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Faces in Motion: Selectivity of Macaque and Human Face
Processing Areas for Dynamic Stimuli
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Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of
dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for
such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. Face areas in
the fundus of the superior temporal sulcus responded to general object motion; face areas outside of the superior temporal sulcus fundus
responded more to facial motion than general object motion. Thus, the macaque face-processing system exhibits regional specialization
for facial motion. Human face areas, processing the same stimuli, exhibited specializations for facial motion as well. Yet the spatial
patterns of facial motion selectivity differed across species, suggesting that facial dynamics are analyzed differently in humans and

macaques.

Introduction
Faces provide a rich source of social information. Some informa-
tion, such as individual identity, is transmitted by the structure of
the face. Other information, such as its mood, involves dynamic
transformations (Darwin, 1872). Thus, face recognition requires
motion to be factored out for identification while simultaneously
extracted to perceive changes in expression, head orientation, or
gaze. The mechanisms for performing these very different com-
putations have been suggested to reside in different parts of the
human brain (Bruce and Young, 1986; Haxby et al., 2000;
O’Toole et al., 2002). In particular, it has been suggested that the
occipital face area (OFA) and the fusiform face area (FFA) repre-
sent invariant properties of faces (Kanwisher et al., 1997;
McCarthy et al., 1997; Yovel and Kanwisher, 2004), whereas the
superior temporal sulcus face area (STS-FA) is sensitive to dy-
namic face properties (Allison et al., 2000; Gobbini et al., 2011).
Recently, Pitcher et al. (2011) found a clear functional dissocia-
tion, with the STS-FA selective for dynamic information and
OFA and FFA insensitive to facial motion.

In macaque monkeys, a network of face-selective areas has
been identified (Tsao et al., 2003, 2008; Pinsk et al., 2009; Ra-
jimehr et al., 2009), but specializations for facial motion have not
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been investigated yet. To better understand how facial motion is
processed across species, we probed the face-processing networks
of both macaques and humans to address two questions: is the
processing of dynamic information functionally separated within
face-processing networks? If so, how does this separation inform
putative homologies of face areas across the two primate species?

Materials and Methods

All animal procedures complied with the National Institutes of Health
Guide for Care and Use of Laboratory Animals, regulations for the welfare
of experimental animals issued by the California Institute of Technology,
where all macaque experiments were conducted. All human subject pro-
cedures were approved by the Institutional Review Board of The Rocke-
feller University, and informed consent was obtained from all human
subjects.

Surgery. Implantation of MR-compatible headpost (Ultem; General
Electric Plastics), MR-compatible ceramic screws (Thomas Recording),
and acrylic cement (Grip Cement, Caulk; Dentsply International) fol-
lowed standard anesthetic, aseptic, and postoperative treatment proto-
cols (Wegener et al., 2004).

Monkey fMRI. Scanning was performed on a 3T MR scanner (TIM
Trio with AC88 gradient insert; Siemens). For each monkey, we acquired
16 anatomical volumes at high spatial resolution (0.5 mm isometric)
with a T1-weighted inversion recovery sequence (MPRAGE) under an-
esthesia (ketamine and medetomidine, 8 mg/kg and 0.04 mg/kg). For
functional imaging, contrast agent ferumoxytol (8 mg of Fe per kg body
weight), was injected into the femoral vein before the scan session to
increase the signal-to-noise ratio. Like MION (Vanduffel et al., 2001),
ferumoxytol reduces signals in activated voxels, and we thus inverted
signals for display of functional data to facilitate comparison with BOLD
data.

