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STUDY OF THE ORIGIN OF THREE DIMENSIONAL STRUCTURES AND CHAOS IN AN 
EXTERNALLY FORCED FREE SHEAR LAYER* 

K. ~illiams-~tubert & M. Gharib 

Department of Applied Mechanics and Engineering Sciences 
University of Califomia, San Diego 

La Jolla, CA 92093 

ABSTRACT 
Experiments on an externally farced fk shear layer are performed which study the origin of three-dimensional structures 

and chaos in shear flows. Transition routes between the laminar two-dimensional stages of shear flows and their final 

complex three-dimensional stages are examined. Two avenues of investigation are pursued. First, the general idea of a 

multi-frequency route to chaos is examined which treats the shear flow as an open dynarnical system. An attempt is 

made to apply concepts from nonlinear dynamics to these systems. Secondly, a new approach to generating three- 

dimensional structures in shear flows which involves the creation of a spatial shear in the frequency of external 

perturbations is presented. In these experiments, a variety of vortex reconnection behaviors is observed at the 

discontinuity. - 
The problem of transition from laminar to turbulent regimes in shear flows continues to play a central role in 

research aimed at improving aerodynamic characteristics of fluid mechanical systems. Despite the success of linear 

theories in revealing the nature of the initial stages of instabilities, there remains a deep gap in understanding the 

connection between the non-linear stages of these two-dimensional waves and the development of the complicated three- 

dimensional phenomenon of turbulence. The heart of the problem is an understanding of the origin of secondary and 

higher instabilities which will ultimately result in the generation of turbulent spots in boundary layers or streamwise 

longitudinal vortical structures in mixing layers. 

Two directions have been seen in previous investigations that attempt to relate the non-linear stages of the 

initial instabilities to the three-dimensional turbulent structures. The first concerns the development of finite amplitude 

oscillations (natural or externally forced) and involves linear or weakly non-linear, single frequency disturbances. The 

second approach concern the understanding of the causes of spanwise modularion of waves shear flows. 

Along the lines of the first direction of research, attempts have been made to explain the transition from 

laminar to turbulent flow in terms of ideas from the relatively new field of nonlinear dynamics. In particular, the concept 

* Copyright G9 1989 by K. Williams-Stuber and M. Gharib. Published by the American Institute of Aeronautics and 
Astronautics, Inc. with permission 
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of chaos has been studied extensively. Chaotic systems have the interesting property that they produce essentially 

unpredictable behavior even though the governing equations of motion are deterministic. Such is the case for the 

phenomenon of turbulence which could be considered to be the ultimate form of chaos. 

Many examples of chaotic behavior have been obsened in fluid mechanical systems whose governing 

equations (the Navier-Stokes equations) are nonlinear due to the presence of the advection terms. The most extensive 

documentation of chaotic behavior in hydrodynamic systems exists for two experiments**: Rayleigh-Bbnard convection 

and TaylorCouette flow which are examples of fully bounded (closed) flows. Closed flows are identified by the fact that 

a particle in the flow retains a history of its location in the system over all cycles of motion. In an open system (e.g., a 

water tunnel or channel), the particles are redistributed after each cycle. The location of a particle in one cycle is 

completely uncorrelated with its position in the next cycle. In other words, the velocity proftle at the entrance to the 

open system test section is relatively uninfluenced by downstream events. In addition, closed systems contain 

significantly less backgmund noise than open systems. 

Early studies of chaos in open flows focused on the wake of a thin cylinder3v4. More recently, in a series of 

fully controllable experiments on the wake of a thin airfoil5, we have shown that the interaction of multiple frequencies 

can lead to chaotic behavior which plays a role in the transition to turbulence. 

The second approach to the transition problem focuses on the development of three-dimensional structures in 

shear flows. The majority of shear layer studies in this area have used passive means to generate three-dimensional 

str~ctures~-~. Of the studies that involve active forcing techniques, the primary control parameter is the phase variation 

of a disturbance across the span of a m o ~ l e l ~ ~ ~ ~ .  

