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ABSTRACT
The Giant Metrewave Radio Telescope Epoch of Reionization experiment is an ongoing effort
to measure the power spectrum from neutral hydrogen at high redshift. We have previously
reported an upper limit of (70 mK)2 at wavenumbers of k ≈ 0.65 h Mpc−1 using a basic
piecewise-linear foreground subtraction. In this paper, we explore the use of a singular value
decomposition to remove foregrounds with fewer assumptions about the foreground structure.
Using this method, we also quantify, for the first time, the signal loss due to the foreground
filter and present new power spectra adjusted for this loss, providing a revised measurement
of a 2σ upper limit at (248 mK)2 for k = 0.50 h Mpc−1. While this revised limit is larger
than previously reported, we believe it to be more robust and still represents the best current
constraint on reionization at z ≈ 8.6.

Key words: intergalactic medium – cosmology: observations – diffuse radiation – radio lines:
general.

1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) began as the first stars ionized
the neutral hydrogen around them, and ended when that ioniza-
tion extended across most of the Hubble sphere. Furlanetto, Oh &
Briggs (2006b) provides a thorough review of the subject. Based on
the electron column density to the cosmic microwave background
(CMB) and under the assumption that reionization was instanta-
neous, Wilkinson Microwave Anisotropy Probe (WMAP) data sug-
gest it would have occurred at z = 10.4 (Komatsu et al. 2011).
Theoretical work, however, has generally suggested that reioniza-
tion was a patchy and extended process (Furlanetto, Zaldarriaga &
Hernquist 2004; McQuinn et al. 2007; Zahn et al. 2007; Friedrich
et al. 2011; Su et al. 2011; Griffen et al. 2013). Observations of
absorption lines in quasar spectra can be used to limit the fraction
of neutral hydrogen at high redshift (Gunn & Peterson 1965) and it

� E-mail: paciga@astro.utoronto.ca

is generally accepted that reionization was complete by a redshift of
z ≈ 6 (Becker et al. 2001; Djorgovski et al. 2001), though the actual
H I fraction may still have been quite high (McGreer, Mesinger &
Fan 2011; Schroeder, Mesinger & Haiman 2012). Using the global
21 cm signal as a function of redshift, Bowman & Rogers (2010)
have put a lower limit on the duration of the EoR of �z > 0.06,
while Zahn et al. (2012) have used measurements of the kinetic
Sunyaev–Zel’dovich effect with the South Pole Telescope to sug-
gest an upper limit on the transition from a neutral fraction of 0.99
to 0.20 of �z < 4.4.

The redshifted 21 cm H I spectral line can be used to trace the
patchy distribution of neutral hydrogen in the Universe before the
first luminous sources formed until the end of the EoR (Furlanetto
et al. 2006b). The distribution during the transition can be used to
constrain cosmological parameters (McQuinn et al. 2006; Cooray,
Li & Melchiorri 2008; Mao et al. 2008; Furlanetto et al. 2009;
Pandolfi et al. 2011) and deduce the nature of the first ionizing
sources themselves (Datta et al. 2012; Iliev et al. 2012; Kovetz &
Kamionkowski 2013; Majumdar, Bharadwaj & Choudhury 2012),
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including possible exotic reionization scenarios (e.g. Furlanetto, Oh
& Pierpaoli 2006a; Haiman 2011). Unfortunately the 21 cm signal is
many orders of magnitude less than foregrounds from Galactic and
extragalactic sources at the relevant frequencies (Oh & Mack 2003;
de Oliveira-Costa et al. 2008). These foregrounds are currently one
of the largest obstacles to detecting the 21 cm signal and several
schemes have been developed to address the problem (e.g. Petrovic
& Oh 2011; Liu & Tegmark 2011; Chapman et al. 2012; Parsons
et al. 2012b; Dillon, Liu & Tegmark 2013).

