angle (or, generally, decreasing body thickness ratio) have not been
widely known,

We proceed to discuss the theoretical results of the wall effect
for symmetric wedges. For the cavitation number o gi'ea_ter than the
blockage constant o,, with the cavity finite in length, the drag coefficient
CD([S ,0,\) has been calculated from (30), (35) = (37) for the open wake
mode, from (45), (46) for the Riabouchinsky model, and from (62}, (64) -
(66) for the re-entrant jet model. In order to improve the rate of con-
vergence of the numerical integration, certain transformatiphs of the
variables of integration have been administered, which are desirable
particularly for B and o small when the convergen.ce of the original
integrals is relatively slow, The numerical computation has been carried
out with an IBM-360 machine, using the straightforward iteration scheme
described earlier for the direct problem, Convergence of the iterations
has been satisfactory, the errors allowed are less than 107, The final
results of the numerical solutions are shown in Figs. 7 - 11, from which
the percentage drag reduction due to the wall effect is deduced and pre-
sented in Fig. 12a and 12b,

From these numerical results we note the following important
features of the wall effects in cavity flows. First, the wall effects for

straight channels always result in a lower drag coefficient than for an
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unboﬁn/d'ed flow at the sarﬁe cavitation number, This is physically obvious
since tﬁe 1atera1‘c'onstraints of the tunnel walls must make the flow
velocity sorﬁewhat highér, and hence the pressure lower, than their
corresponding values for unbounded flows oye’r the wetted body surface
away from the s.tagnation point, provided the comparison is made for the
same cavitatién number (or the same base under-pressure coefficient),

Another remarkable feature of the results is that the wall effect,
measured by the percentage drag reduction at fixed v and £/h, actually
increases with decreasing wedge angle - - a preoperty in common to all
three flow models employed. This would imply a general conclusion that
wall effects are more significant for thinner bodies in cavity flows, other
conditions being equal. At a first glance,such a statement may even
contradict one's intuition. However, it is to be noted as physically
plausible that the pressure reduction over the wetted side of a thin Body
may be felt over a longer stretch than for blunt bodies. Another possible
reason is that the curvature singularity of the cavity boundary at the
separation becomes weaker as the body thickness ratio decreases, causing
a greater pressure reduction on the wetted side.

A third feature of interest is that the drag reduction (absolute
difference) is very much insensitive to o (> 0'*) for fixed B and A. This’
feature is again common to all three flow mod=ls considered. Further-
more, it is to be noted that the wall effects predicted by the open wake
model are considerably stronger than the other two models. This interest-
ing finding and the differences between these flow models in the case of
unbounded flows past thin bodies strongly suggest that the decisive support

must come from further precise experimental investigations.
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II., LIFTING CAVITY FLOWS

7, General Formulation of Choked Lifting Flows

As a typical case, we consider the plane flow past an arbitrary
curved obstacle held at an arbitrary location in the tunnel, characterized

by the distance h_ between the detachment point D and the tunnel wall,

D
and by the orientation of the body, as shown in Fig. 13, In fact, to be
general, we may also admit curved tunnel walls in our formulation so long
as the bounding walls become asymptotically straight at both terminals so
that uniformconditions can be prescribed at up and downstream infinities,
Thus, the geometric inclination of the solid surface will be denoted by (s}
along the body surface and by «(s) along the tunnel walls, both as functions
of the arc length s, measured along the surface in the sense of increasing
x. The entire flow region in the complex potential f-plane, with f = 0 at
the stagnation point E, lies in a strip bounded by { = 4}1 = Uh1 :'le and
b o= -Lpz, where qJZ = th = de. We next map this f-strip into the upper
half of the parametric { -plane, with LD = -1, QD,: 1, Z_,E = 0, by the

transformation

df -A
dg - (6-a)t-b)&-bT) ’

(77)

where A is a real constant, { = a, b, b' are the respective image points
of the upstream infinity A, upper jet B and lower jet B'. The jumps in

¢ across A,B,B' provide the relations

TA ' " mA
Uh1 =Vd = CE TN , th :de = BalTh) (78)

In terms of the ratio
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v = hl/(hl+hz) = hI/h = (b'-a)/(b'-b) , (79)
b' = (a-yb)/(1-y) . (80)
Adding the two equations in (78), we have

Uh = V(d +d) = A _maldy) (81)
1 2 Y(a’__-b)z

(a-b}b'-a)
It is convenient to decompose the logarithmic hodograph variable
v o
w(t;):log@ =T + 160 (82)
into two parts

w=zw tw |, w =7 +60 , w =T +1i6 , (83)
o 3 o] o o 1 1 1

such that the boundary conditions of @ assume the following decomposition

(with { =§£ + in)

6,=mB(E) , 6 =0 €<-1,nq=0) , (84a)
’TO:O , 'I'I:O (-1<§§b, b'<§<l, 1‘1:0) s (84b)
T =0 6 =alt)-6(E) (b <E<bB, n=0) , (84c)
0 =B . 6 =0 &>1,1q=0) . (84d)