In recent work on the wake behind a vibrating wire, Gharibet al. showed that large scale structures can be 

generated as a result of a nonuniformity of vortex shedding frequency along the span of the wire. It is conjectured that 

the frequency variation along the span is the main contributor to cell structure in the wake of a cone12. 

The research described in this paper involves the inaoduction of perturbations to a two-stream mixing layer 

(also referred to as "shear layer") to gain a better understanding of the transition process. The strip heater technique with 

various configurations for the strips are used to generate the perturbations. The paper will be divided in two parts. Part 

I examines the general idea of a multi-frequency transition route to chaos which treats the shear flow as a an open 

dynarnical system. Part II examines a new approach in generating three-dimensional structures in mixing layers which 

focuses on the effect of a discontinuity in the vortex roll-up frequency along the span of the mixing layer. 

The experiments were performed in the UCSD department of Applied Mechanics & Engineering Sciences water 

tunnel. The water tunnel has an 8 foot long test section with a 10" square cross section. To create the mixing layer, a 

splittet plate was mounted at the entrance to the test section. A velocity ratio of 2.6 was obtained using this technique. 

** For an extensive list of references on these flows, see Gollub & ~ensonl and swinney2. 
-2- 
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Perturbations (waves) are introduced to the splitter plate boundary layers through the use of the strip heater 

technique13 (fig. 1). The waves are amplified by the boundary layers and introduced to the shear flow. Due to the 

quadratic joule heating effect, each frequency must be input on a sep;rrate ship. Thus, to introduce several fresuencies to 

the system simultaneously, multiple independent strip heaters were used. In order to create a discontinuity in !kquency 

across the span of the mixing layer for part II, strip heaters were mounted side by side along the span of the splitter plate 

(fig. 2). 

Flow velocities were measured with a laser Doppler anemometer. The Reynolds number based on the shear 

layer thickness was approximately 1000 for most cases. - 
When forcing a system, it is necessary to establish the range of frequencies which will be amplified by the 

system. Figure 3 shows the response amplitude of a forced frequency (f0 ) as measured in the shear layer. The most 

amplified frequency is close to the natural vortex roll-up frequency. In addition, the response of the subharmonic (f0 /2) 

and the second h o n k  (a ) of the forcing frequency are plotted. When forced at fo away &om the natural fkequency, 

responses at either fo /2 or 2fO were obsemed if the sub- (or second) harmonic was near the natural frequency (fig.4). It 

was observed that the flow locks to the forcing frequency over a range of bequencies near the most a m ~ l ~ e d .  frequency. 

s - P m  

In the case of single frequency forcing, the main parameters varied were the amplitude and frequency of forcing. 

By fixing me of the parameters (e.g. the amplitude) , the effect of the second parameter was determined by sweeping it 

over a range of values. This type of procedure led to the results of receptivity and locking ranges. With the addition of 

more frequencies, the behavior of the system becomes increasingly complex as the frequencies interact. A sampling of 

behaviors observed in the shear layer is presented here. For each case, the autocorrelation function and the power 

spectrum associated with a representative time series is presented. 

Before examining any forced cases, it should be noted that the nanual frequency (1 4.4 Hz) in the unforced flow 

is relatively broadband (fig.5). In ordex to avoid any complications associated with the broadband nature of the natural 

frequency, the natural frequency was forced at a relatively low level resulting in a clean peak. The best example of an 

ordered flow (fig. 6) is one which is f d  at a single frequency near the natural roll-up frequency (4.2 Hz). The power 

spectrum exhibits sharp peaks at the forcing frequency and its second harmonic. The autocorrelation is a sine function. 