Several groups are making progress towards measuring the 21 cm
power spectrum. Bowman, Rogers & Hewitt (2008) estimated an up-
per limit to the contribution of H I to the redshifted 21 cm brightness
temperature of 450 mK. The Precision Array for Probing the Epoch
of Reionization (PAPER) has reported a limit of approximately 5 K
with a 310 mK noise level (Parsons et al. 2010). The Murchison
Widefield Array (MWA; Lonsdale et al. 2009) is expected to be
able to detect both the amplitude and slope of the power spectrum
with a signal-to-noise ratio >10 (Beardsley et al. 2013). Both PA-
PER and MWA have emphasized the importance of antenna layout
in maximizing sensitivity to the EoR signal (Parsons et al. 2012a;
Beardsley et al. 2013). The Low-Frequency Array (LOFAR) names
the EoR as one of its Key Science Projects (Harker et al. 2010;
Brentjens et al. 2011) and is currently being commissioned in the
Netherlands. Zaroubi et al. (2012) estimate that LOFAR will have
the potential to overcome the low signal to noise to directly image
the neutral hydrogen. Future generations of telescopes, in particular
the Square Kilometre Array, should be capable of direct imaging
(Carilli et al. 2004) but will not be in full operation for another
decade (Rawlings & Schilizzi 2011).

The GMRT-EoR experiment has been an ongoing effort using
the Giant Metrewave Radio Telescope (GMRT) in India (Swarup
et al. 1991; Ananthakrishnan 1995), which in contrast to other ex-
periments features large steerable antennas with a collecting area
comparable to LOFAR, and a relatively small field of view. In Paciga
et al. (2011), we reported an upper limit on the neutral hydrogen
power spectrum of (70 mK)2 at 2σ using a simple piecewise-linear
foreground filter. However, this limit did not account for any 21 cm
signal lost in the foreground filter itself. The purpose of the current
work is to quantify the potential signal loss, and to present these
results with a new singular value decomposition (SVD) foreground
filter.

This paper is organized as follows. In Section 2, we briefly de-
scribe the data and the preliminary data analysis. In Section 3, we
discuss the SVD foreground filter, followed by quantifying the sig-
nal loss it causes. Finally, we make an estimate of the full 3D power
spectrum in Section 4 and conclude in Section 5. When necessary
we will use the WMAP7 maximum likelihood parameters �M =
0.271, �� = 0.729 and H0 = 70.3 km s−1 Mpc−1 (Komatsu et al.
2011). All distances are in comoving units.

2 O B S E RVAT I O N S A N D DATA

The data analysed in this paper were taken over five nights in 2007
December and total about 40 h. The observations were centred on
PSR B0823+26, a pulsar about 30◦ off the Galactic plane, which is
used to calibrate both the phases and the ionosphere by dividing the
pulsar period into several gates and separating the on- and off-pulse
gates. The primary beam has a full width half-maximum (FWHM)
of 3.◦1 and a maximum angular resolution of about 20 arcsec. The
bandwidth covers a frequency range from 139.3 to 156.0 MHz in
64 frequency bins of 0.25 MHz each with a time resolution of 64 s.
This corresponds to a redshift range of z = 8.1–9.2. For more details

on the observations, including radio frequency interference (RFI)
removal strategies, see Paciga et al. (2011). The remainder of this
section outlines the differences in the data analysis compared to this
earlier work.

In addition to automated flagging of visibilities and the SVD
RFI removal pipeline for broad-band interference, we have also
added manual flagging of faulty antennas, timestamps and fre-
quency ranges that are exceptionally noisy or that visually appear
to have RFI left after the automated procedures. Approximately
15 per cent of the visibilities are flagged in this way, while the dy-
namic range, defined as the ratio of the peak flux of the calibration
source to the rms outside the primary beam, is improved by as much
as a factor of 4.

To improve the comparability of each of the five nights of observ-
ing, we limit each night to the same LST range, and have regridded
the visibilities in time such that each night shares the exact same
timestamps, equally spaced in one minute intervals. Additionally,
it is known that the flux of a pulsar can change significantly with
time, which creates another source of variability from night to night.
Since the visibilities are gated on the period of the pulsar, it can eas-
ily be subtracted from the data. These two changes reduce the rms
noise in the difference between pairs of days by a factor of 2 on
average.