In the above conditions, the inclination angles o and $ are regarded as
functions of £; and in (84c), 90(5,) is known when the solution wo(g) is
obtained. The problem of wo(?;) is the same as the unbounded flow case

which has been solved by Wu and Wang (1964a), and the solution is
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. 3 1 -1 ~ o
o = log[ L +(£3-1)7] - Tlr_ (L2-1)2 (S‘ - ‘Sl )____.B_ig._)‘_ié__l . (85)
: (& -L)(E2-1)°

ale

The problem of wl can be expressed as a Hilbert boundary problem,

its solution can be shown to be

b’ [a(t)-6_(€)] dt

1
2

(86)

o)== 3 L@ -b)E -bIE-1)]

1
2

b acﬂgbwuau@m

The above expressions of W and wl contain branch points at §{ =4+ 1,
b and b'; the branch of ({*-1 )% is defined with a branch cut from -w
to -1 and from +1 to o, while (é-—b)% (l;-b')% is defined with a cut
from b to b', so that (Lz-l)% and [(Q—b)(g-b’)]% both tend to ¢ as
|§,! =0 in the upper half plane, By studying the analytical behavior of
these integral representations it can be shownT that w = w t w is con-
tinuous in the neighborhood of { =+ 1, b, b' and for finite { in the
upper half { -plane, Near the stagnation point E  or { ==, however,
the local conformal behavior requires that o behaves like logl{ as

lgl —+o0; this behavior is exhibited by the first term of W which is not

to be changed by the added term w representing the effect of wall. On

the other hand, (86) shows that wl(g) = O(]L}) as ]t_ﬁ,] -0 unless

gb' [a(§)-6_(&)]ag
) (87)

- =0
b. 3 :

LE-b)b -E)1-£2)]

sla
52

See, e.g. Muskhelishvili: Singular Integral Eguation (1953), pp. 235 - 8,

TSee, e.g. by the method discussed by Muskhelishvili: Singular Integral
Equation (1953), pp. 235 - 8,
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in whicfl case wl is bounded as Ié] — o0, We therefore enforce condition
(87) on the solution.

At the upstream infinity, as { = a, the present solution
w = wo+w has its imaginary part 6(a) satisfying automatically the con-

1

dition on flow inclination, while its real part gives

v o1 15’b' [a-b)p' -a)1-a2)]2 “E)0E)

log G =2 log(140,)=T (a) = T b €-a
[ (€-p)b'-£)(1-£%]

1
2

(88)
in which the integraltakesits Cauchy principal value. This relationship
provides another condition on the flow parameters.

The physical z-plane is given by the integration

2 oL
z<c>:§1—};§£ c=g) P ga memizo, (89)

and the arc length measured along the body surface from point D is

s =5 ) B E e del>1 =0y (90)

In particular, the total wetted arc length is

. (§ S') )df d =5 . (91)

Furthermore, the distance of point A from the asymptote of the upper

wall far downstream is

(92)

-iar . A gb sin(G(.‘;)-ao)dg
1

hp=q *Imle  (zg-z )] = .| EoaNEBNE-BT)

The above integral is regular since 6(¢) = a  at £ -a, b and b'
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» . ~ - -l
Finally, we introduce z = x + iy by rotation z = ze O, so that the

X -axis is parallel to the flow far up and downstream. Then on the upper

and lower walls

- £  sin(6(§)-a )dE

€ =d, - 5 § E=aNEBIE5T (bet<a), (93)
N sm(e(&)-a )ag

y.(€) =d, 2 § EEETETST (2 <& <bB) . (94)

In general this problem involves four independent parameters, say
O = Vi/Ut-1), y = hl/h, a and b (then b' is given by Eq. (80), A by
(81) for known U and h, and V = U(l+o, )_12_). For the determination of
these four parameters there correspond four equations: (87}, (88), (91),
(92). Consequently, the inverse problem, with prescribed o(f) and
B(), is completely solved. However, for physical problems when «
and B are given as functions of arc length s, it is further necessary to
satisfy the integral functional equations (90), (93) and (94). The integral
iteration method, or the approximate scheme introduced by Wu and Wang
(1964a,b) are useful for computing the solution of this problem.

The simple case of an inclined flat plate at the choking condition
in a straight channel has been investigated by Ai (1965), using the present
formulation,

Shair et al (1963) showed experimentally that the stability of the
steady laminar wake behind a circular cylinder is strongly influenced by

the proximity of the tunnel walls,
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8., Cavity Flow past an Inclined Flat Plate in Straight Channel

As a simple representative case, we now evaluate the plane flow,
with a finite cavity formation, past a flat plate hydrofoil centered in a
straight channel, The open wake model with a straight dissipation wake
will be adopted fo represent the actual flow having a finite cavity. This
theoretical model was first applied by Wu (1956) to unbounded lifting flows,
yielding satisfactory predictions of the hydrodynamic force coefficients
for bodies of small curvatures. For the present problem, the correspond-
ing regions in the z~, f-, and w-planes are shown together with the
parametric { -plane in Fig, 14,

The transformation between the f- and { -planes is again given by

- (77) and relationships (78) - (81) still remain valid for the present problem.

