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FORE WORD 

The r e s e a r c h  program under Contract  N00014-67-A-0094-0007 

was given to  commence on 1 Feb rua ry  1966, and has been completed on 

31 January 1969. This repor t  concludes the work ca r r i ed  out under this 

Contract. The objective of the present  report  is to indicate the scope of 

work performed, to s ta te  the progress  and contributions achieved, and 

to  repor t  the recent  resul ts  obtained under this program. 



ABSTRACT 

The wal l  effects  in cavity flows pas t  an a r b i t r a r y  two-dimensional  

body i s  investigated f o r  both pure -drag  and lifting c a s e s  based on a n  

inviscid nonlinear flow theory.  The over  -a l l  f ea tu res  of va r ious  theo- 

r e t i c a l  flow mode ls  for  inviscid cavity flows under the wall  effects  a r e  

d i scussed  f r o m  the gene ra l  momentum considerat ion in compar i son  with 

typical  v iscous ,  incompress ib le  wake f lows in a channel. In the c a s e  of 

pu r e  d r ag  cavity f lows,  t h r ee  theoret ica l  models in common use ,  namely ,  

the  open-wake, Riabouchinsky and r e  -ent rant  jet  mode ls ,  a r e  applied to 

evaluate  the solution. Methods of numer ica l  computation a r e  d i scussed  

f o r  bodies of a r b i t r a r y  shape,  and a r e  c a r r i e d  out in deta i l  f o r  wedges 

of all angles .  The  f inal  numer ica l  r e su l t s  a r e  compared  between the 

different  flow models ,  and the di f ferences  pointed out. F u r t h e r  ana lys i s  

of the r e su l t s  has  l ed  to  development of s eve ra l  useful  f o rmu la s  f o r  

cor rec t ing  the wal l  effect.  In the l i f t ingf low ca se ,  the wall effect  on the 

p r e s s u r e  and hydrodynamic fo r ce s  acting on a r b i t r a r y  body is formulated 

f o r  the choked cavity flow in a closed water  tunnel of a r b i t r a r y  shape,  and 

computed fo r  the  f l a t  plate with a finite cavity in  a s t ra igh t  tunnel. 



WALL EFFECTS IN CAVITY FLOWS 

1. Introduction 

In correlat ing the experimental resu l t s  of water-tunnel t e s t s  on 

cavity flows with the corresponding unbounded flow case ,  it i s  necessa ry  

to know the effects due to the presence of tunnel flow boundaries.  The 

wall  effects in  cavity flows have been generally recognized to  be consider  - 

ably m o r e  important and m o r e  difficult to determine than those in the 

wind-tunnel o r  water  -tunnel tes t s  of non-separated, single -phase flows 

pas t  a body. A pr imary  reason  for  this i s  that the presence  of a cavity 

boundary r ende r s  the problem nonlinear, consequently the configuration 

of the body-cavity systpm will  change a s  the wall spacing or the cavitation 

number va r i e s ,  whereas in non-separated or  non-cavitating flows the body 

shape always remains  the s a m e .  Par t ly  due to this difficulty, not an  a c -  

cura te  formula o r  ru le  fo r  the wall correct ion has  been established, a t  

l eas t  not in the general  case  of a finite cavity attached to a body of a r b i t r a r y  

bluntness. A principal objective of this study i s  to investigate thoroughly 

the relevant flow pa ramete r s  in o r d e r  to establish a simple wall correct ion 

ru le .  

The physical flow boundaries in the t e s t  section of water tunn.els 

may be classified in three  different types: ( a )  rigid walls of closed tunnels,  

(b )  a f r e e  surface of constant p r e s s u r e  i f  the tunnel u s e s  a f r e e  jet ,  and 

( c )  a combination of f r e e  and solid surfaces such a s  in a bounded jet  

tunnel o r  in a f r e e  surface channel with a rigid bottom and s ides .  P r e s e n c e  

of these flow boundaries will introduce severa l  significant effects: (i) 

F i r s t ,  in dealing with the potential portion of the flow, these flow boundaries 

will impose a condition either on the flow direction a t  r igid walls o r  on the 



p r e s s u r e  a t  a f r e e  sur face .  (ii) In the case  of closed tunnels, the boundary 

layer  .built up a t  the solid wall surface will generate a longitudinal p r e s s u r e  

gradiant in the working section, and may even produce, depending on the 

configuration of the model installation and the tunnel c r o s s  -section, a 

secondary flow which may fur ther  change the p r e s s u r e  field. Moreover ,  

the la te ra l  constraint due to the tunnel walls will resu l t  in a higher velocity 

outside the boundary layer  and hence a grea ter  skin fr ic t ion a t  the wetted 

body surface.  In general  pract ice,  however, the charac ter i s t ic  Reynolds 

number Re i s  sufficiently high such that the boundary-layer -induced p r e s  - 
1 i -- 

s u r e  field i s  of o rde r  O(Re-') (or  a t  mos t  of o rde r  O(Re log Re) fo r  l i f t -  

ing flow experiments)  and i s  hence of secondary importance.  (iii) In c a s e  

the cavity boundary detachment f r o m  a curved body i s  smooth (i. e . ,  with 

a finite curvature,  such a s  f r o m  a c i rcu lar  cylinder ), the point of detach - 

ment on the body will depend on both the cavitation number and the wall 

spacing. In such cases ,  correlat ion between tunnel experiments and the 

unbounded flow theory would be even m o r e  complicated. In the present  

work, efforts will b e  aimed a t  investigating effect (i) for  both the pure 

drag and the lifting flows so  that this pr imary  effect can be clarified f i r s t .  

Effect (ii) can be evaluated with some modifications of the present  formula-  

tion by taking the boundary layer  into account. In. prac t ice ,  this viscous 

effect a r i s ing  in the presence  of tunnel walls can be effectively compensated 

fo r  a t  one Reynolds number by having slightly diverging walls,  o r  with 

adjustable walls.  Effect (iii) i s  however beyond the scope of the p resen t  

study . 
Several  problems of wall  effects have been discussed previously 

f o r  some special  cases .  The choked cavity flow case  (i. e . ,  when the 

cavity i s  infinitely long in a channel o r  in a f r e e  je t )  has at t racted ear ly  



attention due to i t s  relative simplicity. This problem has  been t reated for  

symmetr ic  wedges by Birkhoff, P le s se t  and Simmons (1950). F o r  a sym-  

me t r i c  body of cr0s.s -sectional a r e a  A, placed symmetr ical ly  in the 

tunnel, experiencing a drag D in a choked cavity flow which has ups t r eam 

velocity U and p r e s s u r e  p le t  two drag coefficients be defined a s  
00' 

where q i s  the constant velocity a t  the cavity boundary. In the case  of 
C 

a flat  plate s e t  broadwise to the flow, the theoretical resu l t s  of Birkhoff, 

P l e s s e t  and Simmons show that the conventional drag coefficient C i s  D 

a lmost  insensitive to the width of the f r e e  jet (down to the body width) but  

depends strongly on the spacing of the channel walls,  whereas C ' i s  D 

found to be insensitive to ei ther  the channel spacing o r  the width of the 

f r e e  jet. (Of course,  for  a plate in a f r e e  jet the two velocities U and 

q c a r e  equal. ) These resu l t s  had been predicted ea r l i e r  by Valcovici 

(1913) based on methods suggested by Prandtl .  Now, by Bernoulli 's  

theorem, 

where p i s  the cavity p res su re ,  
ps the stagnation p res su re ,  and p c b 

i s  another reference p res su re  associated with a third reference velocity 

V, CD and C ' a r e  seen to be related by 
D 

where o i s  the conventional cavitation number,  



In view that C ' i s  nearly constant (which i s  0.88 for  the f la t  plate) and D 

the factor ( 1 ~ )  gives an accurate  dependence of C on o f o r  a f l a t  
D 

plate in  an  unbounded f1o.w (for 0 < o < 1, see ,  e. g .  , Gilbarg (1 961 ), 

Wu (1968) ), this resu l t  has led Birkhoff (1950) to a s s e r t  the s t ronger  

"principle of stability of the pr  e s  s u r e  coefficient": that for an obstacle 

of given shape in a water  tunnel (or je t )  the p r e s s u r e  coefficient 

P -PC P -Pa 2 
C '  , instead of C E 

1 = 1 -(8) , P 1 z P.: p Zpu2 

i s  insensit ive to the presence of walls and changes in  the cavitation number 

o. This principle,  elegant and useful i t  may be for blunt bodies,  un- 

fortunately does not possess  a genera l  validity. In fac t ,  a s  the resu l t  of 

this work will show la t e r ,  the wall effects  on both CD and C d ,  a t  fixed 

cavitation number o above i t s  choked flow value, a r e  r a the r  insignificant 

for  blunt bodies. F o r  symmetr ic  wedges,  the wall effect on CD inc reases  

with decreasing wedge angle and this effect on C i  i s  actually m o r e  

pronounced than on C Fur the rmore ,  even in  the unbounded flow case ,  
D ' 

the nonlinear deviation of C (a} f r o m  the factor (1 W )  becomes g rea te r ,  
D 

the thinner the body becomes,  o r  the smal le r  i s  the incidence angle of a 

lifting surface ( see  W u  (1956), Wu and Wang (1964a) ).' This feature of 

the dependence of CD on o weakens fur ther  the argument  underlying the 

principle mentioned above, Another exceptional case  is  that when a flat  

plate i s  situated outside of the mouth of a bounded jet, this principle i s  

appreciably violated, a s  shown by the numerical  r e su l t s  of Birkhoff, 

P le s se t ,  Simmons (1 950). 

