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ABSTRACT
Experiments on an externally forced free shear layer are performed which study the origin of three-dimensional structures
and chaos in shear flows. Transition routes between the laminar two-dimensional stages of shear flows and their final

complex three-dimensional stages are examined. Two avenues of investigation are pursued. First, the general idea of a

multi-frequency route to chaos is examined which treats the shear flow as an open dynamical system. An attempt is
made to apply concepts from nonlinear dynamics to these systems. Secondly, a new approach to generating three-
dimensional structures in shear flows which involves the creation of a spatial shear in the frequency of external
perturbations is presented. In these experiments, a variety of vortex reconnection behaviors is observed at the

discontinuity.

INTRODUCTION

The problem of transition from laminar to turbulent regimes in shear flows continues to play a central role in
research aimed at improving aerodynamic characteristics of fluid mechanical systems. Despite the success of linear
theories in revealing the nature of the initial stages of instabilities, there remains a deep gap in understanding the
connection between the non-linear stages of these two-dimensional waves and the development of the complicated three-
dimensional phenomenon of turbulence. The heart of the problem is an understanding of the origin of secondary and
higher instabilities which will ultimately result in the generation of turbulent spots in boundary layers or streamwise
longitudinal vortical structures in mixing layers.

Two directions have been seen in previous investigations that attempt to relate the non-linear stages of the

initial instabilities to the three-dimensional turbulent structures. The first concerns the development of finite amplitude
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oscillations (natural or externally forced) and involves linear or weakly non-linear, single frequency disturbances. The
second approach concems the understanding of the causes of spanwise modulation of waves shear flows.
Along the lines of the first direction of research, attempts have been made to explain the transition from

laminar to turbulent flow in terms of ideas from the relatively new field of nonlinear dynamics. In particular, the concept

* Copyright © 1989 by K. Williams-Stuber and M. Gharib. Published by the American Institute of Aeronautics and
Astronautics, Inc. with permission
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of chaos has been studied extensively. Chaotic systems have the interesting property that they produce essentially
unpredictable behavior even though the governing equations of motion are deterministic. Such is the case for the
phenomenon of turbulence which could be considered to be the ultimate form of chaos.

Many examples of chaotic behavior have been observed in fluid mechanical systems whose governing
equations (the Navier-Stokes equations) are nonlinear due to the presence of the advection terms. The most extensive
documentation of chaotic behavior in hydrodynamic systems exists for two experimems": Rayleigh-Bénard convection
and Taylor-Couette flow which are examples of fully bounded (closed) flows. Closed flows are identified by the fact that
a particle in the flow retains a history of its location in the system over all cycles of motion. In an open system (e.g., a
water tunnel or channel), the particles are redistributed after each cycle. The location of a particle in one cycle is
completely uncorrelated with its position in the next cycle. In other words, the velocity profile at the entrance to the
open system test section is relatively uninfluenced by downstream events. In addition, closed systems contain
significantly less background noise than open systems.

Early studies of chaos in open flows focused on the wake of a thin cylinder>*4. More recently, in a series of
fully controllable experiments on the wake of a thin airfoil’, we have shown that the interaction of multiple frequencies
can lead to chaotic behavior which plays a role in the transition to turbulence.

The second approach to the transition problem focuses on the development of ﬂlree-dimensional structures in
shear flows. The majority of shear layer studies in this area have used passive means to generate three-dimensional
structuresS-8. Of the studies that involve active forcing techniques, the primary control parameter is the phase variation
of a disturbance across the span of a model%-10,

In recent work on the wake behind a vibrating wire, Gharibet al. 11 showed that large scale structures can be
generated as a result of a nonuniformity of vortex shedding frequency along the span of the wire. It is conjectured that
the frequency variation along the span is the main contributor to cell structure in the wake of a cone!2.

The research described in this paper involves the introduction of perturbations to a two-stream mixing layer
(also referred to as "shear layer™) to gain a better understanding of the transition process. The strip heater technique with
various configurations for the strips are used to generate the perturbations. The paper will be divided in two parts. Part
I examines the general idea of a multi-frequency transition route to chaos which treats the shear flow as a an open
dynamical system. Part II examines a new approach in generating three-dimensional structures in mixing layers which
focuses on the effect of a discontinuity in the vortex roll-up frequency along the span of the mixing layer.