The flow field occupies a polygonal region in the w-plane, which can be

mapped into the upper half { -plane by

5 (t-m)dt
1
[(L2-1)(L-c)(g-c)]?

(95)

w(§) =S‘
1

in which the coefficient of multiplier and constant of integration have been

determined to satisfy the conditions at the stagnation' point ({= o) and at

the trailing edge (£=1). The point { =m on the real axis is the image

of the point M on the lower tunnel wall at which the flow velocity along

the wall reaches a minimum (for positive incidence o as shown). The

function [ {¢2-1 )(Q—c)(g-c')]% is analytic in the { -plane with branch cuts

from { = -0 to -1, from { =c¢ to c¢', and from { =1 to +oo along

the real axis so that this function tends to {2 as l?;l - oo in the upper

half plane. There are several conditions on w({). The present flow model

requires that w(c) = w(c') = i, hence
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g © _ t-may o (96)
©L-L)g-o)e =)
and
gl (& ~m)dg . 97)
' [(1-3)g e )L e
At the upstream infinity, w(a) = -log U + iz, hence w(a) - w(c) = - log U,
or |
S» a (m=-4)dt - - log I}]' (98)
:

-3t -e e L))

Furthermore, from the downstream condition w(b) = w{b') = - logV + i«

it follows
bl
S‘ (g 'm)dg - -0 , (99)
b - -e)e -1 ))?
and
b
S (m-§)db _ - log 3 (100)
R R (S [ S
The physical plane is given by
g
z<4)=§ ) G ar (101)

£ =z(l), after using

from which we deduce the chord length of the plate,

(77) - (81) and effecting partial fraction, as

1
_ U w(G)] 1 y -1-y
- 'n'Sl e [C“-a - ——g_b,]dz; , (102)

D"'h

The distance of the leading edge of the plate from the upper wall is clearly
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h. = Im{e—mz(c)}+ d
L 1

which can be written as

"h c
2 = 1 §-1 sin(9-a)[§:£a -7 - gl_;)Y,de, + 1\1/.—1 (103a)
where
. .
o) =+ | mble (158 <e)
- e-t) e L)) ?

(103b)
Alternately, the distance hO of the mid~chord point of the plate from the

upper wall is given by

h h
2 = -BI: +% sina . (104)

o Kot

When the fiat plate is centered in the channel, ho/h =1/2, as often is
the case in water tunnel experiments,

The numerical computation of the solution depends on which para-
meters are chosen to be independent. The direct problem can be specified
by the parameters P[a,0,! /h,ho/h] . However, there are various ways
of posing an inverse problem by making different choices of the remain-
ing parameters, namely, a, b, b', ¢, ¢', m, vy, V, A relatively simple
procedure is as follows, First we note thar (96) determines explicitly
m =m(c,c'), and consequently (99) yields b' = b'(b,c,c'). Therefore,
the inverse problem may be specified by the parameters P'[a,b,c,c'].
With this choice, y is determined directly by (80), « by (97), U by
(98), V by (100), £/h by (102), and hy/h by (103),

In the actual execution of numerical computations for the direct
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pr;)blem it is found more convenient to work with the following mixed type
problem P"[a,c,b,y]. In this problem, with m eliminated by combin-
ing (96) and ( 97, the resulting equation determines c¢' = c'{o,c) by
iteration and then m = m(e,c) by (96). From (99), b' is determined as
b' = b'(o,c,b) again by iteration, After a value of y is chosen, a is
derived from (80), then a straighforward computation may be carried out
for g, £/h and ho/h by (98), (102) and (104), respectively, In order to
fix a given value of ho/h, a simple iteration with respect to y is necessary
for the set of equations, (80), (98), (102) and (104). Finally, the.case of a
given £/h may be obtained by a cross plotting procedure. To facilitate
the numerical integration, the integrals appearing in these formulas have
been converted into the Jacobian elliptic functions of the first, second and
third kind and the existing numerical program for these functions devised
by Ai and Harrison (1964), with accuracy to six figures, has been adopted
in the present numerical scheme, The computation has been carried out
with an IBM-360 machine at the Booth Computing Center of the California
Institute of Technology. A few representative cases are shown in Figs,

15 - 16, These results will be discussed below,

Two limiting cases are reached in this computation. One of them
is the choked flow state which is approached as b —~>c¢c and b'—=c'. In
this limit, (99) reduces to (96) and (100) drops out as V =1, This choked
flow case has been treated earlier by Ai (1965) based on a formulation
which, as described in the previous section, is somewhat different from
the present one, The present numerical result in the choked flow limit
is found to agree exactly with that of Ai,