F o r  the m o r e  general  case  of a finite cavity formation behind a 



given body placed symmetr ical ly  in a bounded s t r e a m ,  various at tempts  

have been made with r e s o r t  to different theoretical flow models.  The 

Riabouchinsky model has  been adopted by Cisotti  (1922) fo r  cavity flow 

pas t  a plate in a channel, by Caywood (1946) for  wedges, by Birkhoff, 

P l e s s e t  and Simmons (1 952) for a plate either in a channel o r  in a f r e e  

jet. The re-ent rant  jet  model has  been used by Gurevich (1953) for  a 

wedge in a channel. The open wake model of Joukowsky and Roshko, which 

turns  out to be the s imples t in  numerical details,  has  not been employed 

before (insofar a s  the authors a r e  aware of). This i s  taken up h e r e  with 

the other models in  formulating the general  problem of a n  a rb i t r a ry  body 

placed in a channel. 

An entirely different approach to this problem fo r  thin bodies a t  

sma l l  incidences i s  based  on the l inearized cavity flow theory. This 

l inearized theory has  been developed fo r  wall effect problems by Cohen 

and Di P r i m a  (1958),Cohen and Gilbert  (1957), Cohen, Sutherland and Tu 

(1 9 5 7 ) ,  and by Fabula (1 964). Some comparison between the nonlinear and 

linear theories will  be  made in  this study. 

The problem of wall  effects on lifting cavity flows is m o r e  complicated 

due to the lack of a basic  symmetry.  The case  of choked flow past  an 

inclined f la t  plate within a s t raight  channel has  been investigated by  Ai 

(1965). A l inearized theory f o r  choked flows pas t  vented or  cavitating 

hydrofoils has  been developed by Fabula (1 964). A i ' s  theory i s  generalized 

h e r e  to account for a body of a rb i t r a ry  shape. A genera l  formulation i s  

presented he re  to t rea t  the finite cavity flow based on the open wake model.  

Recently, Brennen (1969) evaluated the wall effect for  axi-sym- 

me t r i c  flows with a finite cavity pas t  a disk and a sphere;  he a l so  obtained 

some new experimental r e su l t s .  In his  theory the Riabouchinsky model  



i s  adopted to r ep resen t  the finite cavity. One important aspect  of 

Brennen's relaxation method i s  that the flow i s  bounded lateral ly  by a 

concentric cylinder of various s izes ,  down to the smallest  that produces 

the choked flow a t  a given cavitation number,  and the unbounded flow c a s e  

i s  reached by extrapolation. The numerical  resu l t s  therefore furnish 

useful information about the wall effect in three-dimensions.  

Experimental studies designed to investigate pr imar i ly  the wall  

effects in cavity flows have received increasing attention recently.  A 

review of these activit ies has  been given by Morgan (1 966). Dobay (1 967) 

investigated experimentally the blockage effects on cavity flows pas t  a 

c i rcu lar  disc ,  s e t  normal  to the flow, of three  different s izes .  These 

extensive experiments showed that choking occurred  even with these 

relatively sma l l  d i scs  (disc  diameter  -to-tunnel down to 1 / 36). Similar 

findings have been reported by B a r r  (1966). A recent  survey and discus-  

sion of this  subject has  a l so  been given by Waid (1968). 

A c lear  under standing of the wall effects in*wake or  cavity flows 

is necessary  to in te rpre t  cor rec t ly  the experimental resu l t .  Grove e t  a1 

(1 964) investigated experimentally the steady separated flow past  a 

c i rcu lar  cylinder (of diameter  d )  in  an oil  tunnel (of spacing h )  with the 

Reynolds number R up to about 300. F o r  the case  d / h  = 0.05, the 

r e a r  p r e s s u r e  coefficient was found to reach the asymptote -0.45 fo r  

R > 25 (up to R = 177). It i s  fur ther  conjectured that the p r e s s u r e  p ro -  

file for d /h  = 0.05 has  already reached the limiting f o r m  a s  d /h  + 0 

(the unbounded flow case  ). This final extrapolation s e e m s  misleading 

since a simple est imate (e. g. by using Eq. (1 0) below) indicates that the 

flow state  at hand is right in  the neighborhood of the choked flow state .  

Finally,  i t  may  be mentioned h e r e  that a s e r i e s  of experiments 



has been c a r r i e d  out by Meijer (1 967) i n  an investigation (collaborated 

with one of the present  authors ,  T Y  W) of the tunnel wall effect and the 

viscous effect a t  a sha rp  corner  of the body. An empir ica l  method fo r  

correct ing the wall  effect  was chosen, which is based on a different p r e s -  

s u r e  coefficient C1' and cavitation number o " ,  defined a s  
P 

where p is the minimum p r e s s u r e  and V i s  the corresponding maximum 
b 

velocity on the tunnel wall  (measured  a t  a point on the tunnel wall  opposite 

to the maximum cross-sec t ion  of the cavity, s ee  the point B in  Fig.  3 

of the Riabouchinsky model).  This C1 l (a l l )  has  been found to co r re l a t e  
P 

ve ry  satisfactorily with the theoretical values of C (o) for  an unbounded 
P 

flow, a s  supported by a number of tes t s  with models of th ree  different 

s izes .  Some theoret ical  justification i s  being sought in this study. 



2 .  Theoretical Models for  Inviscid Cavity Flows; 
Momentum Considerations 

It has  been known that the theoret ical  models in  common use for 

treating steady inviscid cavity flows can predict  hydrodynamic fo rces  

acting on blunt obstacles with differences so  sma l l  that they a r e  usually 

beyond the l imit  of experimental  accuracy  (see ,  e. g . ,  Gilbarg (1 961 ) ). 

I t  is a lso  known that these models ,  when applied to unsteady cavity flow 

problems,  have yielded appreciably different resu l t s  ( see  Wang and Wu, 

(1 963) ). Since the viscous effects of the r e a l  fluid in  the wake a r e  ap-  

proximated by different ar t i f ices  i n  different models ,  and the cavity drag 

i s  distributed a t  different r a t e s  in  different regions,  it should be of value 

to examine these models in the presence of strong wall effects. This 

will be done in  two pa r t s .  First, the over -al l  fea tures  will be studied in 

the light of simple momentum consideration. The r e s t  will  be left with 

the detailed analysis.  The f inal  resu l t s  exhibit significant differences 

between the three  models t r ied  out, when applied to  thin obstacles .  This 

finding therefore se t s  the stage for fur ther  experimental  investigations 

fo r  a crucial  appra isa l  of the theoretical models.  

