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Abstract

The existence of three generations of neutrinos and their mass mixing are the deep mysteries of

our universe. The history of neutrino physics can be traced back to Majorana’s elegant work on a

real solution of the Dirac equation – known as the Majorana fermion. A cutting-edge step towards

understanding the nature of neutrino has been taken by the experimental discovery of neutrino

mass mixing during the past decade, which indicates neutrino has a small but non-vanishing mass.

A natural way to explain the origin of this small mass is the so-called seesaw mechanism, which

requires the neutrino to be a Majorana fermion. Recently, Majorana’s spirit returns in modern

condensed matter physics – in the context of Majorana zero modes in certain classes of topological

superconductors(TSCs). In this paper, we attempt to investigate the topological nature of the

neutrino by establishing a connection between the Majorana fermion and Majorana zero modes –

assuming a relativistic Majorana fermion is made up of four Majorana zero modes. We begin with

an exactly solvable 1D condensed matter model which realizes a T 2 = −1 time reversal symmetry

protected TSC. We show that the pair of Majorana zero modes on each end will realize a T 4 = −1

representation of the time reversal symmetry and carry 1/4 spin. We find that a pair of Majorana

zero modes can realize a P 4 = −1 parity symmetry as well and even a nontrivial C
4

= −1 charge

conjugation symmetry. The CPT symmetries for a Majorana fermion made up of four Majorana

modes form a super algebra. We then generalize the CPT super algebra into quantum field theory

and point out that the nontrivial charge conjugation symmetry can be promoted to a Z2 gauge

symmetry, whose spontaneously breaking leads to the origin of the (right-handed) neutrino mass.

The Z2 gauge symmetry indicates the existence of the fifth force in our universe, which is possible

to be detected in future LHC experiment. Finally, we show that the origin of three generations

of neutrinos can be naturally explained as three distinguishable ways to form a pair of complex

fermions(a particle and an anti-particle) out of four Majorana zero modes, characterized by the

T 4 = −1, (TP )4 = −1 and (TC)4 = −1 fractionalized symmetries that particles/anti-particles

carry. Together with the Z2 gauge (minimal coupling) principle, we are able to determine the mass

mixing matrix with no fitting parameter at leading order(in the absence of the CP violation and

charged lepton contribution). We obtain θ12 = 31.7◦, θ23 = 45◦ and θ13 = 0◦(known as the golden

ratio pattern), which are intrinsically close to the current experimental results. We further predict

an exact mass ratio for the three mass eigenstates with m1/m3 = m2/m3 = 3/
√

5.
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I. INTRODUCTION

In a summer night, when looking at the starry sky and thinking about the origin of our

beautiful universe, we may not even notice that we are surrounded by billions of neutrinos.

The neutrino, first discovered in 1956[1] and named as the ”ghost particle”, has extremely

weak interactions with other matters, and it is one of the big mysteries to us and has a deep

relationship with the physics of early universe.

The theoretical perspective of neutrino physics can be traced back to Ettore Majorana’s

elegant work[2] on a real solution to the Dirac equation – known as the Majorana fermion.

Unfortunately, for over a century, we have found that all the fundamental particles have their

own anti-particles and therefore are described by Dirac fermions. However, the neutrino is

still possible to be a Majorana fermion because it does not carry electric charge. In the

Standard Model(SM), the neutrino is described by a left-handed chiral Weyl fermion with

zero rest mass[3], but it is not clear whether the neutrino is a Dirac fermion or a Majorana

fermion. The smoking gun experiment that might be able to distinguish these two cases is

the so-called neutrinoless double-β decay, unfortunately, such experimental evidence is still

missing so far[4–7].

A cutting-edge step towards understanding this big puzzle has been taken by the neutrino

oscillation experiments during the past decade[8–18]. These experiments have confirmed that

the neutrino has a nonzero mass, at energy scale of 0.1eV . This big discovery starts to shake

the foundation of modern particle physics, which is built on the well tested SM. So far, it is

the first and the only new physics beyond the SM that has been observed experimentally.

The biggest challenges of the puzzles are: (1)Where does the neutrino mass come from?