Finally, the power spectrum is calculated from the cross-
correlation of pairs of nights in annuli of (u, v) space. This gives the
2D power perpendicular to the line of sight as a function of base-
line length |u| or equivalently multipole moment � = 2π|u|. At
the smallest |u|, a bin width equal to that of the primary beam (20
wavelengths) was used. At larger |u|, each bin width is increased by
60 per cent, to compensate for the decreasing density of visibilities.

It was found that outliers tended to skew the mean power in each
annulus. Since the median is much more robust to such outliers,
we calculate the power in each annulus (that is, at each angular
scale �) as the median value over all frequencies. The error in each
annulus is estimated as the median of the absolute deviations from
the median power, weighted by the noise. The final power spectrum
is the bootstrapped average of the power spectra over all 10 possible
cross-correlation pairs of the 5 nights.

The power can also be expressed in terms of the wavenumber
perpendicular to the line of sight, k⊥ ≈ (�/6608) h Mpc−1, which
becomes useful when discussing the 3D power. In the 2D case, we
will continue to use �. Since we do not yet include line-of-sight
information, this is the power as a function of � with fixed k‖ = 0,
which we denote P(�|k‖ = 0).

3 FO R E G RO U N D R E M OVA L

3.1 Singular value decomposition

Foreground removal techniques typically rely on the fact that the
foreground signal is expected to be much smoother in frequency
(that is, has fewer degrees of freedom) than the reionization sig-
nal, which decorrelates on the order of one to a few megahertz
(Bharadwaj & Ali 2005). Observations of foregrounds around
150 MHz with GMRT have shown that the fluctuations in fre-
quency are large enough to make polynomial fits insufficient to
model them (Ali, Bharadwaj & Chengalur 2008; Ghosh et al. 2012).
In this work, we instead use an SVD, which still isolates smooth
foreground modes but does not make a priori assumptions that
the foregrounds can be approximated with a particular function.
A similar technique has been used by Chang et al. (2010) and
Masui et al. (2013) to clean foregrounds for H I intensity mapping
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Figure 1. An example singular value spectrum for the three shortest base-
lines, each approximately 50–52 wavelengths at the zenith, with the largest
singular value normalized to 1 for each.

at z ≈ 0.8, where the relative dominance of foregrounds over the
21 cm signal is comparable to z ≈ 8.6. For reionization, Liu &
Tegmark (2012) have developed a framework for using SVD modes
of a frequency–frequency correlation matrix to clean foregrounds
at MWA.

We perform an SVD for each baseline individually on the vis-
ibilities arranged in a matrix by time and frequency. The num-
ber of modes is limited by the 64 frequency channels. Fig. 1
shows the singular values for the shortest baselines. The spectra
of values on a given baseline is generally consistent from day
to day, but occasionally there are large jumps in both amplitude
and rate of decline with mode number, which are likely due to
either RFI or calibration errors. In these cases, the noise on the
baseline also becomes much larger, such that in the final cal-
culation of the power spectrum their contribution is significantly
down-weighted.

A sky image using 8 h of data from a single night is shown
in Fig. 2, compared with the same data after the first eight SVD

modes, shown in Fig. 3, are removed. The overall flux is reduced
substantially after only a few modes are removed. While the sources
in the centre of the field are removed quite well, the dominant
residuals are the point sources near the edge of the beam. This is
generically true of any foreground subtraction used on this data
set, as was also seen in Paciga et al. (2011). This is most likely
due to beam edge effects, the worst residuals being close to the
first null where the frequency dependence of the beam pattern is
most significant. Though there are sophisticated schemes that may
be able to model point sources while minimizing the impact on
the 21 cm signal (e.g. Datta, Bowman & Carilli 2010; Bernardi
et al. 2011; Trott, Wayth & Tingay 2012), at the angular scales
we are interested in for this work (� � 2000) the point sources are
confusion limited and contribute in the same way as the diffuse
background.

