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Laue’s dynamic theory of x-ray interference is shown to be applicable, with only
a few minor changes, to crystals having a very general type of secondary structure.
It is thus applied for the purpose of obtaining a quantitative estimate of the effect
of such a structure upon the nature of the x-ray interference maxima. The estimate
is relative insofar as it compares the intensities of respectively the “secondarily”
and the “primarily” reflected interference beams and applies only in the region
where the latter have been, or can be observed. In this region the “two-dimensional
lattice” type of secondary structure is found to give rise to a fine structure which,
with the present insufficient resolving power, would be manifested experimentally
as a weak, diffuse background. The secondary structure of this type produces no
broadening of the primary lines. The existence of this type of structure, therefore,
is not inconsistent with the sharpness of the interference maxima obtained from
such crystals as calcite, and a possible objection to the existence of the secondary struc-
ture in such crystals is removed. The extinction effect is briefly considered, but ab-
sorption is not taken into account, except with a few qualitative remarks.

RGUMENTS against the existence of a secondary structure! in crystals
have been raised from time to time in the literature on the basis of the
nature of the x-ray interference patterns. For instance,? it has been argued
that the sharpness of the x-ray interference lines from such crystals as calcite
is not consistent with the presence of a secondary structure. This argument,
if theoretically tenable, would be very weighty on account of the reliability
and great accuracy of the x-ray spectroscopy; and its consequences would be
far reaching in the theory of the solid state.® For this reason, and also in view
of the possibility of enlisting the aid of the x-ray spectroscopist in the de-
tection and analysis of secondary structures, it is desirable to obtain a quan-

* National Research Fellow.

1 Not to be confused with a “mosaic structure.” For the sense in which these terms are
here used, see F. Zwicky, Phys. Rev. 40, 63 (1932).

2 M. Siegbahn, Spektroskopie d. Rintgenstrahlen, 2d Ed., p. 60 (1931).

3 As pointed out by Siegbahn, in reference 2, we would have as an immediate effect that
Zwicky's explanation of the discrepancy between the values of the electronic charge obtained
respectively by direct measurement and by x-ray analysis would be rendered unsatisfactory.
(See F. Zwicky, Proc. Nat. Ac. 16, 211 (1930)). There is, however, at present some controversy
as to whether or not this discrepancy is significant.
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titative estimate of the effect of such structures upon the interference of
x-rays.t

Laue’s dynamic theory of x-ray interference® is directly applicable to
crystals having a very general type of secondary structure. In fact, the
formulae developed by Laue remain formally the same when his theory is
applied to crystals having such a structure; only the symbols involved must
be given a slightly different interpretation. In order to prove this proposition
we shall have to review briefly the physical background of Laue’s theory.

Laue’s theory in contradistinction to Ewald’s® earlier theory and Waller’s’
modification thereof, is based on the supposition that the negative electric
charges are distributed in an arbitrary manner over the entire lattice cell.
It contains Ewald’s theory as a special case when certain restrictions are
placed on a group of symbols whereby the concentration of the said chargesat
the lattice points is accomplished.

His theory owes its simplicity and elegance to the following ingenious
considerations.

First he shows that it is permissible to assume that for small displace-
ments the displacement of the negative charges at any point in the lattice
cell is proportional to the electric field strength at that point. The propor-
tionality factor is calculable in principle, but since it does not enter directly
into the theory, it is not necessary to go into the question as to how this factor
may be calculated.

Secondly, on account of the large masses with which the positive charges
are associated, these do not take any appreciable part in the scattering of the
x-rays. They may therefore be distributed in any manner whatsoever over
the lattice cell, provided we specify that they shall not be displaced by the
electric vector. The positive charges, in fact, may be distributed in such a
way that when there is no disturbing field they exactly neutralize everywhere
the negative charges. A field then produces in every point of space a polariza-
tion which is proportional to the field strength at that point. The magnitude
of the polarization is characterized by a proportionality factor varying from
point to point within the crystal. By thus distributing the positive charges
we therefore arrive at a fictitious body whose dielectric constant varies with
the coordinates. In the real body, with its positive charges concentrated in
the immediate neighborhood of the lattice points, the electromagnetic wave
field is exactly the same. The fact that the two bodies differ electrostatically
is of no consequence for our purpose.

In order to obtain the solution of the interference problem it is now only

4 Darwin, (See reference 15), has already calculated the effect of one type of imperfections
in crystals. The type of secondary structure which will be considered here, however, is essen-
tially different from Darwin’s imperfections.