(2)Why there are three generations of neutrinos[19]? (3)Where do those mystery mixing

angles come from? An elegant way to explain the origin of neutrino mass is to introduce a

sterile right-handed neutrino that does not carry any electric-weak charge, and through the

so called seesaw mechanism[20–22] – by introducing a heavy Majorana mass for the right-

handed sterile neutrino, a small mass for the left-handed light neutrino can be induced.

Apparently, the seesaw mechanism requires the neutrino to be a Majorana fermion, however

the rest two puzzles have not been solved in a natural way so far.

On the other hand, after almost 80 years since Majorana’s disappearance, his spirit re-

turns in modern condensed matter physics [23] – in the context of Majorana zero modes in
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certain classes of topological superconductors(TSCs)[24, 25]. Searching for Majorana zero

modes has become a fascinating subject both theoretically[26–30]and experimentally. Very

recently, experimental evidences for the existence of Majorana zero modes in 1D have been

observed in superconductor/semiconductor nanowire devices[31–33] based on an elegant the-

oretical proposal[34, 35]. Nevertheless, despite the similarity in mathematical structure, Ma-

jorana modes have nothing to do with the Majorana fermion in the SM from a traditional

perspective.

In this paper, we attempt to investigate the topological nature of neutrinos by establishing

a connection between a Majorana fermion and Majorana zero modes – assuming a relativistic

Majorana fermion is made up of four Majorana zero modes. We begin with an exactly

solvable 1D condensed matter model which realizes a T 2 = −1 time reversal symmetry

protected TSC and show that the pair of Majorana zero modes on its ends realize a T 4 = −1

representation of time reversal symmetry and carry 1/4 spin. We then show that such kind

of fractionalized representation for a pair of Majorana zero modes can be generalized into a

P 4 = −1 parity symmetry and a C
4

= −1 nontrivial charge conjugation symmetry as well.

These fractionalized CPT symmetries allow us to define a CPT super algebra for a Majorana

fermion made up of four Majorana modes. Furthermore, we find that the nontrivial charge

conjugation symmetry C changes the sign of the mass term.(It is well known that the

usual charge conjugation symmetry has a trivial action on a Majorana fermion.) Therefore,

under the assumption that the nontrivial charge conjugation symmetry is indeed a Z2 guage

symmetry, the origin of the (right-handed) neutrino mass can be explained by spontaneous

gauge symmetry breaking through the Anderson-Higgs mechanism[36].

These new concepts can even explain the origin of three generations of neutrinos, as

there are three inequivalent ways to form a pair of complex fermions(a particle and an anti-

particle) out of four Majorana zero modes, characterized by the T 4 = −1, (TP )4 = −1

and (TC)4 = −1 fractionalized symmetries that the particles/anti-particles carry. Together

with the Z2 gauge (minimal coupling) principle, we are able to derive the neutrino mass

mixing matrix with no fitting parameters within leading order(LO) approximation(without

CP violation and charged lepton contributions). The obtained mixing angles are consistent

with the golden ratio(GR) pattern that has been proposed phemomelogically[37–40], which

is intrinsically close to the current experimental observations. However, our mass mixing

matrix has an enhanced symmetry compared to the standard GR pattern with a Z2 ⊗ Z2
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Klein symmetry. We find that there are three Z2 symmetry generators U, S,R in our theory,

satisfying an interesting algebra with U2 = S2 = R2 = 1 and US = SU,UR = RU, SR =

−URS. Within the LO approximation, the left-handed light neutrinos have an inverted

hierarchy structure and satisfy a special mass ratio relation m1 = m2 = 3√
5
m3. Based on

the current experimental data for ∆m2
23, we obtain m1 = m2 ' 0.075eV and m3 ' 0.054eV .

Since within LO approximation ∆m2
12 = 0 and θ13 = 0, the experimentally observed small

mass splitting ∆m2
12 and nonzero θ13 are purely contributed by the CP violation physics and

we expect an interesting relation |∆m12/∆m23| ∼ θ13/θ23. Our prediction of (approximated)

neutrino masses is also consistent with the cosmological bound on neutrino masses, where

m1 +m2 +m3 < 0.3eV [41].