All functional data were acquired in horizontal slices with a multiecho
EPI sequence (TR 2 or 3 s, TE 30 ms, 1.5 or 1.0 mm? voxel size) and a
custom-made 1-channel or 8-channel surface coil as described previ-
ously (Tsao et al., 2008). The use of smaller voxel sizes in macaques
reduces the effect of ear-canal-related susceptibility artifacts compared
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Face and motion selectivity in the macaque temporal lobe. a, Left, Face-selective regions in one representative hemisphere (M1, right), on a flattened cortical surface. The color bar

indicates the negative common logarithm of the probability of error. Sulci: sts, superior temporal; sf, sylvian fissure. Right, Time courses of fMRI signal for one representative region (ML). Colored
epochs distinguish stimulation blocks. Block types are indicated with symbols below the time axis for clarity. b, Map of the strength of motion responses. Face-selective regions are represented by
black outlines. The color bar indicates the magnitude of the response to motion (difference between the response to moving and static non-face objects) in units of percentage signal change. ¢, Face
selectivity map, similar to @, but comparing moving faces to moving objects in Experiment 2. Black outlines as in b. AM falls partially outside the functional volume.

with humans (Devlin et al., 2000; Kriegeskorte et al., 2007). Three male
rhesus monkeys (Macaca mulatta) were scanned while foveating a fixa-
tion dot at the center of the screen. Monkeys sat in sphinx position with
their heads fixed (Vanduffel et al., 2001; Tsao et al., 2003). Juice reward
was delivered after variable periods of time (2—4 s) during which the
monkeys maintained fixation within 2 degrees of the fixation dot. Eye
position was measured at 100 Hz using a commercial eye monitoring
system (ISCAN).

Human fMRI. All scanning was performed on a 3T MR scanner
(TIM Trio; Siemens). Human functional data were acquired in hori-
zontal slices, approximately aligned to the AC-PCline with a standard
EPI sequence (TR 2s, TE 32 ms, 64 X 64 matrix, 3.43 mm X 3.43 mm
in-plane resolution, 3.4 mm slice thickness, flip angle 90°) and a
32-channel head coil. On each scan session, we obtained a high-
resolution anatomical volume of the entire brain (MPRAGE, 1 mm
isometric).

Six human subjects (3 females, 3 males; age 25-35 years) participated
in the experiment. Subjects were instructed to maintain fixation on a
central dot and indicate with a button press (right index finger) when the
identity of a stimulus was repeated within a visual stimulation block. Eye
position was measured at 100 Hz using a commercial system (ISCAN) to
ensure that subjects were following fixation instructions within a 2 de-
gree window.

Visual stimulation. The same visual stimuli were presented to humans
and macaque monkeys. Two different experiments were performed, both
presented in block designs in separate runs.

The first experiment was a standard face localizer (Moeller et al.,
2008), used to define face-selective ROIs. The duration of each block was
set to equal 8 times the TR of the imaging sequence. Each image block
contained pictures of one of the following categories: human faces (F),
monkey faces (M), human hands (H), gadgets (G), fruits and vegetables
(V), and human headless bodies (B). Each image block was preceded by
a scramble block (S) with spatially scrambled versions of the pictures of
the subsequent block. Runs concluded with a final block showing a gray
random dot pattern (R). Thus, the sequence of blocks presented in each
sented at a subtended 5.9° visual angle (10.4 cm diameter at 100 cm
distance) for 0.5 s.

The second experiment was performed to test for selectivity for stim-
ulus dynamics. Blocks lasted 32 and 30 s for all scans. Stimulus conditions
were comprised of blocks of moving faces, static faces, moving objects,
and static objects. Motion blocks were composed of short movies (0.5
2.5 s long), whereas static blocks included pictures shown for the same
amount of time. Face movies showed macaques or humans vocalizing
and generating facial expressions. Macaque facial expressions included
coo calls, lip smacking, aggressive teeth displays, and grunts. Human expres-
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sions included smiling, nodding, and simple vo-
calizations (similar to monkey calls). Object
movies showed artificial and natural objects
(computer mouse, shoe, canned food, tooth- +
brush, comb, flowers, leaves, fruits) subject to
naturalistic motions (such as falling or being 6
shaken as if moved by the wind or sliding down a
slope).