Each night goes through the SVD foreground removal separately,
and then the cross-correlations are used to arrive at a power spectrum
using the method described in Section 2. The spectra for several
numbers of SVD modes removed are shown in Fig. 4.

3.2 Quantifying signal loss

A general problem with any foreground removal strategy is that it is
impossible to completely separate the foregrounds from the signal,
such that the foreground removal will likely remove some signal
as well. Early work by Nityananda (2010) used a simple model of
an SVD applied to a single visibility matrix to show that the signal
loss could be calculated analytically. Our method of using an SVD
for each baseline independently is more complex, and we wish to
estimate the signal loss directly from the data itself. To quantify
the signal loss, we aim to find the transfer function between the
observed power PSVD(�) and the real 21 cm power P21cm(�). Since
the real power is unknown, we use a simulated signal as a proxy.
This is added to the data before the foreground subtraction and the
resulting power spectrum after subtraction is compared to the input
signal.

Figure 2. Sky image before and after an SVD foreground subtraction, for the night of 2007 December 10, using baselines up to 4 km. The colour scales are
in units of Janskys and the black circle shows the full width half-maximum (FWHM) of the primary beam. The rms before any foreground removal (left) is
50 mJy. After removing eight SVD modes (right) the peak goes from 1.6 mJy to 39 mJy with an rms of 2 mJy. Residual point sources can still be seen around
the edge of the beam while those within about one degree of the centre are effectively removed.
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Figure 3. Sky images of the top eight SVD modes identified in the data from 2007 December 10, with all other modes set to zero. These modes are the ones
subtracted between the two sky images in Fig. 2. The colour scales are in units of Janskys.

Figure 4. Power spectra before and after SVD mode removal. The blue
line shows before any modes are removed. The green, red, cyan, and purple
lines are for 4, 8, 16 and 32 modes removed, respectively. The error bars are
from a bootstrap analysis of all cross-correlated pairs from the five nights of
data. The solid yellow line represents the theoretical signal from Jelić et al.
(2008).

The simulated signal we use is a Gaussian random field with
a matter overdensity power spectrum from CAMB1 scaled to z =
8.6 using the linear-regime growth from z = 1.5, and with the
amplitude calibrated to be similar to the expected 21 cm signal
from EoR assuming that the spin temperature is much greater than
the CMB temperature. Fig. 5 is an image of the simulated signal as
it would be seen by GMRT in the absence of any foregrounds or
noise. The effect of the beam profile on the power spectrum is less
than 3 per cent for scales in the range 40 < � < 2000, and so has a
relatively small effect on the result.

Given a data set x which is the sum of the observed data and
a simulated signal, the transfer function T(x → F(x); �) measures
how much of the signal survives in the foreground filtered data set
F(x) as a function of �. While F(x) can stand in for any filter method
applied to the visibilities x, for the SVD we must also specify
that the modes removed are those calculated from the visibilities

1 Code for Anisotropies in the Microwave Background; http://camb.info.

Figure 5. An image of the simulated signal as seen with GMRT in the
absence of foregrounds or noise, using the same baselines and field of view
as Figs 2 and 3. The colour scale is in units of mJy. The solid circle represents
the FWHM of the primary beam.

x themselves. While the transfer function measures the signal loss
for a single set of data, the power is measured from the cross-
correlations of those data sets, so the relationship can be written
as

PSVD(�) = T (x → F (x); �)2P21cm(�). (1)

Unless it is necessary to be explicit about the mapping T is measur-
ing, we will shorten this notation to simply T(�).

There are numerous ways one can estimate this function. The
most direct way is to cross-correlate F(x) with the injected signal,
and normalize by the autopower of that same signal. This is written
as

T0(�) = F (data + signal) × signal

signal × signal
. (2)

In the ideal case where F(x) removes foregrounds perfectly this will
equal exactly 1.0. While conceptually simple, and used successfully
by Masui et al. (2013) for data at z ≈ 0.8, we find this estimator
of the transfer function to be exceptionally noisy for realistic cases
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where F(x) leaves residual foregrounds. In the case of the SVD,
we would expect the function to become less noisy as more modes
are removed and the residual foregrounds decrease, but we are still
significantly limited in being able to measure the power.