The paper is organized as follows: In section II, we begin with a 1D TSC protected by the

T 2 = −1 symmetry and show why a pair of Majorana zero modes on each end must carry a

T 4 = −1 symmetry. Then we discuss the concepts of 1/4 spin for a Majorana spinon and the

vacuum polarization physics. In section III, we first discuss how to realize Majorana zero

modes in higher dimensions, then we show that a relativistic dispersion and an SU(2) spin

can emerge at quantum criticality with proliferated Majorana zero modes. In section IV, we

propose a P 4 = −1 parity symmetry, a C
4

= −1 nontrivial charge conjugation symmetry for

a pair of Majorana zero modes and show that the CPT symmetries for a Majorana fermion

made up of four Majorana zero modes form a super algebra. In section V, we generalize

the CPT super algebra into the relativistic quantum field theory and discuss the origin of

(right-handed) neutrino mass. In section VI, we give a simple explanation of the origin of

three generations of neutrinos and show how to use quantum field theory to describe the

three generations of neutrinos. In section VII, we derive the neutrino mass mixing matrix

with no fitting parameters. Then we analyze the symmetry of mass mixing matrix and

discuss the CP violation physics. Finally, we summarize the new concepts proposed in this

paper and discuss other possible new physics along this line of thinking.
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FIG. 1: (color online)A 1D topological superconductor protected by the T 2 = −1 time rever-

sal symmetry can be constructed by two copies of Kitaev’s Majorana chains with opposite spin

species. We note that each physical site consists of four Majorana modes, or two Majorana spinons.

The dangling Majorana spinons on both ends become zero modes protected by the time reversal

symmetry.

II. THE T 4 = −1 TIME REVERSAL SYMMETRY FOR MAJORANA ZERO

MODES

A. 1D Majorana chain with T 2 = −1 time reversal symmetry

To begin, we consider a 1D topological superconductor protected by the time reversal sym-

metry T 2 = −1, which realizes a special symmetry protected topological(SPT) phases[42] in

1D. Literally, such a 1D TSC has been originally proposed in a 1D free fermion system with

a T 2 = −1 symmetry(the DIII class)[43, 44]. The simplest model that realizes such a 1D

topological superconductor is just two copies of Kitaev’s Majorana chains[24] with opposite

spin species, as seen in Fig.1, described by the following Hamiltonian:

H =
N∑
i=1

∑
σ

iσγ′i,σγi+1,σ, (1)

The Majorana operators γi,σ and γ′i,σ satisfy:

{γi,σ, γ′i′,σ′} = 0; {γi,σ, γi′,σ′} = 2δii′δσσ′ (2)
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In terms of the complex fermion operators:

ci,↑ =
1

2
(γi,↑ + iγ′i,↑); ci,↓ =

1

2
(γi,↓ − iγ′i,↓) (3)

We can rewrite the above Hamiltonian as:

H =
N∑
i=1

∑
σ

(
ci,σ − c†i,σ

)(
ci+1,σ + c†i+1,σ

)
(4)

Under the time reversal symmetry, the bulk complex fermion operators transform as usual:

TiT−1 = −i; Tci,↑T
−1 = −ci,↓; Tci,↓T

−1 = ci,↑

Tc†i,↑T
−1 = −c†i,↓; Tc†i,↓T

−1 = c†i,↑, (5)

According to Eq.(3), it is clear that Majorana spinons (γi,↑, γi,↓) and (γ′i,↑, γ
′
i,↓) on a single

site should transform in the same way:

TiT−1 = −i; Tγi,↑T
−1 = −γi,↓; Tγi,↓T

−1 = γi,↑

TiT−1 = −i; Tγ′i,↑T
−1 = −γ′i,↓; Tγ′i,↓T

−1 = γ′i,↑ (6)

Although the model Hamiltonian Eq.(1) is very simple, it describes a nontrivial time

reversal symmetry protected TSC, characterized by topological zero modes and the sym-

metry fractionalization on its ends. On the other hand, Eq.(1) also describes a fixed point

Hamiltonian with zero correlation length, therefore all its nontrivial topological properties

could be applied to generic models describing the same SPT phase.