Before we deal with the inviscid cavity flow or  wake flow models ,  

l e t  us  consider a typical viscous,  incompressible  flow produced in an 

infinitely long s t raight  channel by a blunt body which i s  propelled along 

the channel axis by an external  force,  moving a t  sufficiently high 

Reynolds number Re such that a recirculat icg near  wake (or  a finite 

cavity in a two-phase flow) i s  established. F o r  simplicity,  the additional 

viscous effect due to  the boundary layer built up along the channel walls 

will be singled out by assuming that the walls can be made to move with 

an appropriate tangential velocity so a s  to  eliminate the boundary layer  



al together .  Then, wlth r e spec t  to t h e  body f r a m e ,  the ups t ream velocity 

will be denoted b ~ ,  U ,  and the p r e s s u r e  b y  
p a  ( s ee  F i g . l a ) .  At l a rge  

dis tances  downstream (say  f o r  x >' OU'S~"/D,  where S i s  the c r o s s -  

sect ional  a r e a  of the channel and D i s  the drag of the body), so  that  a f te r  

the turbulent f a r  wake has  spread  uniformly a c r o s s  the channel, or  even 

a f t e r  the turbulence i s  diss ipated and degenerated into a laminar  flow, 

the mean velocity will again be un i form,  equal to U on account of the 

continuity, but the p r e s s u r e ,  af ter  ful l  recovery of the kinetic e n e r g y ,  

will be pb say ,  which mus t  be l e s s  than p since by the s imple  
00' 

momentum consider ation 

A being the body section a r e a  and C D  being defined by (1  ). Thus the 

wall  effect he re  i s  to reduce the momentum defect  to z e r o ,  and to give 

r i s e  to an under - p r e s s u r e  in the downstream. This unde rp re s su re  co-  

efficient C -  diminishes  i n  proportion to the r a t i o  A/S, a s  A/S  + 0 ,  
P 

s ince C must  r ema in  finite.  (In plane flows, S i s  replaced by the 
D 

channel spacing h,  and A by the body width L . ) 
We now tu rn  to  consider the cavity flow models  for an a r b i t r a r y  

body placed in a s t ra ight  channel,  with a finite cavity format ion.  Although 

they have been applied exclusively to plane flow analysis ,  the following 

momentum theorems hold a l so  valid for  the three-dimensional  ca se  so  

long a s  the flow i s  symmet r i c  about a z = 0 plane. 

2 .1  Open wake model 

According to  this  model ,  which i s  due to Joukowsky (1890) ,  



Roshko (1 954), and Eppler  (1 954) and modified by Wu (1 962), the dividing 

s t reaml ine  s t a r t s  with a uniform velocity U and p r e s s u r e  poo a t  up- 

s t r e a m  infinity, flows tangentially to the body su r f ace  ( E D  and  ED' in  

the c ross - sec t iona l  view of F ig .  l b ) ,  de taches  f r o m  the body at D and 

D' to  f o r m  a cavity boundary DC and D 'C '  over  which the flow speed 

a s s u m e s  a p r e sc r i bed  constant  value q and the p r e s s u r e  p then c ' c ' 

proceeds  downstream along CB and C 'B ' ,  approaching asymptotical ly 

pa ra l l e l  to the wal ls  s o  that  the flow c r o s s  section becomes  k ( = k  -t k 
1 z 

in F ig .  l b ) ,  velocity becomes V ,  and p r e s s u r e  p The shape of C B  b ' 

and C 'B '  i s  so  de te rmined  that the re  will be no net  contribution f r o m  

this  var iable  p r e s s u r e  p a r t  of the boundary to the fo rce  on the body. Both 

V and k a r e  unknown a p r i o r i ,  but m u s t  sat isfy the continuity equation 

Application of the longitudinal component of the momentum theorem to the 

flow region gives  

which becomes  , upon using Bernoul l i ' s  equation (2 )  and continuity con- 

dition (8), 

where  I denotes the l a t e r a l  body width for  plane flows or  the body c r o s s  

sect ional  a r e a  i n  t h r ee  -dimensional  flows. 

It i s  of pa r t i cu la r  significance to  consider the l imit ing c a s e  when 

the cavity becomes infinitely long (the so-cal led  choked flow) as V 



i nc reases  towards q Let the corresponding limit  of U, CD and the 
c ' 

cavitation number a ,  with h / l  and qc  held fixed, be denoted by U,, 

CD" and o, respectively,  then 

2 

G = - -  h c  - 1  = S [ G ; .  - I ] '  , 
D.9. -0 1 U ;;: 

cr :;< i s  called the choking cavitation number,  or  the blockage constant.  

F r o m  (10) it follows that 

It is to be noted that o,:( provides a lower l imit  of a below which the 

flow i s  physically infeasible,  and that the right hand side quantity i n  (1 1 ) 

is a quite accura te  est imate of o,:: for  la rge  h / l  . Thus, to achieve 

o = 0.1, we m u s t  have h / l  > 400 if C = 1. 
D:; 

Another point of in t e re s t  i s  that the choking drag coefficient can 

be  expressed  in t e r m s  of the geometry by using (8). Since U+,h = qck, 

(1 0) and ( 3 )  become 

I n t h e c a s e o f b l u f f  bodies C' i s  insensitive to L /h ,  then 
D:!: 

gives an  est imate of k / h  ve r sus  l / h .  

When the cavity i s  finite in  length, we mus t  have U < V < qc .  F o r  

sufficiently l a rge  h / I  s o  that V -- U ( see  Eq. (9) ), the under -p res su re  



coefficient a t  the downstream end becomes 

thus C -  i s  proportional to P / h ,  in agreement  with ( 7 )  which is based 
P 

on the viscous flow argument.  However, when the cavity i s  a lso long, 

then by (1 1 ), 

which decreases  much slower with decreasing d / h  a t  the choked flow state.  

2 . 2  Re-entrant jet model 

Description of the main features  of this model,  which has been 

attr ibuted independently to Kre ise l ,  Gilbarg and Ef ros ,  can be found in 

the book a r t ic le  of Gilbarg (1 960). As shown in Fig. I c ,  let  the down- 

s t r e a m  uniform sta te  be character ized by velocity V and p r e s s u r e  p b J  

and le t  the jet flow upstream through the cavity into a second Riemann 

sheet,  terminating with the cavity surface velocity q a c r o s s  a constant 
C 

section of a r e a  1 inclined a t  an angle y with the upstream flow d i r ec -  
j' 

tion. Then the continuity condition requi res  

In contras t  to the open-wake model, we now have V < U and hence 
t 

pb > p, (an over -p re s su re  a t  the downstream! ) a s  the momentum defect 

i s  part ly ca r r i ed  off by the je t ,  Since the longitudinal momentum flux in 

the je t  i s  ( - p q  cos y)(q l . ), we now have the momentum equation 
c C J 



which i s  reduced upon using (1 6 )  and ( 2 )  to 

C = D - h V c 
D + I pu2! - -  I 1- X I ( +  - u + . z -  u c o s y )  . 

The choked flow state  cannot be readily derived f rom the above 

formulas  ( i t  can  however be deduced f rom the analysis l a t e r ) ,  but this 

l imit  must  evidently be the s a m e  a s  (10) and (1 1 )  in vir tue of the 

momentum consider ation, if applied direct ly  to  this state.  Before the 

flow i s  choked, the over p r e s s u r e  a t  the downstream end i s  

2. 3 Riabouchinsky model 

The main fea tures  of this model a r e  shown in the typical case  of 

Fig.  3 .  Since there  i s  no m o r e  than one distinct 'uniform flow s ta te ,  the 

simple m0mentu.m argument cannot be effected to determine the drag ,  

albeit  the choked flow state  must  also agree  with the other models.  On 

the other hand, this model. has  an advantage of providing readily a point 

(point B in Fig.  5) a t  which the velocity i s  maximum, and p r e s  s u r e  mini - 
mum over the ent i re  tunnel wall. This velocity i s  to be used in calcula- 

ting C" a s  defined by (6).  
P 



I. P u r e  Drag Cavity Flows 

In this p a r t  we consider the pure drag cavity flow pas t  a sym- 

me t r i c  body of an a rb i t r a ry  shape, placed symmetr ical ly  in a s t raight  

channel of width h, with a finite cavity attached to the body, the flow 

being assumed to be symmetr ic  about the cent ra l  plane of the channel, 

The charac ter i s t ic  Reynolds number and the Froude number based on 

the body dimension a r e  both assumed to be so  la rge  that the viscous and 

gravitational effects may be neglected. The solution will  be determined 

by using three  different flow models. 

