Zhu, Ren-Yuan (2015) The Next Generation of Crystal Detectors. Journal of Physics: Conference Series, 587 (1). Art. No. 012055. ISSN 1742-6596. https://resolver.caltech.edu/CaltechAUTHORS:20130903-143227580
![]() |
PDF
- Published Version
Creative Commons Attribution. 2701Kb | |
|
PDF
- Submitted Version
See Usage Policy. 592Kb |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20130903-143227580
Abstract
Crystal detectors have been used widely in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being discovered and developed in academia and in industry. In high energy and nuclear physics experiments, total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals are known for their superb energy resolution and detection efficiency for photon and electron measurements [1]. A crystal ECAL is thus the choice for those experiments where precision measurements of photons and electrons are crucial for their physics missions. Examples are the Crystal Ball NaI(Tl) ECAL, the L3 BGO ECAL and the BaBar CsI(Tl) ECAL in lepton colliders, the kTeV CsI ECAL and the CMS PWO ECAL in hadron colliders and the Fermi CsI(Tl) ECAL in space. For future HEP experiments at the energy and intensity frontiers, however, the crystal detectors used in the above mentioned ECALs are either not bright and fast enough, or not radiation hard enough. Crystal detectors have also been proposed to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution by duel readout of both Cherenkov and scintillation light [2], where development of cost-effective crystal detectors is a crucial issue because of the huge crystal volume required [3]. This contribution discusses several R&D directions for the next generation of crystal detectors for future HEP experiments.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
ORCID: |
| ||||||||||||
Additional Information: | © 2015 IOP Publishing. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd. This work was supported in part by the US Department of Energy Grant DE-FG03-92-ER40701. | ||||||||||||
Funders: |
| ||||||||||||
Issue or Number: | 1 | ||||||||||||
Record Number: | CaltechAUTHORS:20130903-143227580 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20130903-143227580 | ||||||||||||
Official Citation: | The Next Generation of Crystal Detectors Ren-Yuan Zhu 2015 J. Phys.: Conf. Ser. 587 012055 | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 41066 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | Tony Diaz | ||||||||||||
Deposited On: | 16 Sep 2013 21:42 | ||||||||||||
Last Modified: | 09 Mar 2020 13:19 |
Repository Staff Only: item control page