An alternative is to subtract the original visibilities, under the
same foreground filter, from the combined real and simulated visi-
bilities before cross-correlating with the simulated signal. To distin-
guish it from the previous one, we denote this version of the transfer
function T1, which takes the form

T1(�) = [F (data + signal) − F (data)] × signal

signal × signal
. (3)

In addition to being much less noisy when residual foregrounds
are present, this has the benefit that by subtracting the original
data we remove the possibility of the real 21 cm signal in the data
correlating with the simulated signal and biasing the result. If F(x)
left the signal untouched, this would in principle be equal to 1.0.
However, deviations are possible even when F(x) = x. This is due
to the fact that the cross-correlations with real data in the numerator
introduces RFI masks, noise and day-to-day variations which are
not present in the pure signal in the denominator. Thus, the transfer
function will also correct for these effects, which enter at a level of
a few per cent.

We carry out this process of estimating T(�), averaging over 100
realizations of the simulated signal, after which both the mean and
the standard deviation are well determined, and the error in the
mean is small enough that it will not contribute significantly to the
corrected power spectra later. Fig. 6 shows T1 for a selection of
SVD filters. While the transfer function in principle can depend
non-linearly on the amplitude of the input signal, we find that the
result does not change significantly within a factor of 10 of realistic
signal temperatures. In the regimes where the transfer function does
begin to depend on the input temperature, the two are anticorrelated;
larger signals are more readily misidentified as foregrounds by the
SVD, leading to a small value of T(�).

The transfer function can be used to determine the best number
of modes to remove, since as more modes are removed more of the
21 cm signal will be reduced to a point where the additional correc-
tion to the signal outweighs the gain from reducing the foregrounds.

Figure 6. Transfer function T1 with 4 (green), 8 (red), 16 (cyan) and 32
(purple) SVD modes removed, showing the fraction of the 21 cm signal that
we estimate survives the SVD foreground removal. With only four modes
removed, most of the 21 cm signal is expected to survive. However, when
32 modes are removed, about 20 per cent or less survives, depending on the
angular scale.

Figure 7. The T1-corrected power spectra after SVD foreground removal.
The colours represent 4 (green), 8 (red), 16 (cyan) and 32 (purple) SVD
modes removed. The dotted lines show the uncorrected power spectra as in
Fig. 4, while the solid lines show the power spectra after correcting for the
transfer function. For 32 modes removed, at low �, the corrected power is
larger than that for only 16 modes removed. As in Fig. 4, the solid yellow
line represents the theoretical signal from Jelić et al. (2008).

Fig. 7 shows that correcting for the transfer function after 32 modes
are removed gives a weaker limit on the power than only removing
16 modes.

4 3 D POW ER SPECTRUM

4.1 Line-of-sight power

The power calculated from annuli in visibility space only measures
the 2D power perpendicular to the line of sight (that is, as a function
of the multipole moment � or wavenumber k⊥). To find the full 3D
power, we must also look at the line-of-sight, or frequency, direction
and measure power as a function of k‖. While certain forms of
foreground filters will have a window function that naturally selects
a k‖, the SVD filter does not have a well-defined behaviour along
the line of sight. The gives us the flexibility of selecting the window
function.

Hermite functions, having the benefit of zero mean and a simple
Fourier transform, are well suited to select a range of k‖. In frequency
space, we define a window

h(ν) = 1√
8πζ

(
1 − ν2

ζ 2

)
exp

(
1 − ν2

2ζ 2

)
, (4)

where ζ is a parameter analogous to the standard deviation of a
Gaussian distribution, which in this case specifies the location of
the zeros. This is shown in Fig. 8 for several ζ compared to the
frequency bin size. This window has the Fourier transform

h̃(k‖) = (k‖rζ )2

2
exp

[
1 − (k‖rζ )2

2

]
. (5)

We have used the conversion factor r ≈ 11.6 h−1 Mpc MHz−1 such
that k‖ is in units of h Mpc−1. The normalization has been chosen
such that the maximum of h̃(k‖) is 1, thus preserving power. This
peak in Fourier space, shown in the inset of Fig. 8, occurs when
k‖ = √