As seen in Fig. 1, a pair of dangling Majorana modes with opposite spins( γ↑ ≡ γ1,↑, γ↓ ≡

γ1,↓ for left end and γ′↑ ≡ γ′N,↑, γ
′
↓ ≡ γ′N,↓ for right end) form a Majorana spinon on each end,

and Eq.(6) implies that the fermion mass term iγ↑γ↓(iγ
′
↑γ
′
↓) changes sign under the time

reversal. Thus, the pair of Majorana modes are stable against T -preserving interactions and

the Hamiltonian Eq.(1) describes a time reversal symmetry protected TSC. Recent progress

on the classification of 1D SPT phases[45, 46] further pointed out that the edge Majorana

modes indeed carry the T 4 = −1 projective representation of time reversal symmetry, rather

than the usual T 2 = −1 representation. A simple reason why we need such a T 4 = −1

representation can be explained as following: If we assume a Majorana spinon carries the

same T 2 = −1 representation as Kramers doublets, the total time reversal symmetry action

on a single physical site will carry a T 2 = 1 representation as it contains two Majorana
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spinons. Therefore, a T 2 = −1 representation for the complex spinon on a single physical

site prohibits the same T 2 = −1 representation for a Majorana spinon.

To understand the origin of the T 4 = −1 representation, we need to investigate the precise

meaning of T 2 = −1 time reversal symmetry for interacting fermion systems. Indeed, the

local Hilbert space on a single site for the above T 2 = −1 TSC is a Fock-space which

involves both fermion parity odd states c†i,↑|0〉, c
†
i,↓|0〉 and parity even states |0〉, c†i,↑c

†
i,↓|0〉.

It is clear that the fermion parity odd basis carries a projective representation of time

reversal symmetry T 2 = −1 while the fermion parity even basis carries a linear representation

T 2 = 1. As a result, the time reversal symmetry group for interacting fermion systems has

been extended over the Z2 fermion parity symmetry group {I, Pf}, and the total symmetry

group should consist of four group elements {I, T, T 2, T 3} with T 4 = 1, which is a Z4 group.

We note that the Z2 fermion parity symmetry can not be broken in local interacting fermion

systems, hence such a group extension can not be avoided. Since 1D SPT phases are classified

by the projective representation of the corresponding symmetry group[45, 46], the Majorana

spinon (γ↑, γ↓) and (γ′↑, γ
′
↓) on both ends must carry the projective representation of the bulk

Z4 antiunitary symmetry with T 4 = 1, which leads to the T 4 = −1 representation.

Possible experimental realization of such an interesting TSC has been proposed by several

groups recently[47–50]. In the following, we show how to write down an explicit time reversal

operator to realize the fractionalized T 4 = −1 symmetry for a Majorana spinon.

B. T 4 = −1 time reversal symmetry

For the pair of Majorana zero modes γ↑ and γ↓ on the left end, let us define the anti-

unitary operator T by T = UK, where U is a unitary operator:

U =
1√
2

(1 + γ↑γ↓) = e
π
4
γ↑γ↓ (7)

Since (γ↑γ↓)
† = γ↓γ↑ = −γ↑γ↓, we have:

U † =
1√
2

(1− γ↑γ↓) = e−
π
4
γ↑γ↓ (8)

It is straightforward to verify that U is a unitary operator:

UU † =
1

2
(1 + γ↑γ↓)(1− γ↑γ↓) = 1 (9)
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Furthermore, this new definition of time reversal operator gives rise to the correct transfor-

mation law for γ↑ and γ↓:

Tγ↑T
−1 =

1

2
(1 + γ↑γ↓)γ↑(1− γ↑γ↓) = −γ↓

Tγ↓T
−1 =

1

2
(1 + γ↑γ↓)γ↓(1− γ↑γ↓) = γ↑, (10)

However, we notice that T 2 = γ↑γ↓ 6= −1 and satisfies:

T 4 = (γ↑γ↓)
2 = −1 (11)

We call the two Majorana modes that carry the above T 4 = −1 representation as Majorana

doublets, which can be viewed as a square rooted representation of the usual Kramers

doublets. With such a definition of time reversal symmetry operator for a pair of Majorana

modes, the symmetry protected nature becomes manifested, since a T 4 = −1 projective

representation can not be destroyed by time reversal preserving local interactions.