The other limiting case is the unbounded flow which is reached as
b, b' and m all tend to a. This unbounded flow case has been evaluated

earlier by Wu (1956) whose solution is based on an expansion for small

o. The present exact solution in the limit of unbounded flow is in good

agreement with the previous result of Wu (1956) for o <1,
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"From the final r_esult as shown in Figs. 15 - 16 the following
salient features may be noted of the wall effects in lifting cavity flows.
Apparently, the results from a flat plate at an angle of attack exhibit a
similar general trend of the wall effects as in the pure drag case. Based
on the same cavitation number g, the wall effect in the inviscid flow is
found to reduce both the drag and the lift coefficients of the flat plate.
Furthermore, the smaller the incidence angle, the more significant
becomes the wall effect when measured in terms of the percentagé change
in lift and drag coefficients. Such a phenomenon should not be too difficult
to understand as small changes in a thin cavity above a lifting plate would
be expected to have more effect on the forces than changes in a thicker
cavity for reasons similar to those given in the pure drag case. A closer
examination of the details in the numerical results further indicates that
at small incidences, the wall effects actually become slightly more ap-
preciable as the cavity shortens from the choked flow state, in a stretch
of o> Ty before they become insensitive to ¢ for furtherl increase in
o. This refined irend diminishes as the angle of attack « increases.
As o —>mw/2, the present result agrees exactly with the pure drag case
of a flat plate obtained in Part I, thus providing an independent check of
the accuracy of the present numerical computation,

For an inclined flat plate it is obvious that a decrease in lift
must accompany a reduction in drag since the resultant force must be nor-
mal to the plate. Although it remains to be verified, the same feature
of the wall effects is likely to hold for cavitating hydrofoils of small

curvature.
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Fig. 3a Choked flow drag CD (0.,P,4h) of wedges versus the choking

cavitation number o,. Cavity is finite in length for o > o.(B,Lh).



slh

05

0.4

0.3

0.2

0.1

T ]’ T ' T
B = 52 /
| O°
/150 1
30° d
45°
60° ‘
902
o
<>
150°
Y I 1 l 1
| 2 3

Fig. 3b Choked channel Width versus 0.



T r 1 I ¥
h70 =

4. ———— OPEN WAKE MODEL
— ————  RIABOUCHINSKY MODEL

(-]

Fig. 4 Drag coefficients of wedges in unbounded flow
based on different theoretical models.



‘Jeuueyd B Ul SMOT]
A31aed Seap oind 10jJ [opowr Aysuryonoqery YL

ko)
¢
3 a a 3
v
2/un= =
auo|d -}
y
x d=d
R =% <
da 5 d n|
Y g
aup|d — 2 £




‘]2uuRyYD ® Ul SMOTJ AJTAED
Beap aand 103 1epow j3af jueajus-al1 ayJ

9 814

I

&)

T
©
!

o+0O
-
|-0-

aupnid - 2




*,6 =g ‘o3pem e ised moyy A31Aa®D UT 1D9fJO [{BM L *81q

MOT4 G3MOHD
T3A0OW AMSNIHONO8VIY

T1300W  3MVYM N3dO

Omnhm




", 00 =24¢g ‘oFpsm e ised moyj A31a®D UT }0955° TTRM  § "SId

MO14  GIHOHD -
1300W  AMSNIHONOBYIY — — —— — —
1300W  3MYM  N3IJO

o0l = .Rm.

| | |




2.0l

T | I
B =15°
I OPEN WAKE MODEL
—————— RIABOUCHINSKY MODEL
CHOKED FLOW
1.5+
Cp
[.OF
|
0.5+
h/q =20
(h/1 =40 |
[ ] '
o) 0.5 1.0 1.5 20
o

Fig. 9

Wall effect in cavity flow past a wedge,

Brm =15°.



2.0

| I
B = 30°

" OPEN WAKE MODEL

——————— RIABOUCHINSKY MODEL
- CHOKED FLOW

. | |
0.5 1.0 1.5 20
o)
Fig. 10 Wall effect in cavity flow past a wedge, B m = 30°,



2.0

0.5

'

Bm=45°

OPEN WAKE MODEL
CHOKED FLOW

0.5

2.0



-
w
ad [=]
5]
>3
w
— 4
<
z
L z
w
a.
5]

T

T

——— - ——— CHOKED FLOW

(2 90)% ~(0'0)% - ¢

Fig. 12a Drag reduction due to the wall effect based on the open wake model,



A = Cyla, 0) - Cylo, #h)

i T T T T “r__ R S B T T T ™7 T T T T

CHOKED FLOW

L ———————  RIABOUCHINSKY MODEL Bres ]

/ |
, t
. - | 150°
16° /1 . AR | L ; L 1 .
0 y : .

Fig. 12b Drag reduction due to the wall effect based
on the Riabouchinsky model.