To minimize low-level differences across

stimuli, images and movies were achromatic, 4t
objects and faces were placed in the picture

center and on identical backgrounds of salt- Fo,
and-pepper noise, and movies and pictures

were manually adjusted to have an overall 2t

matched distribution of pixel intensities and
similar object/face sizes. Motion energy is hard
to measure in naturalistic movies. We com-
pared activations in general motion-sensitive
brain areas (see below) to estimate differences
across motion blocks. Static control conditions r
were generated directly from the corresponding

movie clip by extracting frames maximizing the -2
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social information conveyed. For instance, if the

original clip showed a monkey with an aggressive

expression, we used a frame with the teeth most

visible. Image categories comprised static human b 6
faces (Fyyg), static objects (two sets, Og and Ogy;,),
moving human faces (F,,), moving objects (two
sets, Oy, and Oy y,;)» Static monkey faces (Fyyq),
moving monkey faces (Fy), and scrambled
images (S). The sequence of blocks used was
as follows: S_Fyq S Og S Fiyv S _Op_S_
Fris—S_Ogpis—S_Frin—S_OpmpisS- Stimuli sub-
tended 7.4° visual angle (13 cm diameter at 100
cm distance).

Visual stimulation was controlled by custom
MATLAB (MathWorks) code using the Psy-
chophysics Toolbox (Brainard, 1997). Stimuli
were projected with a video projector (JVC
DLA-GI15E) at 30 Hz with 720 X 480 pixel res-
olution on a back-projection screen.

fMRI data analysis. FreeSurfer and FSFAST
(http://surfer.nmr.mgh.harvard.edu/) were used
to reconstruct cortical surfaces and perform
functional data analysis, following procedures 0

N

N

Contrast Size (% change)

detailed previously (Tsao et al., 2003). The
same procedure was used to define face-
selective areas in monkeys and humans. We
used data from Experiment 1 and calculated
the contrast of static faces versus all whole ob-
jects. Face-selective regions were identified by
anatomical location and relative position.
Identity of face-selective regions was then de-
termined by comparison with published coor-
dinates (Tsao et al., 2008; Pitcher et al., 2011),
and established naming conventions used.
Voxels within ROIs were pooled together for
subsequent analysis of data from Experiment 2. We used high thresholds
(atleast p < 10 ~7) to define macaque ROIs to minimize partial volume
effects. An exception is left middle face patch in the STS fundus (MF) in
Monkey M1 (p < 10 ~2) where selectivity was confirmed in Experiment 2.

In macaques the number of runs used depended on individual perfor-
mance and varied slightly: 22, 21, and 28 runs in Experiment 1 and 28, 21,
and 16 in Experiment 2 for Monkeys M1, M2, and M3, respectively. In
humans, we had 4 runs per subject and experiment.

For group analysis, a general linear model was fit to the 8 values
obtained from every single run of Experiment 2 for each ROI. Because of
the small sample size (3 subjects), typical for monkey fMRI studies, a
fixed effects group analysis was used as in previous studies (Jastorff et al.,

Figure2.
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Responses to moving and static faces and objects in the macaque face patch system. a, Group analysis responses to (from left
to right) static faces, static non-face objects, moving faces, and moving non-face objects in percentage signal change from scrambled
stimuli baseline in temporal lobe face patches. *p << 0.05, significant differences from 0 (Bonferroni-corrected for comparisons on multiple
ROIs). b, Group analysis of (from left to right) the main effects of shape category, motion condition, and their interaction. Error bars indicate
SE. *p << 0.05, significant differences from 0 (Bonferroni-corrected for comparisons on multiple ROIs).
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Table 1. Statistics of F tests for main effects and interaction in macaque ROIs

Contrast Statistic ~ AM AL AF ML MF PL
Shape category F 195.8 4604 3307 5483 1997 2278
df 624 873 873 873 873 695
p 382 81.6 62.2 93.8 403 440
Motion condition ~ F 5.2 365 1543 574 162.7 515
df 695 873 873 873 873 695
p 1.6 8.6 320 13.0 336 1.7
Interaction F 8.0 15.3 0.2 6.9 0.1 2.4
df 624 873 873 873 873 695
p 232 40 0.2 2.1 0.1 0.9