This locked' case is much more uniform than the natural case. The interaction of two strong frequencies Cfi = 4.075 

Hz, f2 = 4.4 Hz) in the shear flow results in a quasiperiodic behavior as indicated by the presence of sum and difference 

interactions in the power spectrum, and by the strong modulation of the autocorrelation function (fig. 7). With the 

addition of a third frequency Vj = 5.0 Hz - fig. 8). the flow exhibits the randomness associated with chaotic motion. 

The background noise level in the power spectrum is an order of magnitude higher than the noise level of the locked 

case. The autocorrelation function shows no distinct periodicity. It is relatively uncorrelated. The changes in the 
-3- 

K.Williams-Stuber, M.Gharib - AIM-89-1021 

D
ow

nl
oa

de
d 

by
 B

en
ja

m
in

 P
er

ez
 o

n 
Se

pt
em

be
r 

20
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.1
98

9-
10

21
 



autocormlation functions and power spectra for the shear layer cases suggest ~uelle-~akens-~ewhousel~ route to chaos 

scenario and a consistent with behavior of the wake studies of Williams-Stuber and  har rib^. It was more difficult to 

obtain a strong chaotic case in the shear layer compared to the wake. This is attributed to the existence of only one sign 

of vorticity in the shear layer. It is most likely that the shear laya is better able to adjust itself to the presence of three 

tiquencies. 

NON&&&m Dm- 

Using the power spectrum as a primary diagnostic, it would appear that the three frequency cases behave 

chaotically. However, due to the lack of phase information fram the power specown. further diagnostics from the field 

of nonlinear dynamics must be applied to the data. For this swey,  a presentation of only the phase space 

monstruction will be considered 
Phase The f m  step in analyzing experimental data obtained from a dynamical system 

is to construct the phase space of the system. Given a time series of a single quantity, U (t ) , (in the clarent 

experiment, the x - component of velocity), a reconstruction of the phase space can be obtained by using a time delay 

technique14*15. The phase portraits (phase space reconcructions) for the natural (unforced) flows and the locked and 

chaotic cases for the shear layer are presented in figures 9 to 11. In the transition from natural to locked flow 

(figs. 9 to 10). the organizing of the phase portrait is evident. Random noise is suppressed in the locked case as was 

seen previously in the power spectrum. The locked portrait resembles a thin cord or torus. In contrast, the chaotic 

phase portrait (fig. 11) resembles tangled balls of yarn rather than thin ribbons. 

It should be noted that additional forms of the phase portrait can be considered if additional components of 

velocity are measured. For the flows studied, the transition in phase portraits was consistent regardless of the velocity 

component used for the reconstruction. An example of the phase space reconstruction using the shear stress u ' v  ' for 

the locked and chaotic flows are shown in figure 12. The jaggedness of the lines is due to poor resolution in the A/D 

conversion of the v component of velocity. 

ELm D Y N M C S  OF A CHAOTICSHEAR lxOW 

As part of a more rraditional fluid mechanics analysis. the mean and rms (I'u) velocity profiles of the 

locked and chaotic flows are presented in figure 13. The locked case is indicated by a solid line, the chaotic case by the 

symbols. Relatively little change is seen between the locked and chaotic mean profiles . The shear layer rms profiles 

are both double peaked which indicates a later stage of transition in the flow relative to the natural flow (not shown). 

The shear stress (u 'v  ' ) profile and the mean cross stream velocity (V ) profiles for the locked and chaotic shear 

layers are presented in figure 14. The mean V profile shows a change in the entrainment for the locked case. The 

chaotic case is similar to the naturai profile. The difference in the shear stre.ss profdes profiles is due to the fact that the 

locked flow is at a later stage of transition. Again, the chaotic profile is similar to the natural profile. 
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At this time, only preliminaay results are available for the study of the origin of three-dimensional structures in 

shear flows. The rcsults presented here are power spectra and flow visualization results. The power spectra were 

measured at the point of discontinuity between the strips along the span at a distance of 3" from the trailing edge of the 

splitter plate. 