Z — plane

f — plane
R4
x,y|=Uhl=Vdl B
E_D B s
D' B’
¥, = —Uh,=—Vd, B'
{ — plane n
} y=0
a
™\ \L 2 A f
E D B! (A | B D' E
VEY L VETY,

Fig, 13 Choked lifting flow past an arbitrary body in a channel,



‘Tauueyd jySreals e ur orerd jeqy e
1sed mo1} £31aeD Buryyi] I0j [apowt aem uado syl §[ 81

aup|d - m

ER
3
aupoid -}
pA-=2yn—=°4 W
8 ) a
'pA='un='b




*.61 = v ‘eyerd jery paurout
ue jsed mo[J A11A®D UT 309JI9 [[BM G[ "314

0
80 90 +'0 20

— T _ I — =1 _ T

a3NOHD

Z2/1 =4y/°\4
oGl =D

I 1 . —! |

20

0



08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

T | I T I I

@ = 30°
he/h = 1/2
y 10
h/g = 20 |
| { | | | L
0.2 0.2 0.6 0.8 1.0 1.2 1.4

o

Fig. 16 Wall effect in cavity flow past an
inclined flat plate, o = 30°,



Naval 'Ship Research and Development Center
: Distribution List

Commander

Naval Ship Research and Development Ctr,

Washington, D, C, 20007
Attn: Code 141 (39)

Attn: Code 513 (1)
Commanding Officer (2)

Naval Ship Research and Development lab,

Annapolis, Maryland 21402

Attn: Library

Commanding Officer (2)

Naval Ship Research and Development Lab,

Panama City, Florida 32402

Attn: Library

Commander
Naval Ship Systems Command
Department of the Navy

Washington, D, C, 20360

Attn: Code 0342 (1) DEF
Code 037 (1) ADF
Code 00V (1) F

Code 2052 (3)
Code PMS 81 (1) ABCDF
Code 03412 (1)

Director (20)

Defense Documentation Center
5010 Duke Street

Alexandria, Virginia 22314

Chief of Naval Research (1)
Department of the Navy

Washington, D, C, 20360

Attn: Mr, Ralph D, Cooper, Code 438

Director (1)
Office of Naval Research, Branch Office
495 Summer Street

Boston, Massachusetts

Director (1)

Office of Naval Research, Branch Office
219 S, Dearborn Street

Chicago, Illinois 60604

Office of Naval Research (1)
Resident Representative

207 West 24th Street
New York, New York

Chief Scientist (1)
Office of Naval Research, Branch Office
1030 East Green Street
Pasadena, California

Director (1)
Office of Naval Research, Branch Office
50 Fell Street

San Francisco, California

02210

10011

91101

94102

Commanding Officer (3)

Office of Naval Research, Branch Office
Box 39, Fleet Post Office -

New York 09510

Commander (1)
Naval Facilities Engineering Command
Department of the Navy

Washington, D. C, 20390
Attn: Code 0321 BCDE
Commander

Naval Ship Engineering Center
Department of the Navy
Center Building, Prince Georges Center
Hyattsville, Maryland 20782
Attn: Code 6110 (1)

Code 6114D (1)

Code 6120 AC (1)

Code 6132 (1)

Code 6136 (1)

Code 6140 (1) ADEF

Strategic Systems Projects Office (1)
Department of the Navy

Washington, D, C., 20360

Attn: Dr, John Craven (NSP-001)

Commanding Officer (1)
Naval Air Development Center
Johnsville, Warminster, Pa,
Attn: Technical Library

18974

Commanding Officer and Director (11)
Naval Applied Science Laboratory
Flushing and Washington Avenues

Brooklyn, New York 11251

Officer-in-Charge

Naval Undersea Warfare Center

3202 E, Foothill Boulevard

Pasadena, California 91107

Attn: Dr. J. Hoyt (1) AD
Dr, A, Fabula (1) AD

Commander (1)
Naval Electronics Laboratory Center

San Diego, California 92152
Attn: Library DEF
Director (Code 2027) (1)

Naval Research Laboratory
Washington, D, C, 20390

Commanding Officer (1)
Navy Underwater Weapons Research
and Engineering Station

Newport, Rhode Island 02840
Commander (1) .
Naval Oceanographic Office (Library)
Department of the Navy

Washington, D.C, 20390 BEF



Commander (1)

Naval Proving Ground
Dahlgren, Virginia 22448
Attn: Technical Library BDE

Commanding Officer and Director
Naval Civil Engineering Laboratory
Port Hueneme, California 93401
Attn: Code 131 DE

Commander (1)
Naval Weapons Center {(Code 753)
China Lake, California 93555

Commander (1)

Boston Naval Shipyard

Boston, Massachusetts 02129
Attn: Technical Library

Commander (1}

Charleston Naval Shipyard

Naval Base

Charleston, South Carolina 29408
Attn: Technical Library

Commander (1) ABCF
Long Beach Naval Shipyard
Long Beach, California 90802
Attn: Technical Library

Commander (1)

Norfolk Naval Shipyard
Portsmouth, Virginia 23709
Attn: Technical Library

Commander (1)

Pearl Harbor Naval Shipyard

Box 400, Fleet Post Office

San Francisco, California 96610
Attn: Code 246-P

Commander (1)
Philadelphia Naval Shipyard
Philadelphia, Penna. 19112
Attn: Code 240 ABCF