2/(rζ ) and determines the k‖ at which most power survives
the Hermite window. Larger ζ sample smaller k‖, with the range of
possible values limited by the frequency resolution and bandwidth.
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Figure 8. Hermite window in frequency space. Four examples are shown
with different values of ζ increasing from left to right, with arbitrary hori-
zontal offset. Bars indicate the value of the window in each frequency bin.
In practice, ζ should not be smaller than the frequency resolution, limiting
the k‖ available. The inset plot shows the Fourier transform.

4.2 Three approaches to the transfer function

By applying a Hermite window to the data, we can calculate the 2D
power spectrum at a fixed k‖. There is some complication, however,
in how we can use a transfer function to correct for possible signal
loss. The Hermite filter by design reduces power on most scales
while leaving power only at a specific k‖, and we want the transfer
function to only adjust for signal lost at the same k‖. Ideally, one
would apply the Hermite filter first to isolate the input power at the
scales of interest and run the foreground filters on that data. If H(x)
represents the data set with a Hermite window applied, this would
measure T(H(x) → F(H(x)); �). Unfortunately, the SVD actually
depends strongly on information in the k‖ direction, which means
that F(H(x)) may have a much different effect on the power at the
chosen length-scale than F(x). That is to say, the Hermite and SVD
operations do not commute.

There are several possible approaches to get around this, which
are as follows.

(i) Assume that the transfer function is not strongly dependent
on k‖, and use T(x → F(x); �) from the k‖ = 0 case independent of
the k‖ selected by the Hermite window. We call this the ‘SVD-only’
approach. The k‖ behaviour only enters in through calculation of the
power spectra after the Hermite window. Any important behaviour
of the SVD in the k‖ direction will not be captured.

(ii) We can calculate a transfer function for the signal loss due to
the total effect of both the Hermite window and the SVD, T(x →
H(F(x)); �), and correct for both. We can then use an analytical form
for the transfer function of the Hermite window alone to reintroduce
the scale window and keep only the power at our selected k‖. We
call this the ‘full Hermite’ approach.

To find its analytical form, we start with the fact that the transfer
function associated with the Hermite window measures the ratio of
the windowed power to the full power,

T 2
H (k⊥) =

∫
P (k⊥, k‖)|h̃(k‖)|2dk‖∫

P (k⊥, k‖)dk‖
. (6)

If we assume the power spectrum has the form

P (k‖) ∝ 1

k‖2 + k⊥2 , (7)

both the numerator and denominator of this can be evaluated ana-
lytically. The result is

T 2
H (k⊥) = e2rζk⊥

8
√

π

(
1 − 2r2ζ 2k⊥2

+ 2
√

πr3ζ 3k⊥3er2ζ 2k⊥2
erfc[rζk⊥]

)
(8)

where erfc[x] = 1 − erf[x] is the complimentary error function.
Requiring the most steps, this method has more avenues to introduce
errors or biases.

(iii) Apply the Hermite window first to the simulated signal.
When added to the full data and passed through the SVD foreground
removal, the larger amplitude of the foregrounds present in the
data ensures that the SVD still has data at all k‖ to operate on.
However, since there is only a simulated signal at a specific k‖,
the cross-correlation with the simulated signal when calculating the
transfer function T(data + H(signal) → F(data + H(signal)); �)
only measures the effect of the SVD on that k‖. We call this the
‘semi-Hermite’ approach. This assumes that the SVD as applied to
the k‖-limited simulated signal is a suitable proxy for how the SVD
affects the real signal, given that both the real signal and the k‖-
limited simulated signal are of significantly lower amplitude than
the foregrounds.

Fig. 9 shows a typical power spectrum for a particular choice of
SVD filter, transfer function and k‖, without any correction and the
resulting spectra after each of the above approaches. Differences
in each approach illustrate the difficulty in finding an unbiased
estimator that gives a robust result.