For each contrast, F value, degrees of freedom (df), and p value (as negative common logarithm) are shown.
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Responses to moving and static faces and objects in human face areas. a, Face-selective regions on the flattened surface of the posterior right hemisphere of a representative human

subject. Color bar as in Figure 1a. Sulci: los, lateral occipital; sts, superior temporal; lots, lateral occipitotemporal; cos, collateral. b, Group analysis of responses. Conventions as in Figure 2a. ¢, Group

analysis of main effects and interaction. Conventions as in Figure 2b.

2012). Contrasts were computed with a two-way ANOVA, with single-
run B values as repeated measures. Bonferroni corrections for multiple
ROIs were used to adjust significance thresholds.

Motion energy controls. Possible differences in motion energy between
face and non-face object stimuli were assessed via activation differences
in motion-sensitive areas in the STS of macaques. We identified MT/
MST/FST by contrasting all moving stimuli with all static ones on even
runs, setting a high significance threshold, and verified results by regis-
tration to macaque F99 atlas (Van Essen et al., 2011). For these ROIs, we
contrasted moving versus static faces and moving versus static objects on
odd runs to measure modulation by face motion (7.02 = 0.43%, mean *+
SEM; F( 450, = 272.34,p < 10 ~*”) and by object motion (9.76 = 0.60%s;
F1429) = 263.19, p < 10 ~*). This suggests that motion energy in non-
face movies was higher than in face movies. Thus, larger activations in a
face area for facial versus object motion cannot be explained by differ-
ences in motion energy.

Eye movements controls. To assess whether eye movements might be
different across conditions, we calculated the number of saccades during
the task. Eye traces were low-pass-filtered (15 Hz cutoff frequency) and
underwent edge-preserving smoothing for noise removal (Santella and
DeCarlo, 2004), after which a velocity threshold was applied. For each
monkey, we performed a one-way ANOVA on the number of saccades
during each stimulation block using different runs as repeated measures.
Only Monkey M2 showed a significant effect of condition on saccade
number (F; 3, = 4.36, p < 0.01), whereas Monkeys M1 (F; ;) =
2.57, p = 0.06) and M3 (F; ;) = 1.51, p = 0.22) did not. A post hoc
analysis in Monkey M2 showed no significant difference within motion
conditions.

Results
We scanned 3 macaque monkeys and 6 human subjects. We first
localized face patches by contrasting responses to static faces with
responses to static non-face objects (Experiment 1, Fig. 1a). To
determine the position of face areas relative to motion-selective
cortex, we derived maps of general motion sensitivity from Ex-
periment 2 by contrasting responses to moving and static objects
(Fig. 1b). Motion selectivity extended throughout the fundus of
superior temporal sulcus, embedding the two face patches in the
fundus of the STS, MF, and AF, in motion-responsive cortex (Fig.
1b), whereas middle face patch on the STS lip (ML), anterior face
patch on the STS lip (AL), and anterior face patch on the ventral
surface of inferior temporal (AM) were not. A contrast of moving
faces versus moving objects reproduced the known face patches
(Fig. 1¢).

We calculated the responses to static and moving faces and
objects in a group analysis (Fig. 2a) and identified the separate
contributions of the factors: shape category (face vs object), mo-

tion (moving vs static), and their interaction (Fig. 2b) in a two-
way ANOVA. The main effect of shape category confirmed face
selectivity in all face patches (Fig. 2b; Table 1). The main effect of
motion was strongest in MF and AF, weaker in posterior face
patch PL, ML, and AL, and insignificant in AM (Fig. 2b; Tables 1
and 2). A subset of face patches, AL and AM, exhibited a signifi-
cant interaction of motion with shape category (Fig. 2b; Table 1).
Thus, in face patches in the fundus of the STS (MF, AF), re-
sponses can be understood as a linear superposition of face selec-
tivity and general motion sensitivity, whereas in patches furthest
away from the fundus of the STS (AL and AM), the impact of
stimulus motion is weaker and partially selective for facial
motion.