3 .  Open Wake Model 

This semi-infinite open wake model has  already been descr ibed 

in the previous section. As shown in Fig.  2, the boundaries CB and 

C 'B '  of the var iable  p r e s s u r e  pa r t  of the open wake now become straight  

and paral le l  to the x-axis by virtue of the flow symmetry .  The flow 

region in  the s t r ip  1 + I 5 + = U h/  2 of the complex potential plane 
I 

f = 40 + +, being the velocity potential and 4 the s t r e a m  function, is 

mapped into the upper half of the pa ramet r i c  plane = 6 + i~ by 

in which the coefficient A i s  determined by the jump of 4 a c r o s s  the 

flow about the ups t ream o r  downstream infinity (point A o r  B). The c o r -  

responding regions in  the z ,  f ,  and 5 -planes a r e  shown in Fig.  2. 

By denoting the x ,  y-velocity components by u, v,  and the com-  

plex velocity by 



physical problems can be stated by prescr ibing 8 a t  the body sur face ,  

8 = P ( s )  say,  s being the a r c  length measured  f r o m  E along ED,  and 

by prescr ibing q = q along the cavity boundary DC and D'C'. F o r  
C 

brevity,  q c  will be normalized henceforth to unity. In t e r m s  of the 

logarithmic hodogr aph variable  

1 o = ~ t i t 3 = l o g  - 1 , 7 = log - 
W q * 

the problem becomes the following Riemann-Hilbert boundary value 

problem: 

e(e, 0-t) - gf (6 )  = p ( s ( 5 )  (161 < 1 )  , 

~ ( 6 ,  O t )  = 0 ( 1 ~ 1  > 1) , 

w = O ( l / S )  a s  ( & I - . c o  , 

in  which we specify s(-6 ) = -s(c  ), and P ( - s )  = -P ( s ) .  We shal l  a l so  

designate P ( c )  P ( ~ ( 6  ) ), with P ( - 6 )  = -P (g ). The solution of this 

problem i s  

1 

in which the function (g2-1 is analytic in  the 5 -plane cut along the 

6 -axis f r o m  -1 to 1 ,  and tends to 5 a s  15 1 +oo. It i s  noted that the 

l a s t  condition in (22) is a l so  satisfied since the integral  in ( 2 3 )  i s  of o r d e r  

O(i - 7 a s  ( 5 1 + m by virtue of P (E ) being odd i n  6 .  Finally,  the 

boundary conditions of w a t  the ups t ream and downstream infinity r equ i re  



1 2 
log - = w(ia) = - ( l t a 2 ) 2  u ST 

P (6 15 dS 
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1 
log - = w(ib) = sr P (5 E d 4  

v 1 (25 
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Equations (19)  and ( 2 3 )  provide a pa r ame t r i c  solution f = f(5 ), 

w = w ( c  ). The physical  plane i s  given by quadra tu re ,  

Let  the ba se  chord DD' be  of length P , then P = I m ( z ( l  ) - z ( -  1 ) ), o r  

and hence,  a f t e r  substituting (19)  in (27a) ,  

Now on the body su r f ace ,  a s  q + O t ,  

where  C over  the in tegra l  s ign indicates the Cauchy pr incipal  value.  

Hence the a r c  length s ,  measu red  f r o m  E along ED,  is 



The d rag  coefficient i s  given by ( 9 ) ,  o r  a f te r  setting q = 1, 
C 

The above solution may be regarded e i ther  a s  a d i rec t  (physical) o r  an 

inverse  problem. The d i rec t  problem i s  prescr ibed  by the quantities 

i n  which p(s)  i s  a known function of the a r c  length s ,  a i s  taken to be 

g rea te r  than the blockage constant a:: fo r  fixed X(= l lh) < 1. The inve r se  

problem i s  specified by 

i n  which p ( f )  is a given function of 5 and 0 < a  < b. The inverse  prob-  

l e m  is seen to be fully determined, s ince if the quantities P '  a r e  p r e -  

scr ibed ,  then (24),  (25) provide U and V,  (23)-determines w(G), (27) 

fixes l / h ,  z i s  given by ( 2 6 ) ,  and finally the C follows f r o m  (30). On D 

the other  hand, i n  the direct  problem with fixed detachment ( f rom a s h a r p  

co rne r  of the obstacle),  s(6)  and P(c )  = P(s(6) ) a r e  not known & pr ior i .  

Consequently i t s  solution involves a nonlinear in tegra l  equation (29)  for  

s(6)  together with two parameters  a ,  b ,  which must  be evaluated under 

two functional conditions (24) and (27) fo r  fixed U and P /h. (Note that 
1 

U = (l+a)-Y). I n  the case of smooth detachment (when the body curva ture  

i s  f inite on both sides of the detachment point, such a s  detachment f r o m  a 

c i r cu la r  cylinder) an additional condition is required. The c lass ica l  

condition i s  that of Villat (1 9141, which can be written a s  



cannot be a rb i t r a ry  in  problem P, instead i t  i s  fixed by (25) a f t e r  a ,  b 

and ~ ( g )  a r e  solved. The numerical  methods of solution f o r  calculating 

the direct  problem have 'been established and discussed fo r  the unbounded 

flow case by various authors ( see  e. g. , Birkhoff and Zarantonello (1957), 

Gilbarg (1960), WU (1968) ) and will not be fur ther  elaborated here .  

Fur thermore ,  the approximate numerical  scheme devised by Wu and Wang 

(1964b) has been found to be very effective. These methods can a lso  be 

applied to the present  problem of wall effects. 

Of par t icular  in te res t  i s  the simple case of symmetr ic  wedges 

since in  this case P i s  constant and the pa ramete r s  become uncoupled 

(U i s  a function of "a" only, s ee  (24) ). Consequently the solution i s  

greatly simplified by considering a mixed type problem P"[P, o, b ]  so  

that the d i rec t  problem can be solved by siM1ple c r o s s  plotting. We pro-  

ceed to evaluate the details i n  the following. 

3. 1 Symmetric wedge 

F o r  a symmetr ic  wedge of half vertex angle PIT, we have 

p(E) = const. PIT ( 0 < 5 < 1 )  . 

Then (23 )  can be readily integrated,  giving 

Hence conditions (24) and (25) become 



Furthermore,  (27) gives the base-chord to channel-width ratio a s  

z 1-2p 
X Z - = -  ZU (sin prr)(b2 - a') ( l + W  ) pS 

h ?T d5 . ( 37 )  
so (g' +a2)(&' + b') 

For  the direct problem P[P,  o ,1 /h ] ,  f i r s t  a can be computed from (35) 

noting that U = (1+0)-', next b can be determined from ( 3  7),  and finally 

V i s  given by (36), and C,, by (30). For  arbitrary P ,  the integral in 

(37) cannot be integrated in closed form. When P = m / n ,  m and n being 

integers,  appropriate changes of variables can reduce the integrand to a 

rational fraction, which can then be evaluated in closed form. In part icular ,  

f o r  the flat plate, (3 = 112, the result i s  rather simple 
t 

However, for  a wide range of (3, i t  i s  more convenient to evaluate the 

integral numerically. 

In order  to determine the lower limit of- cr for  fixed L / h a  we 

consider below the asymptotic limit of choked flow. 

The choked flow state i s  reached a s  b ' 0 3 ,  o r  equivalently, a s  

V * 1. The corresponding limit of a and U, for  fixed P and P / h ,  will 

be denoted by a, .,. and U::, which a r e  related by U,> = U(a::), U(a) being 
9- 

given by (35). By letting b -+ oc in (37), we obtain 

which determines a:# = a,:,(l / h a  P). The corresponding drag coefficient a t  

the choked condition i s  



1 
In par t icularJ  we deduce f r o m  (38) f o r  the f la t  plate,  p = Z, 

1 - = 1 - u  [1- ; (1tu::)tan-l u :~ ]  
h 

The =hoked flow r e su l t s  (39) and (40) have been computed numerical ly  f o r  

several  values of P ,  as shown in  Fig. 3. In genera l ,  i t  can be  s e e n  ( fo r  

example, by differentiat ing (39) with r e s pec t  to a.,. .,- and by some  appropr ia te  

par t ia l  in tegra t ions)  that f o r  0 < P < 1,  l /h  d e c r e a s e s  monotonically with 

increas ing a:: ( o r  U ) .  -,- I t  can a l s o  be s een  (but m o r e  involved) that  C 
D 4 ,  

,I. 

dec r ea se s  with U.,. ,,. inc reas ing  ( o r  0::: decreas ing) .  These  sa l i en t  

f ea tu res  can be  c lea r ly  seen  f r o m  Fig.  3. 