Similarly, for the pair of Majorana zero modes γ′↑, γ
′
↓ on the right end, T can be defined

by T = U ′K with:

U ′ =
1√
2

(1 + γ′↑γ
′
↓) = e

π
4
γ′↑γ

′
↓ (12)

The above definition of T 4 = −1 time reversal operators on both ends can be applied to

any physical site i which contains two Majorana spinons (γi,↑, γi,↓) and (γ′i,↑, γ
′
i,↓). The total

time reversal action is defined by T = Ui ⊗ U ′iK with Ui = e
π
4
γi,↑γi,↓ and U ′i = e

π
4
γ′i,↑γ

′
i↓ . We

have:

T 2 = γi,↑γi,↓γ
′
i,↑γ
′
i,↓ = P f

i = P f
i,LP

f
i,R (13)

with

P f
i,L = −iγi,↑γi,↓; P f

i,R = iγ′i,↑γ
′
i,↓, (14)

Here P f is the total fermion parity for a single physical site and P f
L(P f

R) is fermion parity

operators for the left(right) pair of Majorana spinon. The above definition of time reversal

symmetry operator satisfies the requirement of T 2 = −1 for fermion parity odd states while

it satisfies T 2 = 1 for fermion parity even states.
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C. Representation theory of the T 4 = −1 time reversal symmetry

In the above, we use an algebraic way to construct the T 4 = −1 symmetry, which will be

very helpful for us to understand the underlying physics and provides us a simple way to do

calculations. Now let us work out the explicit representation theory for the T 4 = −1 time

reversal symmetry. We note that the two pairs of Majoran spinons on both ends allow us

to define two complex fermions cL and cR:

cL =
1

2
(γ↑ + iγ↓); cR =

1

2
(γ′↑ − iγ′↓) (15)

where cL(R) transforms nontrivially under the T 4 = −1 symmetry. We have:

TcLT
−1 = −ic†L; TcRT

−1 = ic†R

Tc†LT
−1 = icL; Tc†RT

−1 = −icR (16)

Since the T operator only involves two Majorana operators, we are able to construct a precise

two dimensional representation theory for the T 4 = −1 symmetry. On the other hand, a

projective representation can not be one dimensional, hence we must have:

T |0̃〉 = UK|0̃〉 = U |0̃〉 = |1̃〉 ≡ c†L(R)|0̃〉 (17)

where |0̃〉 is the vacuum of cL(R) fermion satisfying cL(R)|0̃〉 = 0 and |1̃〉 ≡ c†L(R)|0̃〉. We also

assume that the global phase of |0̃〉 is fixed in such a way that the complex conjugate K has

a trivial action on it. From the relation Eq.(16), it is straightforward to derive:

T |1̃〉 = UKc†L(R)|0̃〉 = Uc†L(R)|0̃〉

= Tc†L(R)T
−1T |0̃〉 = ±icL(R)c

†
L(R)|0̃〉 = ±i|0̃〉 (18)

Here the + sign corresponds to cL and the − sign corresponds to cR. Thus, in the basis |0̃〉

and |1̃〉, we can derive the representation theory T = UK with:

U =

 0 1

±i 0

 , (19)

Clearly, the above representation satisfies T 4 = −1.
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D. 1/4 spin and vacuum polarization

Although the SU(2) spin rotational symmetry is broken in Hamiltonian Eq.(1), it still

has a residual U(1) spin rotational symmetry along the y-axis:

[H,Sytotal], Sytotal =
∑
i

Syi ≡
i

2

∑
i

(c†i,↑ci,↓ − c
†
i,↓ci,↑) (20)

Hence, all the eigenstates of the Hamiltonian Eq.(1) are labeled by Sytotal = my

2
,my =

0,±1,±2, . . . which are consistent with a spin 1/2 system. Interestingly, the dangling Ma-

jorana spinons on both ends actually carry a 1/4 spin instead of the usual 1/2 spin.

For a pair of Majorana modes γi,↑ and γi,↓ on site i, the corresponding spin operator can

be defined by(Since Majorana spinon is a real spinon, we can only define an SO(2) spin

instead of the SU(2) spin for a complex fermion.):

Si,L =
iS

2

∑
σσ′

γi,σεσσ′γi,σ′

=
S

2

∑
σσ′

γi,σσ
y
σσ′γi,σ′ =

iS

2
(γi,↑γi,↓ − γi,↓γi,↑) = iSγi,↑γi,↓ = −SP f

i,L (21)

It is easy to check that:

TSi,LT
−1 = −Si,L (22)

We see that the definition of Majorana spin operator Eq.(21) has the correct transformation

law under the time reversal symmetry. Similarly, we can define Si,R as Si,R = −SP f
i,R. Since

the fermion parity operator P f
i,L(R) takes eigenvalues ±1, S represents the spin carried by a

Majorana spinon. In the following, we will show S = 1/4 rather than 1/2.