When the flow is forced with the same frequency (4.0 Hz) on both strips, the power spectrum (fig. 15) shows 

strong peaks at the forcing frequency and its second harmonic. In essence, the flow is locked' to the forcing frequency. 

When the flow is forced at two different frequencies along the span (4.0 Hz and 4.4 Hz), the power spectrum (fig. 16) 

shows peaks at the forcing frequencies as well as at linear combinations of the forcing frequencies. This behavior in the 

power spectnun is typical of quasi-periodic behavior. 

Flow visualization along the span of the shear flow was achieved by using a cavity type dye injection system. 

The visualizations presented here is taken from a videotape which will be shown at the conference. When the flow is 

forced with a single frequency along, unifonn vortex lines are 0bse~ed (fig. 17). When the ratio of forcing 6'equencies 

is 2:3, a simple branching structure is seen (fig. 18). As the ratio of forcing frequencies approaches 1:1, the vortex 

nxo~ection becomes more complex (fig. 19). 

i22uusm 
This study has explore the response of free shear flows (wakes and mixing layers) to multi-frequency forcing. 

In the presence of three frequencies, the flows exhibit chaotic behavior. It is interesting to note that even though the 

inputs to the system are known (three distinct waves), the "controlled" system behaves randomly. In addition, the 

generation of three-dimensional structures in shear flows as a result of frequency variation along the span of the flow is 

1 presented. It is noted that these results are presented as a "work in progress." 

I 'Ihe work presented here was sponsored by AFOSR under contract number AFOSR-87-0330. 
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Figure 1 - Strip heater technique for forcing shear flows 
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Figure 2 - Smp heater configuration for CEadng a spatial variation of frequency across the 
mixing layer 

Figure 3 - Shear layer response to external Figure 4 - Shear layer frequency response 
forcing diagram 

Figure 5 - Power s p e c m  for the natural mixing layer 
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AUTO C O R R l  AUTO CORRI 
150 I I I 1 1 '  m i l  I " I /  I 

m  l 1 1 I I I I 1 I I I 
0 . 0  Sec 20.0 

POWER SPEC1 
1 . 0  1 

Figure 6 - Autocmlation function and 
power spectrum for the locked mixing layer 

I 

- 150 
m  ,, 

0 .0  Sec 20 .0  

POWER SPEC1 
1.01 I; 

Figure 7 - Autocmlation function and 
power spectrum for the quasiperiodic mixing 

layer 

AUTO CORRl 
150 1 I I I 

m  l I 1 1 I I  1 I 1 I I 
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POWER SPEC1 
1 .o 

I I 

Figure 8 - Autocornlation function and power 
spectrum for the chaotic mixing layer 
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Figure 9 - Phase portrait for the natural 
shear layer 

Figure 10 - Phase portrait for the locked 
shear layer 

-5 - 

-6 - 

-'-j .k -; L -; h -0 o i 4 
2( Ct ) 

Figure 1 1 - Phase portrait for the chaotic shear layer 
25 20 

(8) 

Figure 12 - Phase portraits for shear layer using u ' v  ' ( t  for the reconstruction 
(A) Locked (B) Chaotic 
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Figure 15 - Power spectrum of shear layer forced with a single fiequency (4.0 Hz) 
across its span 

POWER SPEC1 

l a  O [ T  

Ma9 

rms 
v2 

1. 0 
P 

Fxd 0 Hz 20 
Figure 16 - Power spectrum of shear layer forced with two frequencies (4.0 Hz 

and 4.4 Hz) across its span 
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Flow 
A 

Figure 17 - Flow visualization and schematic of natural flow 

A 3 
Flow = P 
2 

Figure 18 - Flow visualization and schematic of flow forced with two frequencies in a 
ratio of 2 : 3 

A D C D E 
Flow 
2 

Figure 19 - Flow visualization and schematic of flow forced with two frequencies in a 
ratio of approximately 1 : 1 
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