EXPERIMENTAL PROCEDURES
The experiments were performed in the UCSD department of Applied Mechanics & Engineering Sciences water
tunnel. The water tunnel has an 8 foot long test section with a 10" square cross section. To create the mixing layer, a

splitter plate was mounted at the entrance to the test section. A velocity ratio of 2.6 was obtained using this technique.

** For an extensive list of references on these flows, see Gollub & Benson! and Swinney2.
2.
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Perturbations (waves) are introduced to the splitter plate boundary layers through the use of the strip heater
technique!3 (fig. 1). The waves are amplified by the boundary layers and introduced to the shear flow. Due to the
quadratic joule heating effect, each frequency must be input on a separate strip. Thus, to introduce several frequencies to
the system simultaneously, multiple independent strip heaters were used. In order to create a discontinuity in frequency

* across the span of the mixing layer for part II, strip heaters were mounted side by side along the span of the splitter plate

(fig. 2).
Flow velocities were measured with a laser Doppler anemometer. The Reynolds number based on the shear

layer thickness was approximately 1000 for most cases.

SHEAR FLOW RESPONSE
When forcing a system, it is necessary to establish the range of frequencies which will be amplified by the
system. Figure 3 shows the response amplitude of a forced frequency (fp ) as measured in the shear layer. The most
amplified frequency is close to the natural vortex roll-up frequency. In addition, the response of the subharmonic (fp /2)
and the second harmonic (2fp ) of the forcing frequency are plotted. When forced at fp away from the natural frequency,
responses at either fp /2 or 2fp were observed if the sub- (or second) harmonic was near the natural frequency (fig.4). It
was observed that the flow locks to the forcing frequency over a range of frequencies near the most amplified ﬁ'equemy.

DISCUSSION AND RESULTS - PART |
THREE FREQUENCY ROUTE TO CHAOS

In the case of single frequency forcing, the main parameters varied were the amplitude and frequency of forcing.
By fixing one of the parameters (e.g. the amplitude) , the effect of the second parameter was determined by sweeping it
over a range of values. This type of procedure led to the results of receptivity and locking ranges. With the addition of
more frequencies, the behavior of the system becomes increasingly complex as the frequencies interact. A sampling of
behaviors observed in the shear layer is presented here. For each case, the autocorrelation function and the power
spectrum associated with a representative time series is presented.

Before examining any forced cases, it should be noted that the natural frequency (= 4.4 Hz) in the unforced flow
is relatively broadband (fig.5). In order to avoid any complications associated with the broadband nature of the natural
frequency, the natural frequency was forced at a relatively low level resulting in a clean peak. The best example of an
ordered flow (fig. 6) is one which is forced at a single frequency near the natural roll-up frequency (4.2 Hz). The power
spectrum exhibits sharp peaks at the forcing frequency and its second harmonic. The autocorrelation is a sine function.
This 'locked’ case is much more uniform than the natural case. The interaction of two strong frequencies (f; = 4.075
Hz, f> = 4.4 Hz) in the shear flow results in a quasiperiodic behavior as indicated by the presence of sum and difference
interactions in the power spectrum, and by the strong modulation of the autocorrelation function (fig. 7). With the

. addition of a third frequency (f3 = 5.0 Hz - fig. 8), the flow exhibits the randomness associated with chaotic motion.

The background noise level in the power spectrum is an order of magnitude higher than the noise level of the locked

- case. The autocorrelation function shows no distinct periodicity. It is relatively uncorrelated. The changes in the

3-
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autocorrelation functions and power spectra for the shear layer cases suggest Ruelle-Takens-Newhouse14 route to chaos
scenario and are consistent with behavior of the wake studies of Williams-Stuber and Gharib’. It was more difficult to
obtain a strong chaotic case in the shear layer compared to the wake. This is attributed to the existence of only one sign
of vorticity in the shear layer. It is most likely that the shear layer is better able to adjust itself to the presence of three

frequencies.