Commander (1)
Portsmeouth Naval Shipyard
Portsmouth, N,H, 03801
Attn: Technical Library

Commander (1)

Puget Sound Naval Shipyard
Bremerton, Washington 98314
Attn: Engineering Library

Commander
San Francisco Bay Naval Shipyard
Vallejo, California 94952
Attn: Technical Library (1)
Code 250 (1)
Code 130L1I (1) BDF

AFFDIL (FDDS - Mr, J. Olsen) (1)

Wright-Patterson AFB
Dayton, Ohio 45433 BDE

NASA Scientific and Technical
Information Facility (1)

P, O. Box 33

College Park, Maryland 20740

AFORSR (SREM) (1)
1400 Wilson Blvd,. BD
Arlington, Virginia 22209

Library of Congress (1)
Science and Technology Division
Washington, D, C, 20540

U. S. Coast Guard (1)

1300 E Street N, W,

Washington, D, C. 20591

Attn: Division of Merchant Marine Safety

Director.- (1)

National Bureau of Standards D

Washington, D, C. 20234

Attn: Dr, G. B. Schubauer, Chief,
Fluid Mechanics Branch

Director of Research, NASA (1)
600 Independence Avenue S, W,
Washington, D, C, 20546 D

Director (1)

Waterways Experiment Station

Box 631

Vicksburg, Mississippi 39180
Attn: Research Center Library BDE

Commander (1)

Naval Ordnance Systems Command
Department of the Navy
Washington, D. C. 20360

Attn: Code ORD-035 D

Commandant (E) (1)

U, S. Coast Guard (Sta 5-2)
1300 E, Street N, W,
Washington, D, C, 20591

University of Birdgeport (1)
Bridgeport, Connecticut 06602

Attn: Prof, Earl Uram, Mech, Eng, Dept.

Brown University (1)
Providence, Rhode Island 02912
Attn: Div, of Applied Math D

Naval Architecture Department
College of Engineering
University of California
Berkeley, California 94720
Attn: Library (1) :
Prof, J, R. Paulling (1)
Prof, J. V. Wehausen (1)
Dr, H, A, Schade (1)

California Institute of Technology
Pasadena, California 91109
Attn: Dr, A, J. Acosta (1) ABDE
Dr., T. Y. Wu (1)
Dr. M, S, Plesset (1) BDE

ABDE



University of Connecticut

Box U-37

Storrs, Connecticut 06268

Attn: Prof, V., Scottron DE
Hydraulic Research Lab,

(1)

(1)

Cornell University

Graduate School of Aerospace Engineering

Ithaca, New York 14850
Attn: Prof, W, R, Sears

Harvard University (1) DE

2 Divinity Avenue

Cambridge, Massachusetts 02138

Attn: Prof, G. Birkhoff, Dept., of Math,

Pierce Hall (1) D
Harvard University
Cambridge Massachusetts
Attn: Prof, G. F., Carrier
University of Illinois

(1)
College of Engineering
Urbana, Illinois 61801
Attn: Dr, J. M, Robertson

02138

Theoretical and Applied Mech, Dept,

The University of Iowa
Iowa City, Iowa 52240
Attn: Dr, Hunter Rouse

(1)

The University of Iowa

Iowa Institute of Hydraulic Research

Jowa City, Iowa 52240

Attn: Dr, L, Landweber (1)
Dr, J. Kennedy (1)

The John Hopkins University
Mechanics Department
Baltimore, Maryland 21218
Attn: Prof, O, M, Phillips

Kansas State University (1)
Engineering Experiment Station
Seaton Hall

Manhattan, Kansas 66502
Attn: Prof, D, A, Nesmith

University of Kansas (1) D
Lawrence, Kansas 60644
Attn: Chm, Civil Engr. Dept,

Lehigh University (1)
Bethlehem, Penna, 18015
Attn: Fritz Laboratory Library

(1)

(1)

DF
DE

Long Island University

Graduate Department of Marine Science

40 Merrick Avenue
East Meadow, N, Y.
Attn: Prof, David Price

Massachusetts Institute of Technology
Hydrodynamics Laboratory
Cambridge, Massachusetts
Attn: Prof, A, T. Ippen

11554

02139
DEF

(1)

Massachusetts Institute of Technology
Department of Naval Architecture and
Marine Engineering

Cambridge, Massachusetts 02139

Attn: Dr, A, H. Keil (1)
Prof, P, Mandel (1) ADE
Prof. J. R, Kerwin (1)
Prof, P, Leehey {1} DEF
Prof, M, A, Abkowitz (1)
Prof, F, M, Lewis (1} D
Dr, J. N, Newman (1) ACD

U. S. Merchant Marine Academy (1)

Kings Point, L.I., N, Y., 11024

Attn: Capt. L. S, McCready, Head
Dept. of Engineering AB

University of Michigan
Department of Naval Architecture
and Marine Engineering
Ann Arbor, Michigan 48104
Attn: Dr, T. F. Ogilvie (1)
Prof, H, Benford (1)