5 M. v. Laue, Erg. d. ex. Naturwiss 10, 133 (1931).

6 P. P. Ewald, Series of papers starting with Ann. d. Physik 54, 519 (1917). The general
method embodied in Ewald’s and Laue's works is more convenient for our purpose than the
method employed by Darwin in a still earlier paper, C. G. Darwin, Phil. Mag. 27, 315, 675
(1914). :

7 J. Waller, Uppsala Universitets Aarsskrift (1925).
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necessary to solve Maxwell’s equations for a medium having a triply periodic
dielectric constant. In the case of the ideal crystal, as treated by Laue, the
periodicities of the dielectric constant, ¢, must conform with the periodicities
of the primary lattice of the crystal. In the case of the crystal having a
secondary structure, on the other hand, the periodicities of € must conform
with the periodicities of the secondary structure. The primary structure here
appears as a very prominent higher harmonic. Instead of representing e itself
as a triply periodic Fourier summation it is more convenient for the purpose
of calculation thus to represent the factor ¢ =1—1/¢ which determines the
polarization, D(1 —1/¢), D being the electric displacement vector of the elec-
tromagnetic field. If we understand by, (a\°, a:’, a;°) the primitive transla-
tions of the primary lattice, and by (b:°, by, bs’) the corresponding elemen-
tary vectors of the reciprocal lattice, we have for the ideal crystal:

1—1/e=y = D> Ymei®nD (1)

where

3
b = D meby"; j = 2r(— 1)1/,
a=1
My is an integer, and r is the independent variable radius vector measured
from an arbitrary lattice point.
From the definition,

b’ = [ai’ X a;°]/(a’a;*bi") (1a)

it follows immediately that each term in the series (1) is periodic with the
three periods (a:’ a,", a;°).

This is the starting point for Laue’s theory. For crystals having a second-
ary structure Eq. (1) must be slightly modified. Let the periodicities of the
secondary structure be (D,°, D,°, D;%. Let the corresponding reciprocal lat-
tice be defined by,

B, = [Dio X Djo]/(DiOD]’ODkO). (2>

The polarization factor® now must be represented as follows:
1—1/d =¢ = D pneiBnD (3)
where X
B, = Y m.B..
a=1

By the definition (2) we are assured that each term in the series (3) is periodic
with the three periods (D;% D% D).

8 This factor, as Laue points out, is akin to, and takes the place of the structure factor of
the elementary theory; but only in so far as the polarization is proportional to the density of
charge with a constant proportionality factor can it be said to be a measure of the distribution
of charge.
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Eq. (3) is formally the same as Eq. (1), the only differences being that
¢ and ¢, have replaced ¢ and ¥,,, and B, has replaced b,,. From this it fol-
lows that any subsequent formula that may be derived on the basis of Eq.
(3), in conjunction with Maxwell's questions, must be formally the same as
the corresponding one derived by Laue on the basis of Eq. (1), since any sub-
sequent development is of a purely mathematical nature. We can therefore
write immediately in the place of Laue’s fundamental Eqgs. (I):°

]lez — k2

ﬁ_[i o =
where D,, represents the electric displacement of the plane wave propagated
in the direction of K’ given by,

Km/ = KO + Bn (4')

and D, represents the component of D, perpendicular to K .. & is the re-
ciprocal of the vacuum wave-length.

When these conditions are fulfilled the solution of Maxwell's equations
for a medium having the dielectric constant specified in Eq. (3) is given by,

D = et Y D,emiEn' D
JC = eivt Z:}Cme_f(Km"r)

Dm = Z¢m—q®q[rn] (Il)

(5)

JC being the magnetic field strength.
Each member of this triple sum represents a plane wave propagated in
the direction of K.’ with the phase velocity

v =v/| K|

v being the frequency of the wave field which is assumed to be monochro-
matic. The index of refraction of the plane wave therefore is given by :

n=clv=—c|K.| /v (6)

It follows moreover from Maxwell’s equations that the electric vector
D,, is perpendicular to the vector K.’ as well as to 3C,,. Hereby the number of
unknowns, (components of D,, perpendicular to K..'), as well as the number
of algebraic equations in (I’) is reduced to 2N where N is the total number
of vectors D,,, in general infinity.

Now to solve the infinite set of linear, homogeneous Egs. (I’) in general,
not only is impracticable by the methods of existing mathematics but also
is useless, since as Laue points out, only a finite number of the plane waves
have an appreciable intensity. If, therefore, we follow the example set by
Laue and neglect all the vectors D,, except those that have an appreciable
absolute value, the fundamental Egs. (I’) reduce to a finite set of linear,
homogeneous equations which can be solved by ordinary methods. The
criterion by which this reduction is brought about is the same as that em-
ployed by Laue in the case of the ideal crystal, and for practical purposes is

9 See reference 5, p. 139.
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most easily obtained by geometrical considerations in the reciprocal space.
For a detailed account of the method, however, we shall refer to Laue’s
admirable paper.’ Here we shall only consider the changes brought about in
the reciprocal lattice by the introduction of the secondary structure. Al-
though the following assumption is not necessary, we shall for simplicity
assume that the secondary structure belongs to the same crystallographic
group as the primary structure. Then we have:

D = Mia; (i1 =1,2,3) (7

where

MlNMz’\/MgNM (73.)
are integral numbers all of the same order of magnitude. From Egs. (1a) and
(2) it then follows that,

B, = b;%Y/M; (8)

By this equation the relation between respectively the primary and the
secondary reciprocal lattice is determined.