THE NONLINEAR DYNAMICAL ANALYSIS

Using the power spectrum as a primary diagnostic, it would appear that the three frequency cases behave
chaotically. However, due to the lack of phase information from the power spectrum, further diagnostics from the field
of nonlinear dynamics must be applied to the data. For this survey, a presentation of only the phase space
reconstruction will be considered.

Phase Space Reconstruction, The first step in analyzing experimental data obtained from a dynamical system
is to construct the phase space of the system. Given a time series of a single quantity, U (¢ ) , (in the current
experiment, the x - component of velocity), a reconstruction of the phase space can be obtained by using a time delay
techniquel415. The phase portraits (phase space reconcructions) for the natural (unforced) flows and the locked and
chaotic cases for the shear layer are presented in figures 9 o 11. In the transition from natural to iocked flow
(figs. 9 to 10), the organizing of the phase portrait is evident. Random noise is suppressed in the locked case as was
seen previously in the power spectrum. The locked portrait resembles a thin cord or torus. In contrast, the chaotic
phase portrait (fig. 11) resembles tangled balls of yarn rather than thin ribbons.

It should be noted that additional forms of the phase portrait can be considered if additional components of
velocity are measured. For the flows studied, the transition in phase portraits was consistent regardless of the velocity
component used for the reconstruction. An example of the phase space reconstruction using the shear stress u v ' for
the locked and chaotic flows are shown in figure 12. The jaggedness of the lines is due to poor resolution in the A/D

conversion of the v component of velocity.

ELUID DYNAMICS OF A CHAOTIC SHEAR FLOW

As part of a more traditional fluid mechanics analysis, the mean and rms (\[77) velocity profiles of the
locked and chaotic flows are presented in figure 13. The locked case is indicated by a solid line, the chaotic case by the
symbols. Relatively little change is seen between the locked and chaotic mean profiles . The shear layer rms profiles
are both double peaked which indicates a later stage of transition in the flow relative to the natural flow (not shown).
The shear stress (ﬁ_’ ) profile and the mean cross stream velocity (V ) profiles for the locked and chaotic shear
layers are presented in figure 14. The mean V profile shows a change in the entrainment for the locked case. The
chaotic case is similar to the natural profile. The difference in the shear stress profiles profiles is due to the fact that the
locked flow is at a later stage of transition. Again, the chaotic profile is similar to the natural profile.

K.Williams-Stuber, M.Gharib - AIAA-89-1021
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DISCUSSION AND RESULTS -PART II
THREE DIMENSIONAL STRUCTURES

At this time, only preliminary results are available for the study of the origin of three-dimensional structures in
shear flows. The results presented here are power spectra and flow visualization results. The power spectra were
measured at the point of discontinuity between the strips along the span at a distance of 3” from the trailing edge of the
splitter plate.

When the flow is forced with the same frequency (4.0 Hz) on both strips, the power spectrum (fig. 15) shows
strong peaks at the forcing frequency and its second harmonic. In essence, the flow is locked’ to the forcing frequency.
When the flow is forced at two different frequencies along the span (4.0 Hz and 4.4 Hz), the power spectrum (fig. 16)
shows peaks at the forcing frequencies as well as at linear combinations of the forcing frequencies. This behavior in the
power spectrum is typical of quasi-periodic behavior.

Flow visualization along the span of the shear flow was achieved by using a cavity type dye injection system.
The visualizations presented here is taken from a videotape which will be shown at the conference. When the flow is
forced with a single frequency along, uniform vortex lines are observed (fig. 17). When the ratio of forcing frequencies
is 2:3, a simple branching structure is seen (fig. 18). As the ratio of forcing frequencies approaches 1:1, the vortex

reconnection becomes more complex (fig. 19).

CONCLUSION
This study has explore the response of free shear flows (wakes and mixing layers) to multi-frequency forcing.
In the presence of three frequencies, the flows exhibit chaotic behavior. It is interesting to note that even though the
inputs to the system are known (three distinct waves), the "controlled” system behaves randomly. In addition, the
generation of three-dimensional structures in shear flows as a result of frequency variation along the span of the flow is
presented. It is noted that these results are presented as a "work in progress.”
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Figure 16 - Power spectrum of shear layer forced with two frequencies (4.0Hz
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