Dr, F. C. Michelsen (1)

St. Anthony Falls Hydraulic Laboratory

University of Minnesota

Mississippi River at Third Avenue, S,E,

Minneapolis, Minn, 55414
Attn: Director (1)
Dr, C. S. Song (1)

Mr., J. M, Killen (1) BDEF
Mr, F, Schiebe (1} DEF
Mr, J. M. Wetzel (1) DE

U. S. Naval Academy
Annapolis, Maryland 21402
Attn: Library (1)
(1) ADF

Dr, Bruce Johnson
U. 8. Naval Postgraduate School

Monterey, California 93940
Attn: Library (1)
Prof, J, Miller (1) D

New York University (1)
University Heights

Bronx, New York 10453
Attn: Prof. W, J. Pierson, Jr.

New York University

Courant Institute of Mathematical
Sciences DE

251 Mercier Street

New York, New York 10012

Attn: Prof. A. S, Peters (1)
Prof. J, J. Stoker (1)

University of Notre Dame

Notre Dame, Indiana 46556

Attn: Dr, A. Strandhagen (1) BDE
Dr. J. Nicolaides (1) BD

The Pennsylvania State University
Ordnance Research Laboratory
University Park, Penn, 16801
Attn: Director (1) ABDE

Dr. G. Wislicenus (1) BDEF

ABCDE



Colorado State University (1)
Department of Civil Engineering
Fort Collins, Colorado 80521
Attn: Prof, M, Albertson BDEF

Princeton University (1)
Aerodynamics Laboratory

Dept. of Aerospace and Mech, Sciences
The James Forrestal Research Center
Princeton, New Jersey 08540

Attn: Prof. G. Mellor DF

Scripps Institute of Oceanography

University of California

La Jolla, California 92038

Attn: J, Pollock (1) ABCF
M. Silverman (1)

Stanford University
Stanford,California 94305
Attn: Prof, H, Ashley - Dept., of Aero
and Astronautics (1)
Prof, R. L. Street (1)
Prof, B, Perry - Dept, of Civil
Engineering (1)

Stevens Institute of Technology
Davidson Laboratory
711 Hudson Street

Hoboken, New Jersey
Attn: Dr, J, Breslin

(3)

07030

University of Texas (1)
Defense Research Laboratory
P, O, Box 8029

Austin, Texas 78712

Attn: Director DF

University of Washington (1)
Applied Physics Laboratory
1013 N, E, 40th Street
Seattle, Washington 98105
Attn: Director ABDF

Webb Institute of Naval Architecture

Crescent Beach Road ABCD

Glen Cove, L,I., N,Y, 11542

Attn: Prof, E, V, Lewis (1)
Prof, L, W, Ward (1)

Worcester Polytechnic Institute
Alden Research Laboratories
Worcester, Massachusetts
Attn: Director ADE

Aerojet-General Corporation
1100 W, Hollyvale Street
Azusa, California 91702
Attn: Mr, J, Levy, Bldg, 160, Dept,4223

Bethlehem Steel Corporation (1)
Central Technical Division

Sparrows Point Yard

Sparrows Point, Maryland 21219
Attn: Mr, A, Haff, Technical Manager

(1)
01609

(1)

Bethlehem Steel Corporation (1) ABC
Attn: H, deLuce, 25 Broadway

New York, New York 10004

Bolt Beranek and Newman, Inc, (1)
1501 Wilson Blvd,

Arlington, Virginia 22209

Attn: Dr, F, Jackson DF

Cornell Aeronautical Laboratory (1)
Applied Mechanical Department

P, O, Box 235

Buffalo, New York 14221

Attn: Dr, I, Statler BDE

Electric Boat Division (1)
General Dynamics Corporation
Groton, Connecticut 06340
Attn: My, V. Boatwright, Jr.

Esso International (1)

15 West 51st Street ABCD
New York, New York 10019
Attn: Mr, R. J. Taylor, Manager

R and D Tanker Department

General Applied Sciences Laboratories,Inc,

DEF
11590

Merrick and Stewart Avenues
Westbury, L.I., New York
Attn: Dr, F, Lane

Gibbs and Cox, Inc, (1)
21 West Street

New York, New York
Attn: Technical Library

10006

Grumman Aircraft Engineering Corp,
Bethpage, L.I,, N.Y, 11714
Attn: Mr, W, Carl

Hydronautics, Inc,
Pindell School Road
Howard County
Laurel, Maryland
Attn: Mr, P, Eisenberg
Mr, M, Tulin (1)

Lockheed Missiles and Space Company

P, O, Box 504 AE

Sunnyvale, California 94088

Attn: Mr, R, L, Waid, Facility No, 1
Dept, 57-01, Bldg, 150

McDonnell Douglas Aircraft Company

20810
(1)

Douglas Aircraft Division DE
3855 Lakewood Boulevard
Long Beach, California 90801