Now in order to obtain a quantitative estimate of the effect of the second-
ary structure it is necessary first to derive the relative magnitudes of the
Fourier coefficients ¥, and ¢, appearing respectively in Egs. (1) and (3).
From the general theory it is known that the secondary structure must be
considered as a very slight modulation of the primary structure. In other

words,
"I/P > ¢1r

provided the triplet = (m;, m, m3) does not represent an integral multiple
of the triplet M =(M,, M,;, M;). In the latter case, that is when == Mq
= (1M1, ¢ M, q;M3), the exponential function by which ¢, is multiplied in
the summation (3) is the same as the exponential function by which ¢, is
multiplied in the summation (1), and we have,

Vo~¥p~ du,.

A closer estimate is possible by sacrificing some of the generality. That is,
if we exclude the type of secondary structure in which the individual blocks
are tilted with respect to each other, it is clear that the ratio ¢,/¥» must be
of the order of magnitude of the relative amplitude of deviation in lattice
constant from the primary value. This amplitude of deviation is given par-
ticularly on the basis of the one,!? but also on the basis of the other,' of the
two general types of secondary structure lately propounded in the literature,
as follows:

AJa~a/D~1/M.
Consequently the relative order of magnitude of the two Fourier coefficients
is given by, :

10 F. Zwicky, Helv. Phys. Acta 3, 287 (1930).
U F, Zwicky, Phys. Rev. 38, 1772 (1931).
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bx/Vp ~1/M; (m#= My (9)

where M usually is of the order of 50 or larger.

Egs. (8) and (9) in conjunction with the formulae derived by Laue enable
us to arrive at the desired estimates. The constructions in the reciprocal space
are the same as those employed by Laue except that a number of lattice
points are added in accordance with Eq. (8) as illustrated in Fig. 1.
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Fig. 1. Reciprocal lattice.

Associated with these additional lattice points are structure factors ¢,
which bear the relation (9) to the factors ¥» of the primary lattice points.

In the simplest possible case, that is when only one of the vectors D,,
namely Dy, has an appreciable absolute value, we obtain:

Dﬂ' = (¢1r/267r)DO[7"]
Dp = Wr/2ep)Dopy.

Therefore, when the quantities e, and ep are roughly the same,'? that is, when
the “propagation sphere” passes at roughly the same distance from the
secondary lattice point m as from the primary point p, and the geometrical
status of the two points is otherwise roughly the same, our theory yields,

DW/DP ~ ¢1r/‘//P
or by Eq. (9):
(D+/Dp)* ~ 1/ M?. (10)

For the order of magnitude of M which we have indicated this ratio is very
small. Nevertheless, when we consider the total or integrated energy scat-
tered by the secondary structure we may arrive at a very sizable figure since
the density of the secondary scattering centers in the reciprocal space is M?
greater than that of the primary scattering centers. For the ordinary experi-
mental setup, however, it is clear that this scattering from the secondary
structure could be manifested only as an apparently diffuse background of
radiation,

12 See reference 5, Eq. (14a).
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When more than one of the vectors D, have an appreciable absolute value
we can usually write down relations similar in context to Eq. (10). Only in
very particular cases do situations arise in which the plane wave created by
interference from the secondary scattering centers is comparable in intensity
with those produced under similar circumstances from the primary scattering
centers. In these cases, however, the solid angular regions over which this
intensity prevails is of the order 1/M? for the secondary interference beams
as compared with the primary ones. Therefore, again the experimental de-
tection of the secondary interference beams would be very difficult.

We shall consider one such case somewhat more in detail, namely the
practically very important Bragg reflection. This we shall do only in the
symmetrical case, that is when the reflecting planes are parallel to the surface
of the crystal. The more general case, where this condition is not fulfilled,
presents no principally greater difficulties, but neither does it add any es-
sentially novel features, so nothing is gained by its inclusion.