The pattern of motion sensitivity along the fundus of the STS
suggests a functional specialization of face patches by anatomical
location in the STS. We tested this for two pairs of patches (ML vs
MF, and AL vs AF) that differ in their location with respect to the
fundus of the STS but are positioned at similar anterior—posterior
positions along the STS. We performed a three-way ANOVA with
ROI motion and shape category. For the ML versus MF compar-
ison, a significant two-way interaction between shape category
and ROI (F; 1765, = 47.7 p < 10 "), and between motion and
ROI (F(y,1765) = 7.74, p < 10 ) indicated that the middle face
patches differ in the strength of their selectivity to shape category
(stronger in ML) and motion (stronger in MF). Nevertheless, a
two-way interaction between motion (F(, ;75 = 3.73,p = 0.053)
and shape category as well as a three-way interaction of ROI,
motion, and shape category (F; 765 = 2.42, p = 0.12) did not
reach significance. For the AL versus AF comparison, the two-
way interaction between shape category and ROI was not signif-
icant (F(; 1765y = 0.89, p = 0.35), but the motion versus ROI
interaction was (F,; 1765 = 21.0, p < 10 ~°), with AF being more
strongly selective for motion. For this pair, there was a significant
two-way interaction between motion and shape category
(F1.1765) = 7.18, p < 10 %) as well as a three-way interaction of
ROI, shape category, and motion (F, ,,¢5) = 4.27, p < 0.05). This
suggests a specialization for facial motion in AL absent in AF. We
also analyzed the presence of a motion condition by shape cate-
gory interaction on individual monkeys, focusing on the areas on
the lip of the STS (AL and ML) and the fundus of the STS (AF and
MF). The effect was significant on the lip patches of Monkey M1
(F(1.446) = 5.1, p < 0.05) and both the lip (F(, ;,,, = 5.1, p <
10 ?) and fundus (F; 5, = 5.1, p < 10 ) patches of Monkey
M3. This indicates the strength of specialization for facial motion
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Table 2. Statistics of F tests for main effects and interaction in human ROIs

Contrast Statistic OFA FFA STS-FA
Shape category F 126.8 178.5 155.9
df 240 240 150
p 24 29.1 24.5
Motion condition F 23 3.1 479
df 240 240 150
p 0.9 3.8 55.9
Interaction F 23 0.6 12.0
df 240 240 150
p 0.9 0.4 32

For each contrast, F value, degrees of freedom (df), and p value (as negative common logarithm) are shown.

is subtle and not always apparent in single individuals. Together,
these analyses show strong effects of shape category and motion
condition according to the position of face patches with respect to
the STS.

In humans, we identified face-selective regions (Fig. 3a) FFA
(left in 5 of 6 subjects, right in 6 of 6 subjects), OFA (left in 5 of 6
subjects, right in 6 of 6 subjects), and STS-FA (left in 1 of 6
subjects, right in 6 of 6 subjects). In Experiment 2, we calculated
separate responses to all stimulus conditions (Fig. 3b) and calcu-
lated the main effect of shape category, motion, and their inter-
action (Fig. 3¢). OFA and FFA activation were not significantly
modulated by general motion (Fig. 3¢; Table 2). In contrast, the
STS-FA exhibited significant modulation by motion and an in-
teraction between shape category and motion (Fig. 3b; Table 2).
Underscoring the impact of face-specific motion on STS-FA re-
sponses, in 5 of 6 subjects the left STS-FA was found contrasting
responses to moving faces versus moving non-face objects, but
not contrasting static faces versus static objects.