Attn: Mr, John Hess (1)
Mr, A,M.O, Smith (1)

Measurement Analysis Corporation
10960 Santa Monica Boulevard
Los Angeles, California 90025

(1)
DF

National Science Foundation (1)
Engineering Division

1800 G, Street N, W,
Washington, D.C.
Attn: Director

20550
DE



Newport News Shipbuilding and
Dry Dock Company (1)
4101 Washington Avenue
Newport News, Virginia 23607
Attn: Technical Library Department

(1)
11803

Oceanics, Incorporated
Technical Industrial Park
Plainview, L,I,, N. Y.
Attn: Dr, Paul Kaplan

Pennsalt Chemical Corporation
900 First Avenue D
King of Prussia, Penna,

Attn:

(1)

19406
Mr, W, M, Lee, Director
Contract Res, Dept,

Robert Taggart, Inc, (1)
3930 Walnut Street
Fairfax, Virginia 22030
Attn: Mr, R, Taggart

Sperry-Piedmont Company
Charlottesville, Virginia
Attn: Mr, T, Noble

Society of Naval Architects and
Marine Engineers (1)

74 Trinity Place

New York, New York 10006

Southwest Research Institute

8500 Culebra Road

San Antonio, Texas 78206

Attn: Dr, H, Abramson (1)
Applied Mechanics Review

(1)
22901

BCDEF

(1)

Sun Shipbuilding and Dry Dock Co, (1)
Chester, Pennsylvania 18013
Attn: Mr, F, Pavlik ARBC

Chief Naval Architect

Tracor Incorporated (1)
6500 Tracor Lane BDF

Austin, Texas 78721

TRG/ A Division of Control Data Corp.
535 Broad Hollow Road (Rt, 110)
Melville, 1,I,, N, Y, 11746

Woods Hole Oceanographic Institute
Woods Hole, Massachusetts 02543
Attn: Reference Room ABCDF
Professor Jerome Lurye (1)
Department of Mathematics

St. John's University ABCDE
J amaica, New York 11432

Mr., B. H. Ujithara (1)

North American Aviation Inc, BD
Space and Information Systems Division
12214 lakewood Boulevard

Downey, California 90241

(1)

(1)

Stanford Research Institute (1)
Menlo Park, California 94025
Attn: Library

Cambridge Acoustical Associates, Inc,
129 Mount Auburn Street
Cambridge, Massachusetts
Attn: Dr, M, C, Junger

Dr, Roland W, Jeppson
College of Engineering
Utah State University
Logan, Utah 84321

02138
ABDF

(1)



Unclassified
Security Classification

DOCUMENT CONTROL DATA-R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is rla's'ﬁilied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICA TION

California Institute of Technology Unclassified

2b. GROUP

Not applicable

3. REPORT TITLE

Report No, E-111A.,5
WALL EFFECTS IN CAVITY FLOWS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

5. AUTHORIS) (First name, middle initial, last name)
Wu, T, Yao-tsu
Whitney, Arthur K,

Lin, J.D.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1969 64 30

8a, CONTRACT OR GRANT NO. 9_8. ORIGINATOR’S REPORT NUMBERI(S)

N00014-67-A-0094-0007

b, PROJECT NO.

SR 009 0101 and S 46-06 Report No, E111A,5
c. ab. %THER Rf)EPORT NO{S) (Any other numbers that may be assigned
is repor

10. DISTRIBUTION STATEMENT NO, 1

This document has been approved for pub'lic release and sale; its distribution
is unlimited,

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Ship Research and Development
Center

Washington, D, C., 20007

13. ABSTRACT

The wall effects in cavity flows past an arbitrary two-dimensional body is
investigated for both pure-drag and lifting cases based on an inviscid nonlinear
flow theory. The over-all features of various theoretical flow models for inviscid
cavity flows under the wall effects are discussed from the general momentum
consideration in comparison with typical viscous, incompressible wake flows in
a channel, In the case of pure drag cavity flows, three theoretical models in
common use, namely, the open-wake, Riabouchinsky and re-entrant jet models,
are applied to evaluate the solution, Methods of numerical computation are dis-
cussed for bodies of arbitrary shape, and are carried out in detail for wedges of
all angles, The final numerical results are compared between the different flow
models, and the differences pointed out, Further analysis of the results has led
to development of several useful formulas for correcting the wall effect, In the
lifting flow case, the wall effect on the pressure and hydrodynamic forces acting
on arbitrary body is formulated for the choked cavity flow in a closed water tunnel
of arbitrary shape and computed for the flat plate with a finite cavity in a straight
tunnel,

FORM ‘ (PAGE 1) |
DD 1 NOV 651473 ‘ Unclassified

S/N 0101-807-6801 Security Classification




Unclassified -
Security Classification

(PAGE 2)

’ roLe | wr ROLE | wrt E&Q
Cavify flow
Wall effect
Wall effect correction
DD .F&"v""1473 (BACK) Unclassified

Security Classification