We find that in both the full Hermite and semi-Hermite methods
there is a k‖ dependence which is not captured by the SVD-only
method, which is constant with k‖ by definition. All three methods
show deviations from unity of the order of a few per cent with zero
SVD modes removed due to the additional effects from RFI mask-
ing, noise and the beam that are captured by the transfer function. It

Figure 9. An example power spectrum at ζ = 0.25 MHz (k‖ =
0.49 h Mpc−1) with 16 SVD modes removed (blue line), with the effect
of each type of transfer function correction for T1 shown. The green line
corrects for both the Hermite window and the SVD subtraction, while the
red line reintroduces the Hermite window, which agrees quite well with the
semi-Hermite correction (cyan). The purple line uses the SVD-only transfer
function. Error bars are from include contributions from the transfer func-
tion and the bootstrap error from the raw power spectra. In this example, the
three approaches agree quite well, though they can diverge by an order of
magnitude for other selections of mode subtraction and k‖.
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New limits on H I power spectrum from GMRT 645

Figure 10. Power spectra as a function of both k⊥ and k‖ corrected with T1 calculated using the semi-Hermite approach. The topmost plot shows the entire
k⊥ range without any foreground removal. The four smaller plots show 0, 4, 8 and 16 SVD modes removed on the same colour scale for only the lowest few
k⊥ bins. The colour scales are in units of log (K2). Compared to the case with 0 modes removed, the SVD tends to reduce the overall power by one to three
orders of magnitude. See also Fig. 11, which shows the power as a function of the total k.

is notable, however, that the ‘full Hermite’ approach finds T1 deviat-
ing from 1 by tens of per cent in some regimes, especially at low k⊥.
This is likely indicative of a mismatch between the amount of power
being removed by the combination of SVD and Hermite filters and
the amount modelled by the analytic form. This suggests that in
areas of (k⊥, k‖) space where T1 > 1, this method may overestimate
the amount of signal present, in turn underestimating the 21 cm
power by failing to fully correct for the signal loss. Nonetheless,
the full and semi-Hermite approaches agree much better with more
SVD modes removed. Since the semi-Hermite approach seems to
capture both the k‖ dependence and is relatively well behaved with
0 < T1 < 1, we use it as the canonical transfer function.

4.3 Sampling (k⊥, k‖) space to get P(k)

Using the Hermite window to select a fixed k‖ allows us to calculate
P(�|k‖) and the associated transfer function at that k‖. By repeating
this for a series of k‖, we can build up the full 3D power spectrum.

Fig. 10 shows the power as a function of both k⊥ and k‖ using
the semi-Hermite correction, given a series of different SVD mode
subtractions. The power shows a pattern of lower values towards
low k⊥ and high k‖. Fig. 11 shows the same measurements as a
function of the 3D wavenumber k=

√
k⊥2+k‖2. Though the SVD is

our primary mode of foreground removal, the Hermite function
itself acts as a foreground filter removing the large-scale struc-
ture in frequency space. This is reflected in the points where zero
SVD modes have been removed. It is clear that our ability to re-
move foregrounds drops off quickly above about k ≈ 0.5 h Mpc−1.
Our best limit at 2σ is (248 mK)2, achieved at (k⊥, k‖) = (0.11,
0.49) h Mpc−1, or a total k of 0.50 h Mpc−1, with four SVD modes
removed. At this point, the semi-Hermite value of the transfer func-
tion was T1 = 0.74, meaning that an estimated 26 per cent of signal
was removed by the SVD mode subtraction and Hermite window
operating on each day in the cross-correlations. If instead 16 modes
are removed, the limit changes to (319 mK)2 but 55 per cent of the
signal is lost. Any residual foregrounds, though reduced by a much
larger fraction than the signal, will also have been boosted by this

 at C
alifornia Institute of T

echnology on Septem
ber 5, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


646 G. Paciga et al.

Figure 11. Power as a function of the total wavenumber k =
√

k⊥2 + k‖2. Each point represents a different (k⊥, k‖) pair; there is no binning in k. Colours
indicate the number of SVD modes removed; 0 (blue), 4 (green), 8 (red), 16 (cyan) and 32 (purple) are shown. The boxed region at k ≈ 0.5 is shown inset,
with nearby points each of the three marked k spread out slightly for clarity. The best limit at 2σ is (248 mK)2 at 0.50 h Mpc−1 achieved with four SVD modes
removed. The solid line shows the predicted 3D power spectrum from Iliev et al. (2008) assuming a 30 mK signal.

correction, making this measurement an upper limit on the actual
21 cm signal.