In the crystal of infinite thickness perpendicular to the reflecting planes
the secondary as well as the primary structure will give rise to total reflection
over certain angular regions. These angular regions are defined by the Egs.
ITTa and IVa derived by Laue,”® equations which we shall reproduce here:

Xm = x5 + Yo/sin 2xs (11)
Ax = 2(Yad—m)'/?/sin 2x5 (12)
where xz is the Bragg angle defined by the equation,
#n\ = 2d cos xp

Xm is the midpoint of the region of total reflection, and Ax is the width of this
region. In order to obtain the corresponding quantities for the reflection from
the secondary structure it is only necessary to substitute ¢, for ¥, and
D~ Md ford. It follows immediately that,

Ax/Axp ~| ¢ | /| ¥p| ~1/M. (13)

For a somewhat divergent beam of incident, the apparent intensities of re-
flection are proportional to these widths. Again the intensity of reflection
from the secondary structure is small compared with the intensity of re-
flection from the primary structure. Moreover, the interference maxima from
the two structures ordinarily do not overlap' since yp is of the order of
magnitude 10~¢ which hence is also the order of magnitude of the width
Axp, whereas the distance between neighboring midpoints of the interference
maxima is of the order A/2Md which is ordinarily very much larger than
10-%, This type of secondary structure consequently produces no apparent
widening of the primary lines, in contradistinction to the mosaic structure in-
troduced by Darwin'® to explain certain anomalies of x-ray reflection. Dar-

3 See reference 5, p. 157.

1 This is a point of considerable importance since otherwise it would be necessary to con-
sider not only two of the rays K:m’ simultaneously but three.

18 C. G. Darwin, Phil. Mag. 43, 800 (1922).



272 H. M. EVJEN

win’s type of mosaic structure is characterized by an angle of tilt between
the elementary blocks. Such a contingency has not been taken into account
in the present theory, and our results represent not a contradiction but rather
a complement to those of Darwin. Whereas such an angle of tilt is appar-
ently, in most cases, a necessary result of the energetic considerations which
led to the second type of secondary structure," the angle of tilt is not an ad-
junct of the secondary structure of the first kind.*” In other words, our theory
applies to the latter type of structure. Incidentally this was the type of
structure employed by Zwicky? to explain the discrepancy between the values
for the electronic charge obtained respectively by direct measurement and
by x-ray analysis. If this discrepancy should turn out to be significant,
Zwicky’s explanation consequently will remain consistent with the great
sharpness of the interference lines obtained from such crystals as calcite.

In spite of the weakness of the individual interference maxima arising
from the secondary structure the total or integrated intensity obtained from
this source when the crystal is turned through a certain finite angle may be
quite appreciable, since the number of secondary interference maxima by
the Bragg arrangement in general is M times greater than that of the primary
maxima. Again, however, this “secondarily” reflected radiation would be
manifested for experimental purposes, (with the employment of hard x-rays),
as a diffuse background. This would be particularly true when the secondary
structure is no longer ideal, but is degenerated into a mosaic structure, which
is to be expected unless the crystal is grown under very carefully controlled
conditions; for it is clear that the mosaic structure, in its effects, would bear a
somewhat analogous relation to the ideal secondary structure, as the ther-
mally agitated lattice, in its effects, bears to the ideal static one.

To complete the theory we shall consider briefly the effect of the finite
thickness of the crystal. Total reflection, strictly speaking, is only obtained
when the crystal is nonabsorbing and has an infinite thickness. When the
crystal has a finite thickness some of the energy in the angular regions de-
fined by Egs. (11) and (12) is transmitted through the crystal. The energy of
the transmitted beam drops off exponentially from the reflecting surface.
The rapidity with which the intensity drops off depends on the coefficient
in the exponent of the exponential factor. This coefficient, kx, which may be
called the extinction coefficient varies from zero at one extremity of the
angular region defined by Egs. (11) and (12) through a maximum and back
to zero at the other extremity. This maximum is given to a sufficiently close
approximation by Laue’s theory as follows:

Kmax = k(\bmd/—m)”z . (14)

From this it is seen that the extinction coefficient is of the order M times
greater for the primary interference beams than for the secondary ones. For
crystals of finite thickness, therefore, the efficiency of reflection from the
primary structure may be enormously greater than the efficiency of reflection
from the secondary structure. Thus the relative intensity of the secondary
interference beams is no longer given by the ratio 1/M; this ratio now must
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be multiplied by a factor containing exponential terms depending on the
thickness of the crystal, and this factor may be very small when the crystal is
thin although it reaches a value of unity asymptotically as the thickness is
increased. Incidentally these considerations show that the intensity of the
interference beams from the secondary structure must be reduced more by
absorption than the primary beams, since the former traverse more of the
crystal before they are reflected than the latter.

It should be noted that the present theory is only concerned with the
relative intensities of the interference maxima for x-rays of the same wave-
length. Nothing has been said about the absolute value of the Fourier co-
efficients involved, except in so far as they are known from measurements on
the primary interference beams. It is therefore quite conceivable that meas-
ureable interference maxima from the secondary structure will be obtained
when x-rays of sufficient softness to exclude the primary lines are employed.
In this case, moreover, it is doubtful whether or not Laue’s theory is applica-
ble since the boundary solution, (i.e., the interference pattern from the cross
grating forming the boundary of the crystal), might be expected to come
within the region of observables.