F r o m  this  behavior  of P/h  i t  a l so  follows f r o m  (37) ( fo r  example ,  

by par t ia l  f rac t ion and compar i son)  that  be fore  the tunnel is choked, the 

following inequali t ies a < a,, .,. , U < U,, (and hence cr > cr,,) m u s t  hold. The 
-0. -,- 

wall effect on CD has  been computed,  with U < U,,, f o r  s e v e r a l  values 
'8.  

of p and l / h ,  the f inal  r e su l t s  will be p resen ted  in Section 6 together 

with the o ther  two flow models  f o r  compar ison and di'scussion. 

The wall e f fec t  d iminishes  a s  P / h  - 0 ;  this  l imi t  i s  reached a s  

b +a ( o r  V -+ U). In  this  l im i t ,  the d r a g  coefficient C,,(o. P, l / h )  tends 

to i t s  value in unbounded flow, C (G, P), which can be  deduced f r o m  (30) ,  
Do 

(36) and (37) by  applying l 'Hosp i ta l l s  ru le ,  giving 

This  resu l t  h a s  been obtained previously by Wu and Wang (1964a). The 



above drag  coefficient CD (0, P) fo r  unbounded flow i s  shown in  Fig. 4 
0 

for  comparison with the resu l t s  based on the Riabouchinsky and re-entrant  

jet models. 



4. Riabouchinsky Model 

We now apply the  Riabouchinsky mode l  to evaluate  the  p u r e  d r a g  

cavity flow p a s t  a s y m m e t r i c a l  body of a n  a r b i t r a r y  shape  p laced  i n  a 

channel.  The  p a r t i c u l a r  c a s e  of the  f la t  p la te  h a s  been d e a l t  with by 

Birkhoff ,  P l e s s e t  and S i m m o n s ( l 9 5 2 ) .  

The cor respond ing  regions in  the  z -  and f -p lanes  a r e  shown to-  

g e t h e r  with the p a r a m e t r i c  {-plane in  F ig .  5. The upper  half s t r i p  i n  the  

f -p lane  i s  mapped into the upper  half 6-plane by the g e n e r a l  Schwarz -  

Chr i s to f fe l  t r a n s f o r m a t i o n  ( s e e  Gi lbarg  1949) ) :  

i n  which the  coefficient A i s  d e t e r m i n e d  by the loca l  behavior  of f a t  
1 

the  point { = ia. The function (5'+bZ)'! i s  analy t ic  in  the  5-plane  cut  
1 

f r o m  { = - i b  to & = i b ,  and (Y,z+b2)'-< a s  1 5 i 70. The boundary 

values  of w = T t i e  again  a s s u m e  the  s a m e  f o r m  a s  ( 2 2 ) ,  though the  

symbol  = 6 + i~ m u s t  be r e f e r r e d  to the p r e s e n t  p rob lem.  ( H e r e  we 

note tha t  8 = 0 on BC due to the  flow s y m m e t r y .  ) I t  t h e r e f o r e  follows 

tha t  the p a r a m e t r i c  solut ion w = w ( 5 ) ,  the velocity condition w(ia) = - log U, 

z = z ( 0 ,  the  b a s e  chord  1 ,  the a r c  length s(6) can  aga in  b e  e x p r e s s e d  

f o r m a l l y  by equations ( 2 3 ) ,  (24),  ( 2 6 ) ,  ( Z i a ) ,  and (29)  r e spec t ive ly .  The 

velocity V now gives  the  magnitude of the flow veloci ty a t  point B ,  

which i s  the m a x i m u m  value achieved by the  velocity along the  e n t i r e  

wall.  Thus  fo rmal ly  the  n u m e r i c a l  solut ion fo r  a n  a r b i t r a r y  body shape  

can be  c a r r i e d  out by the  s a m e  p r o c e d u r e  a s  d e s c r i b e d  i n  the p rev ious  

c a s e ,  except  with d f /d& rep laced  by the above equation. This  comple tes  



our solution. 

The drag on the body can be calculated by integrating the p ressure  

over the body surface, giving 

4. 1 Symmetric wedge 

F o r  a symmetric  wedge of half vertex angle p-rr, w(() i s  again 

given by (34), and (35) remains valid to a s su r e  w(ia) = U. The ratio P /h ,  

by (27a), now becomes 

Finally, (44) gives the value of the drag coefficient 

The numerical method of solution for arbi t rary  angle P i s  again very 

much the same a s  described in the previous case. In part icular ,  for  the 

flat plate, 9 = 1 /2 ,  the above integrals can be evaluated in  t e rms  of the 

complete ellipti c integrals and elementary functions. The details will 

however be omitted here.  

The choked flow state i s  reached a s  b +a. The limit of 1 l h  a s  

b - oo i s  obviously identical to (39). Fur thermore ,  we derive f rom (46) 



the corresponding l imit  of C a s  D 

upon integration with appropria te  change of variables ( t = ( l - 4 1 -  c 1 ) / 5  

and integrating in the complex t-plane k i th  use of the theorem of residues).  

This resul t  ag rees  with (10) which was obtained by using the momentum 

theorem,  a s  should be expected. 

To the other extremity,  the unbounded flow limit  i s  obtained a s  

b + a ,  with the corresponding drag  coefficient given by 

where 

This resul t  i s  shown in Fig.  4 together with two other flow models. The 

final numerical  resul t  of CD(a.P,  A) for  CT> a* will be presented and 

discussed i n  Section 6. 



5. ' Re-entrant J e t  Model 

The re-entrant jet model has been adopted by Gurevich (1953) to 

evaluate symmetric cavity flows past a wedge placed in a straight channel. 

In what follows the general case of a symmetric body of an arbitrary shape 

i s  treated by using this model, and the detailed numerical results of the 

wedge problem a r e  further explored. 

The corresponding regions in the z-  and f-planes a r e  shown in 

Fig. 6. Though a parametric plane similar  to those of the previous two 

models (that i s ,  with the body surface and cavity boundaries span the 

entire real  axis of the parametric plane) can also be constructed, the 

present 5 = + i q  plane has certain simplifications. The upper half 

s t r ip  of the f-plane i s  mapped into the second quadrant of the S-plane by 

the transformation 

where A i s  a positive real constant. By this formula f can be continued 

analytically into the entire 5-plane (by virtue of 4 = Imf = 0 on 5 = 0). 

From the local singular behavior of f a t  < = a ,b ,  and oo i t  follows 

that 

Uh = r ~ ( c ~ - a ~ ) / ( b ' - a ~ )  (50) 

Condition (51) assures  that the flow at  the downstream channel i s  simply 

covered. From (50) and (51) it  also follows that 



F r o m  equations (50) - (52) follows a l s o  the continuity condition (U-V)h=Pj.  

The boundary conditions of w = T + i 6  a r e  

The l a s t  condition of (54) enables  4 5 )  to  be  analy t ica l ly  continued into 

the f i r s t  quadran t  of the <-plane  by w ( - c )  = - 00, that  i s ,  T i s  odd 

and 0 i s  even i n  5 .  ( 4 5 )  can f u r t h e r  be continued into the  l o w e r  half 

c -p lane  by w(l) QT s o  that  0 i s  odd i n  7. The l o w e r  half flow f ie ld  

then corresponds .  to the  four th  quadrant  of the 5-plane.  ) After  this con- 

t inuation,  0 is p r e s c r i b e d  a s  an even function of 6 ,  f o r  the  e n t i r e  

c-axis .  The  solut ion 4 5 )  i s  then given by the P o i s s o n  i n t e g r a l  

Hence ,  

The boundary conditions of w a t  point A and B r e q u i r e  that  

c - a  - R ( - a )  u = -  , v = ( s l e  - q - b )  
Ic+a  ) e  (57) 

Upon subs t i tu t ing  the  above U ,  V into (53),  t h e r e  r e s u l t s  



from which it  i s  convenient to determine c a s  a function of a ,  b; c will 

be regarded as  such in  the sequel. 

The physical plane i s  given by 

The half-base chord i s  P / 2  = I m  z(0), and hence, upon using (50), 

The a r c  length s measured from E along ED i s  

Fo r  the inverse problem with prescribed ~ l [ ~ ( E , ) , a , b ] ,  c i s  determined 

by (58),  U by (57), l / h  by (60) and s(g) by (61). Solution of the di rect  

problem P[P(s) ,  a , l / h ]  can proceed along the same method a s  described 

ear l ier  for  the other two models; i t  i s  however more  complicated than 

the previous two models since this solution contains an extra parameter  

in the f i rs t  place. 