Discussion

The present results show that dynamic stimulus information is
processed differentially in the face-processing networks of two
primate species. In the macaque, face patches in the STS fundus
were part of motion-selective cortex and exhibited enhanced re-
sponses to moving faces, which could be explained as a linear
superposition of object preference and general motion sensitivity
consistent with two broad scenarios. Neurons within MF and AF
might respond to similar motion patterns as neurons outside MF
and AF yet differ from these in their preference for faces. Alter-
natively, MF and AF could consist of two different populations:
one motion selective, the other face-selective. Interestingly, the
location and selectivity of MF raise the possibility that it might
overlap with area LST (Nelissen et al., 2006), which exhibits both
object and motion selectivity.

In contrast, face patches AL and AM responded selectively to
facial motion. The interaction of shape and motion selectivity
suggests that the two stimulus domains converge on the same
population of neurons, perhaps receiving both face-selective and
motion-selective inputs from AF and MF with whom they form a
closed network (Moeller et al., 2008).

In humans, only the STS-FA showed a main effect of shape
and motion, and a specific modulation by facial motion. This
finding is consistent with results from Pitcher et al. (2011). In
addition, only a contrast of moving faces versus moving ob-
jects reliably revealed the left hemisphere STS-FA, consistent
with Fox et al. (2009). These results support the idea that the
human STS-FA is specialized for the processing of dynamic
facial information.

One motivation for the present study was to use specialization
for motion to shed light on putative homologies of face areas

Polosecki et al. ® Specializations for Dynamic Face Processing

across species. Several interpretations of our results are possible;
and, contrary to our expectation, they do not lend themselves to
a straightforward equalization of face areas. The most striking
specialization is that of the human STS-FA for facial motion,
unmatched by any of the other face areas, human or macaque. In
macaques, specializations for facial motion are less prominent. It
thus seems plausible that the human STS-FA might be a special-
ization of human or hominoid brains that other old world mon-
keys lack. The spatial separation of the STS-FA and its lack of
connectivity with the other face areas (Gschwind et al., 2012) are
compatible with this interpretation, but the positioning of ma-
caque face areas inside or close to the STS has been suggested to
imply the opposite assertion that macaque face areas might cor-
respond to human STS-FA (Ku et al., 2011). However, consider-
ing the overall pattern of results in both humans and macaque
monkeys of generally larger motion selectivity in more dorsal face
areas (STS-FA in humans and fundus STS areas in macaque mon-
keys) than in more ventral areas, a homology of STS-FA with MF
and AF is suggestive. This interpretation would be consistent with
those drawn from processing of dynamic body shapes in the hu-
man and macaque brain that also found stronger motion selec-
tivity in dorsomedial than ventrolateral STS areas (Jastorff and
Orban, 2009; Jastorff et al., 2012).

For making cross-species comparisons, one needs to consider
several potentially complicating and limiting factors. First, al-
though motion processing is important, multiple functional di-
mensions should be considered for establishing homologies
(Durand et al., 2009). Second, we focused our analysis on the
face-patch system while dynamic stimuli are also processed out-
side of it (Nelissen et al., 2006; Furl et al., 2012; Jastorff et al.,
2012). Third, contrast agents are typically used in macaques only.
However, this difference is unlikely to obscure the comparison
because MION and BOLD responses both ultimately tap into the
same physiological mechanisms of neurovascular coupling.
Fourth, the attentional state of macaques and humans is typically
not fully controlled. We tried to reduce this source of variability.
The use of a simple task in humans encouraged them to distribute
attention evenly across stimulation blocks, whereas in macaques
extensive fixation training with the same stimuli presumably
minimized fluctuations in internal state.

Our results underscore the importance of using naturalistic
stimuli for studying functional areas. Dynamic faces elicited en-
hanced responses across all face-selective areas of the temporal
lobe, and the left STS face area in humans was reliably active only
for moving faces, whereas the functional differentiation we found
in macaques face patches is, to our knowledge, the first one re-
vealed with fMRI in this network. Crucially, their impact differs
across face areas and thus helps to reveal functional differences
within macaque and human face processing networks.

Notes

Supplemental figures can be found online at http://lab.rockefeller.
edu/freiwald/supplemental.
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