5 C O N C L U S I O N

Using an SVD as a foreground removal technique and a simulated
signal to quantify the loss of a real 21 cm signal the SVD may
cause, we have calculated an upper limit to the H I power spectrum
at z = 8.6 of (248 mK)2 at k = 0.50 h Mpc−1. The k⊥ component
was found using the median power in annuli of the (u, v) plane,
while a Hermite window was used to sample the k‖ direction. This
is in contrast to our previous work with a piecewise-linear filter
which operated only in the frequency direction and carried with it
an implicit k‖ window.

This limit is dependent on the method one chooses to calculate
the transfer function between the real 21 cm signal and the observed
power. Both the k⊥ and k‖ behaviour of the foreground filter chosen
needs to be taken into account. While the semi-Hermite method
chosen uses a simulated signal with power in a limited k‖ window,
and may miss interactions between the SVD filter and the signal
over larger k‖ bands, we believe it to give the most reliable estimate
of the transfer function and a suitably conservative estimate on the
final upper limit.

Had we instead used the full Hermite approach described, this
limit would have been (260 mK)2. That this second approach gives a
similar value suggests that this limit is a fairly robust one. The differ-

ence can likely be attributed in part to the simplifying assumptions
necessary when deriving the analytical Hermite windowing func-
tion. We also consider the current result to be more robust than that
reported previously in Paciga et al. (2011). While the previous limit
was considerably lower, this can be accounted for by many factors;
the different k scale, the change in foreground filter, several minor
changes in the analysis pipeline detailed in Section 2 and most sig-
nificantly the fact that this is the first time a transfer function has
been used to correct for signal lost in the foreground filter. Without
such a correction, our best upper limits with the SVD foreground
filter may have been incorrectly reported as low as (50 mK)2.

This limit still compares favourably to others established in the
literature which are of the order of several Kelvin (e.g. Bebbington
1986; Ali et al. 2008; Parsons et al. 2010). Recently, after submission
of our paper, PAPER (Parsons et al. 2013) claimed an upper limit
of (52 mK)2 at k = 0.11 h Mpc−1 and z = 7.7. However, it is
not documented whether signal loss from their primary foreground
filtering step (their section 3.4) has been accounted for and so it is
not clear how to compare their result to ours. LOFAR has begun
publishing initial results from reionization observations, but have
so far focused on much longer scales (� ≈ 7500) (Yatawatta et al.
2013).

In Paciga et al. (2011), we considered a model with a cold inter-
galactic medium (IGM), a neutral fraction of 0.5 and fully ionized
bubbles with uniform radii. In such a model, this current limit
would constrain the brightness temperature of the neutral IGM to
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be at least 540 mK in absorption against the CMB. However, a
value of the H I power spectrum of (248 mK)2 is almost an order
of magnitude higher than what is generally considered physically
plausible in most reionization models. In particular, this result does
not constrain reionization models with a warm IGM where the spin
temperature is much greater than the CMB temperature.

The SVD procedure could be refined further by a baseline-by-
baseline accounting of the optimal number of modes to subtract
or by limiting the field of view on the sky to the innermost area
of the beam where point source residuals are minimal, although it
is not obvious what effect this would have on the signal at small
angular scales. Making a measurement at larger � would require a
more careful treatment of point sources but is also limited by the
fact that the SVD is less effective for longer baselines. Regardless
of the foreground removal technique used, it is likely that accu-
rately correcting for the any resulting loss of the 21 cm signal, and
disentangling the 21 cm signal from any residual foregrounds, will
remain a significant challenge in measuring the true EoR power
spectrum.
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