The drag coefficient has been derived for the general asymmetric 

flows by applying the momentum theorem (see (17) ). For  the present 

problem, qC = 1, y =  0, 

5. 1 Symmetric wedge 

For  a symmetric wedge of half vertex angle PT, can be 



integrated to yield 

which i s  defined in the t;-plane cut along the ,$-axis f rom 5 = - 1 to 1 s o  

that Q 4 - 2 P / <  a s  / 5 (  *co. Hence, by (571, 

and (58) becomes 

ub-a c = -  9 I -K  

Upon substituting (63) in  (60), 

Equation (64) - (66) determine U, P / h  in t e r m s  of a, b, and vice v e r s a .  

The choked flow state  i s  approached a s  c + c ~ ,  and b + co. When 

both b and c a r e  large compared with a ,  we deduce f r o m  (65)  the 

relation 

C 
with (67) 

Using (67)  in (64), we obtain for  b >> a ,  

The corresponding l imit  of P /h  i s  simply 



By substituting (68) in ( 6 2 ) ,  we find 

which i s  i n  agreement  with the previous two flow models.  F r o m  the 

requirement  U., < 1 and V, > 0 i t  follows that K m u s t  l ie in the range 
-0- -8. 

< K < 1, and hence a.,- > ( l+y ) / ( l  -y ), y = 2  - 2 / p  Z -0. 

  he unbounded flow l imi t  can be derived by letting b -, a, and by 

applying l 'Hospi tal ls  ru le  to (65 ), giving 

1 
c = 8 (a2-1)-a , 

hence by (64), 

We fur ther  obtain fo r  the drag coefficient, 

upon using (71), where 

This resu l t  of C i s  shown in  Fig.  4 with the previous two flow models.  
Do 



6 .  Discuss ion and Analysis  of the Resu l t s  

F r o m  Fig .  4 we s e e  c lea r ly  that insofar  a s  the d r a g  coefficient 

C f o r  unbounded flows i s  concerned,  the discrepancy between the 
Do 

three  cavity flow mode ls  considered h e r e  i s  r a t he r  insignificant fo r  

modera te  and l a rge  wedge angles ( say  PIT > 45' ), but becomes  qui te  ap -  

preciable  fo r  sma l l  values  of P . 
F o r  sufficiently l a rge  P ( s ay  (3 IT > 60" ), the dependence of C 

Do 
on a can  be approximated by the re la t ionship  

in  which E i s  a  number  ve ry  s m a l l  comparecl with unity. Take the f la t  

- 1 
plate f o r  example (P = 1 / 2 ) ,  c = [ 8 ( 1 ~ + 4 ) j  for  both the Riabouchinsky 

and the r e  -ent rant  je t  models  and r = [ 6 ( n t 4 ) ]  - fo r  the open-wake mcdc l  

( s ee  Wu(1956) ) which will make (75 )  a good approximation fo r  a < 1 ,  in 

which range  the nonlinear t e r m  eo2 modifies the r e s u l t  by a t  mos t  0.8% . 
Blunt bodies of a r b i t r a r y  shape general ly  a l so  sat isfy the above re la t ion-  

ship.  The slightly l e s s  a ccu ra t e  dependence of C ( a ,  (3 ) on a ,with the 
Do 

l inear  fac to r  (1  Sa),  i s  notor ious .  

F o r  sma l l e r  values of p ,  the gene ra l  t rend i s  that ,  f o r  fixed P 

and a, the open wake model yields the l a rge s t  C whe rea s  the r e -  
Do 

entrant  jet  model  g ives  the sma l l e s t  C of the three .  models .  F u r t h e r  - 
D 

0 

m o r e ,  when (3 i s  ve ry  s m a l l  (p < 1 / 18, o r  psr < 10" ), the open wake 

model i s  noted to pos se s  the following s imple  re la t ionship  ( s e e  F ig .  4 )  

which i s  a ccu ra t e  to a high degree .  This  finding thus indicates  that the 



cavity flow approximation of Betz (1 930), namely C ( P  ,o)=C (P , o)fo ,  
Do Do 

though too crude in genera1,becomes nevertheless  a fair ly  good approxima- 

tion in the above range of the pa ramete r s  o and p .  This feature of the 

open wake model  and the fac t  that the differences between these flow 

models becomes increasingly m o r e  appreciable with decreasing wedge 

angle (o r ,  generally,  decreasing body thickness ra t io)  have not been 

widely known. 

We  proceed to d iscuss  the theoretical resu l t s  of the wall effect 

for  symmetr ic  wedges. F o r  the cavitation number a g rea te r  than the 

blockage constant u::, with the cavity finite in length, the drag coefficient 

CD(P , a ,  h ) has  been calculated f r o m  (30), (35) - ( 3 7 )  fo r  the open wake 

mode, f r o m  (45), (46) for  the Riabouchinsky model, and f r o m  (62), (64)  - 
(66) for the re -ent rant  jet  model. In o rde r  to improve the r a t e  of con- 

vergence of the numerical  integration, cer ta in  t ransformations of the 

var iab les  of integration have been administered,  which a r e  des i rab le  

par t icular ly f o r  (3 and a s m a l l  when the convergence of the original 

integrals i s  relatively slow. The numerical  computation has been c a r r i e d  

out with an IBM-360 machine,  using the straightforward i terat ion scheme  

described ea r l i e r  f o r  the d i rec t  problem. Convergence of the i terat ions 

h a s  been sat isfactory,  the e r r o r s  allowed a r e  l e s s  than 1 o - ~  . The final 

r e su l t s  of the numerical  solutions a r e  shown in F igs .  7 - 1 1, f r o m  which 

the percentage drag reduction due to the wall effect i s  deduced and p r e -  

sented in Fig.  12a and 12b. 

F r o m  these numerical  r e su l t s  we note the following important  

fea tures  of the wall effects in  cavity flows. F i r s t ,  the wall effects for  

s t raight  channels always r e su l t  in a lower drag coefficient than for an 



unbounded flow a t  the same cavitation number. This i s  physically obvious 

since the la te ra l  constraints of the tunnel walls must  make  the flow 

velocity somewhat higher ,  and hence the p r e s s u r e  lower,  than their  

corresponding values for  unbounded flows over the wetted body surface 

away f rom the stagnation point, provided the comparison i s  made f o r  the 

same cavitation number (or  the same base under-pressure  coefficient). 

Another remarkable  fea ture  of the resu l t s  i s  that the wall effect, 

measured  by the percentage drag reduction a t  fixed i and I / h ,  actually 

increases  with decreasing wedge angle - - a property in common to a l l  

th ree  flow models employed. This would imply a genera l  conclusion that 

wall effects a r e  m o r e  significant fo r  thinner bodies in cavity flows, other  

conditions being equal. At a f i r s t  glance, such a s ta tement  may even 

contradict one's intuition. However, it i s  to be noted a s  physically 

plausible that the p r e s s u r e  reduction over the wetted side of a thin body 

may be felt  over a longer s t r e t ch  than f o r  blunt bodies. Another possible 

r e a s  on i s  that the curvature singularity of the cavity boundary a t  the 

separation becomes weaker a s  the body thickness rat io  dec reases ,  causing 

a grea ter  p res su re  reduction on the wetted side. 

A third fea ture  of in t e re s t  i s  that the drag  reduction (absolute 

difference) i s  ve ry  much insensit ive to o(> o,,) for  fixed P and h . This '  
0,. 

feature i s  again common to a l l  th ree  flow modnls considered. Fur the r  - 
m o r e ,  it i s  to be noted that the wall effects predicted by the open wake 

model a r e  considerably s t ronger  than the other two models .  This in t e res t -  

ing finding and the differences between these flow models in the case  of 

unbounded flows pas t  thin bodies strongly suggest that the decisive support 

mus t  come f r o m  further  prec ise  experimental investigations. 



11. LIFTING CAVITY FLOWS 

7. General Formulation of Choked Lifting Flows 

As a typical case ,  we consider the plane flow pas t  an arb i t ra ry  

curved obstacle held at an  a rb i t r a ry  location in the tunnel, charac ter ized  

by the distance hD between the detachment point D and the tunnel wall, 

and by the orientation of the body, a s  shown in Fig.  1 3 .  In fact ,  to  be 

general ,  we may also admit curved tunnel walls in our formulation s o  long 

a s  the bounding walls become asymptotically s t raight  a t  both te rminals  so  

that uniformconditions can be prescr ibed  a t  up and downstream infinit ies,  

Thus, the geometr ic  inclination of the solid surface will  be denoted by P ( s )  

along the body surface and by a( s )  along the tunnel walls,  both a s  functions 

of the a r c  length s ,  measured  along the surface i n  the sense  of increasing 

x. The ent i re  flow region in the complex potential f-plane, with f = 0 a t  

the stagnation point E ,  l ies  in  a s t r i p  bounded by L$ = + = Uh = V d  and 
1 1 1 

+ = - where + = Uh = Vd . We next map this f - s t r ip  into the upper 
2 z 2 

half of the pa ramet r i c  5 -plane, with = -1, S D l  = 1 ,  G E  = 00, by the 

transformation 

where A i s  a r e a l  constant, c = a ,  b,  b t  a r e  the respect ive image points 

of the upstream infinity A, upper je t  B and lower je t  B' .  The jumps i n  

a c r o s s  A, B, B' provide the relations 

In t e r m s  of the rat io  



Adding the two equations in  ( 7 8 ) ,  we have 

Uh = V(d i d )  = IT A - .rrA(l -Y) 
1 2 (a -b) (b l -a)  - 

v(a-bI2 

It is  convenient to decompose the logarithmic hodograph variable  

w ( 5 )  = log --V = T i ie 
W 

(82  

into two pa r t s  

such that the boundary conditions of w assume the following decomposition 

(with 5 = I, t iq)  

In the above conditions, the inclination angles a and P a r e  regarded  a s  

functions of 5 ;  and in (84c),  00(5) i s  known when the solution w (5 ) i s  
0 

obtained. The problem of w 0 ( 5 )  i s  the same a s  the unbounded flow case  

which has been solved by W u  and Wang (1964a), and the solution i s  



.t- 'P 

The problem of sl can be expressed a s  a Hilbert boundary problem, 
1 

i t s  solution can be shown to be 

The above expressions of w and o contain branch points a t  g = * I ,  
0 1 

1 

b and b' ; the branch of (c2-1 i s  defined with a branch cut f rom -a, 

1 1 

to -1 a n d f r o m  i-1 to a, while ( 5 - b y ( 5 - b l y  i s  defined with a cut 
1 1 

f r o m  b to b'  , s o  that (g2-1 and [ ( G - ~  )(c-b')]' both tend to 5 a s  

15 1 + ~ o  in  the upper half plane. By studying the analytical behavior of 

these integral  representations it can be shownt that w = o + w i s  con- 
0 1 

tinuous in the neighborhood of = * 1 ,  b,  b' and f o r  finite 5 in the 

upper half 5 -plane. Near the stagnation point E or  l, = cc , hawever, 

the local conformal behavior requi res  that o behaves like logc  a s  

15 / +m; this behavior i s  exhibited by the f i r s t  t e r m  of u0, which i s  not 

to be changed by the added t e r m  w representing the effect of wall. On 
1 

the other hand, (86) shows that w (5)  = 0(1&) ) a s  15 1 +a, unless 
1 

.,I 1- 

See, e.  g. Muskhelishvili: Singular Integral Eduation (1 953), pp. 235 - 8. 

t ~ e e ,  e. g. by the method discussed by Muskhelishvili: Singular Integral 
Equation (1953), pp. 235 - 8, 



in which case  w i s  bounded a s  I S 1  +oo. We therefore  enforce condition 
1 

(87) on the solutiori. 

At the ups t r eam infinity, a s  5 -+ a ,  the present  solution 

w = o +w has  i t s  imaginary pa r t  e ( a )  satisfying automatically the con- 
0 1 

dition on flow inclination, while i t s  r e a l  pa r t  gives 

v 1 .(5)-eOce) log - = - log(l+o, : , )=~ (a) = - [ (a-b)(bt - a ) ( l  -a2 ) IP  
U 2 1 6 - a  de 

2 Z [(5-b)(bl-5)(1-511 

(88 

in which the integral takes i t s  Cauchy principal value. This relationship 

provides another condition on the flow pa ramete r s .  

The physical z-plane i s  given by the integration 

and the a r c  length measured  along the body surface f r o m  point D i s  

In par t icu lar ,  the total  wetted a r c  length i s  

Fur the rmore ,  the distance of point A f rom the asymptote of the upper 

wal l  f a r  downstream i s  

- ia, o A b s i n ( e ( ~ ) - ' ~ , ) d ~  
h = d + I m [ e  

D 1 
(zB-z = dl - v ( 6  -a](c -b)(g -b t  ) 

The above integral i s  regular  since 6(E) = a,o a t  < = a ,  b and b' 



- -  'U 'U 
- ia 

0 Finally,  we introduce z = x t iy by rotation z = ze , s o  that the 
'U 

x-axis is paral le l  to the flow fa r  up and downstream. Then on the upper 

and lower walls 

In general  this problem involves four independent pa ramete r s ,  s ay  

o d =  V ~ / / U ~ - I ) ,  y = h / h ,  a and b (then b' i s  given by Eq. (80), A by 
1 

1 
(81 ) for  known U and h, and V = U ( l t q k  F) .  F o r  the determination of 

these four pa ramete r s  there  correspond four equations: (87), (88),  (91))  

(92). Consequently, the inverse  problem, with prescr ibed  a(c) and 

p (e ), is completely solved. However, f o r  physical problems when cu 

and p a r e  given as functions of a r c  length s ,  it i s  fur ther  necessa ry  to 

satisfy the in tegra l  functional equations (90), (93) and (94). The integral  

i teration method, o r  the approximate scheme introduced by Wu and Wang 

(1964a, b )  a r e  useful for  computing the solution of this problem. 

The simple case  of an inclined f la t  plate a t  the choking condition 

in a s t raight  channel has been investigated by Ai (1 965), using the present  

formulation. 

Shair e t  a1 (1963) showed experimentally that the stability of the 

steady laminar  wake behind a c i rcu lar  cylinder is strongly influenced by 

the proximity of the tunnel walls.  



8. Cavity Flow past  an Inclined F la t  Plate  in Straight Channel 

As a simple representative case ,  we now evaluate the plane flow, 

with a finite cavity formation, past a flat plate hydrofoil centered in a 

straight channel. The open wake model with a straight dissipation wake 

will be adopted to represent  the actual flow having a finite cavity. This 

theoretical model was f i r s t  applied by Wu (1 956) to unbounded lifting flows, 

yielding satisfactory predictions of the hydrodynamic force coefficients 

for bodies of smal l  curvatures.  For  the present  problem, the correspond- 

ing regions in  the z- ,  f -, and w-planes a r e  shown together with the 

parametr ic  5 -plane in Fig. 14. 

The transformation between the f -  and 5 -planes i s  again given by 

(77) and relationships (78) - (81 ) st i l l  remain valid for the present  problem. 

The flow field occupies a polygonal region in the w-plane, which can be 

mapped into the upper half t: -plane by 

in which the coefficient of multiplier and constant of integration have been 

determined to satisfy the conditions a t  the stagnation point (&= oo)  and a t  

the trailing edge (S=1). The point & = m on the r e a l  axis i s  the image 

of the point M on the lower tunnel wall a t  which the flow velocity along 

the wall reaches a minimum (for positive incidence CY a s  shown). The 
1 

function [ (5'-1 )(G -c)(5 -c '  ) I2  i s  analytic in the 5 -plane with branch cuts 

f rom < = -00 to -1, f rom 5 = c to c ' ,  and f rom 5 = 1 to +oa along 

the r e a l  axis so  that this function tends to 5' a s  I& I + oo in  the upper 

half plane. There a r e  severa l  conditions on o(c). The present  flow model 

requires  that w(c) = o(c ' )  = i a ,  hence 



and 

At the ups t ream infinity, w(a) = -log U t icu, hence o(a) - w(c) = - log U ,  

lc a 

(m -5 )dl; = log - 1 
1 u *  ( 9 8 )  

[ (1 -L2)(5 - c ) (c l -5  ) l Z  

Fur the rmore ,  f r o m  the downstream condition w(b) = w(bl) = - log V t icu 

i t  follows 

and 

scb (m -S  )d5 = log - 1 
1 v "  (1 0 0 )  

[ ( l  -52)(5-c)(c'-5)1Z 

The physical plane i s  given by 

f r o m  which we deduce the chord length of the plate, 1 = z ( l  ), after using 

( 7 7 )  - (81) and effecting part ia l  fraction, as 

The distance of the leading edge of the plate f rom the upper wall i s  c lear ly  



which can be written a s  

h~ - - 1 
sin(8-a)  [= - -  Y - h - q] d5 + (103a) 

tj-b 5-b 

where 

Alternately, the distance h of the mid-chord point of the plate f rom the 
0 

upper wall i s  given by 

h 
0 h~ 1 1 - =  - 
h h + Z K  s i n a  . 

When the flat plate i s  centered in the channel, ho/h = 112, a s  often i s  

the case in water tunnel experiments. 

The numerical computation of the solution depends on which pa ra -  

mete r s  a r e  chosen to be independent. The direct  problem can be specified 

by the parameters  P [ a , o , l  /h ,  ho /h ] .  However, there a r e  various ways 

of posing an inverse problem by making different choices of the remain-  

ing Parameters ,  namely, a ,  b ,  b ' ,  c ,  c ' ,  m ,  Y, V ,  A relatively simple 

procedure i s  a s  follows. F i r s t  we note thar (96) determines explicitly 

m = m(c,  c ' ) ,  and consequently (99) yields b'  = b'(b, c ,  c ' ) .  Therefore, 

the inverse problem may be specified by the parameters  P I [  a ,  b, c ,  c ' ]  . 
With this choice, y i s  determined directly by (80), a by (97) ,  U by 

(981, V by ( loo),  1 / h  by (1 02), and hL/h by (1 03) .  

In the actual execution of numerical computations for the direct  



problem it i s  found m o r e  convenient to work with the following mixed type 

problem P"[ a ,  c ,  b, y ]  . In this problem, with m eliminated by combin- 

ing (96) and ( 97, the resulting equation de termines  c '  = c'(cu, c )  by 

i teration and then m = m(a,  c )  by (96). F r o m  (99),  b f  i s  determined a s  

b f  = b l ( a ,  c ,  b )  again by iteration. After a value of y i s  chosen, a i s  

derived f r o m  (80), then a straighforward computation may be c a r r i e d  out 

for  o, 1 / h  and ho/h  by (98), (102) and (1 04), respectively.  In o rde r  to 

fix a given value of h /h ,  a s imple i terat ion with respec t  to y i s  necessary  
0 

for  the se t  of equations, (80),  (98), (102) and (104). Finally,  the c a s e  of a 

given 1 /h may be obtained by a c r o s s  plotting procedure.  To facil i tate 

the numerical  integration, the integrals  appearing in these formulas  have 

been converted into the Jacobian elliptic functions of the f i r s t ,  second and 

third kind and the existing numerical  program for these functions devised 

by Ai and Harr i son  (1 964), with accuracy to s ix  f igures ,  has  been adopted 

in  the present  numerical  scheme. The computation has  been c a r r i e d  out 

with an IBM-360 machine a t  the Booth Computing Center of the California 

Institute of Technology. A few representat ive cases  a r e  shown in F igs .  

15 - 16. These resu l t s  will be discussed below. 

Two limiting c a s e s  a r e  reached in this computation. One of them 

i s  the choked flow state which i s  approached a s  b -+ c and b '  + c '  . In 

this  l imit ,  (99) reduces to (96) and (100) drops out a s  V + 1. This choked 

flow case  has  been t reated ea r l i e r  by Ai (1965) based on a formulation 

which, a s  described in  the previous section, i s  somewhat different f r o m  

the p resen t  one. The present  numerical  resu l t  in the choked flow l imit  

i s  found to agree  exactly with that of Ai. 

The other limiting case  i s  the unbounded flow which i s  reached a s  

b,  b '  and m al l  tend to a.  This unbounded flow case  has been evaluated 

ea r l i e r  by Wu (1 956) whose solution i s  based on an expansion for  smal l  

o. The present  exact solution in the l imit  of unbounded flow i s  in good 

agreement  with the previous resul t  of Wu (1 956) f o r  o < 1 . 



F r o m  the final r e su l t  a s  shown in Figs .  15 - 1 6  the following 

salient fea tures  may be noted of the wall effects in lifting cavity flows. 

Apparently, the r e su l t s . f rom a flat  plate a t  an angle of attack exhibit a 

s imi lar  general  t rend  of the wall effects a s  in the pure drag case .  Based 

on the same  cavitation number a ,  the wall  effect  in  the inviscid flow i s  

found to reduce both the drag and the lift coefficients of the flat plate. 

Fur the rmore ,  the smal le r  the incidence angle, the m o r e  significant 

becomes the wall effect when measured  in  t e r m s  of the percentage change 

in l i f t  and drag coefficients. Such a phenomenon should not be too difficult 

to understand a s  sma l l  changes in a thin cavity above a lifting plate would 

be expected to have m o r e  effect on the fo rces  than changes in  a thicker 

cavity for reasons  s imilar  to those given in the pure  drag  case ,  A c loser  

examination of the details in the numerical  resu l t s  fur ther  indicates that 

a t  smal l  incidences,  the wall effects actually become slightly m o r e  ap-  

preciable a s  the cavity shortens f r o m  the choked flow s ta te ,  in  a s t re tch  

of o > a.,., before they become insensit ive to o for  fu r the r  inc rease  in 
*a- 

o .  This refinkci i i - ~ c d  diminishes a s  the angle of attack a inc reases .  

As Q - + ~ r / 2 ,  the present  r e su l t  ag rees  exactly with the pure drag case  

of a f la t  plate obtained in  P a r t  I, thus providing an independent check of 

the accuracy of the present  numerical  computation. 

F o r  an inclined f la t  plate it i s  obvious that a dec rease  in lift 

mus t  accompany a reduction i n  drag since the resul tant  fo rce  mus t  be nor -  

m a l  to the plate. Although i t  remains  to be verified,  the s a m e  feature 

of the wall effects i s  likely to hold for cavitating hydrofoils of sma l l  

curvature . 
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Fig.  1 Momentum considera t ions  for  cavity and wake flows. 





Fig. 3a Choked flow drag Cn(a,, P , l  h )  of wedges v e r s u s  the choking 
-6. 

cavitation number  o,.. Cavity is finite in length fo r  a > o,:<(P , P h) .  
-0 



Fig.  3b Choked channel width versus a,.. ... 



F i g .  4 Drag coef f ic ien ts  of wedges  i n  unbounded f low 
b a s e d  on  d i f fe ren t  t h e o r e t i c a l  m o d e l s .  











F i g .  9 Wall e f fec t  in  cavity flow pas t  a wedge, P rr = 15' .  
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Fig. 1 0  W a l l  e f fec t  in cavi ty  flow pas t  a wedge, P rr = 30 " .  
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Fig. 12a Drag reduction due to the wall effect based on the open wake model. 



CHOKED FLOW 

Fig. 12b Drag reduction due to the wall effect based 
on the Riabouchinsky model. 
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F i g .  1 3  Choked l i f t ing  flow past  an a r b i t r a r y  body  i n  a channel .  
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Fig. 16  Wall effect in  cavity flow pas t  an 
inclined flat plate, cr = 30". 
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The wall effects in cavity flows past  an a rb i t r a ry  two-dimensional body i s  
investigated for  both pure -drag and lifting cases  based on an inviscid nonlinear 
flow theory. The over -all  fea tures  of various theoret ical  flow models for  inviscid 
cavity flows under the wall effects a r e  discussed f r o m  the general  momentum 
consideration in comparison with typical viscous,  incompressible  wake flows in 
a channel. In the case  of pure drag cavity flows, three theoretical models in  
common use ,  namely, the open-wake, Riabouchinsky and r e  -entrant je t  models,  
a r e  applied to evaluate the solution. Methods of numerical  computation a r e  dis - 
cussed for  bodies of a rb i t r a ry  shape, and a r e  c a r r i e d  out in detail  fo r  wedges of 
a l l  angles. The final numerical  resu l t s  a r e  compared between the different flow 
models,  andthe differences pointed out. Fur the r  analysis of the resu l t s  has  led 
to development of severa l  useful formulas  for correct ing the wall effect. In the 
lifting flow case ,  the wall effect on the p res su re  and hydrodynamic fo rces  acting 
on a rb i t r a ry  body i s  formulated for  the choked cavity flow in a closed water tunnel 
of a rb i t r a ry  shape and computed for  the flat  plate with a finite cavity in  a straight 
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