On each physical site i, we have:

Syi =
i

2
(c†i,↑ci,↓ − c

†
i,↓ci,↑)

=
i

8

[
(γi,↑ − iγ′i,↑)(γi,↓ − iγ′i,↓)− (γi,↓ + iγ′i,↓)(γi,↑ + iγ′i,↑)

]
= −1

4
(P f

i,L + P f
i,R) (23)

The above expression implies that the two fermion occupied state c†i,Lc
†
i,R|0〉 has spin polar-

ization 1/2 in the y direction while the two fermion vacuum |0〉(defined by ci,Lci,R|0〉 = 0)

has spin polarization −1/2 in the y direction. Therefore, the complex fermion ci,L formed by

the Majorana spinon (γi,↑, γi,↓) and the complex fermion ci,R formed by (γ′i,↑, γ
′
i,↓) effectively

carry a 1/4 spin. More precisely, we can express Syi as a summation of two SO(2) spins:

Syi = Si,L + Si,R = −S(P f
i,L + P f

i,R) (24)
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Comparing Eq.(23) and Eq.(24), we obtain S = 1/4. For the T 2 = −1 TSC described by

Eq. (1), the 1/4 spin can be directly measured for the dangling Majorana spinon on both

ends. Let us compute the expectation value of Sy for the left end:

〈G|Sy1 |G〉 = 〈G|S1,L|G〉+ 〈G|S1,R|G〉 = 〈G|S1,L|G〉 ≡ 〈G|SL|G〉 = ±1

4
, (25)

where SL is the spin operator for Majorana zero modes on left end, defined by SL = −SP f
L =

iSγ↑γ↓. We note that |G〉 is one of the four possible ground states of Hamiltonian Eq.(1), and

for any ground state, the contribution from the second term 〈G|S1,R|G〉 vanishes. Similar

calculation leads to the same results for the right end. Actually, the 1/4 spin physics for

Majorana zero modes is similar to the presence of half-charge zero energy solutions in Jackiw

and Rebbi’s soliton-monopole systems[51], which is a consequence of vacuum polarization.

Although each end of a T 2 = −1 TSC carries 1/4 spin, the whole system still carries spin

1/2. We denote the four fold degenerate ground states as: |0̃0̃〉, |1̃1̃〉 ≡ c†Lc
†
R|0̃0̃〉, |1̃0̃〉 ≡ c†L|0̃0̃〉

and |0̃1̃〉 ≡ c†R|0̃0̃〉, where |0̃0̃〉 is the vacuum of cL and cR, defined by cLcR|0̃0̃〉 = 0. It is

straight forward to derive 〈0̃0̃|Sytot|0̃0̃〉 = −1/2, 〈1̃1̃|Sytot|1̃1̃〉 = 1/2, 〈1̃0̃|Sytot|1̃0̃〉 = 0 and

〈0̃1̃|Sytot|0̃1̃〉 = 0.

The vacuum polarization also leads to an interesting property of the time reversal sym-

metry in the ground state subspace: |0̃0̃〉 and |1̃1̃〉 form a T 2 = −1 Kramers doublet while

|0̃1̃〉 and |1̃0̃〉 form a T 2 = 1 representation. We note that Eq. (26) and Eq. (18) imply:

T |0̃0̃〉 = |1̃1̃〉; T |1̃1̃〉 = Tc†LT
−1Tc†RT

−1T |0̃0̃〉 = cLcR|1̃1̃〉 = cLcRc
†
Lc
†
R|0̃0̃〉 = −|0̃0̃〉 (26)

Thus, in the basis |0̃0̃〉 and |1̃1̃〉, we can derive the representation T = UK with:

U =

 0 1

−1 0

 , (27)

which implies |0̃0̃〉 and |1̃1̃〉 form a T 2 = −1 Kramers doublet and is consistent with a 1/2

spinon. Similarly, from Eq.(26) and Eq.(18), we obtain:

T |1̃0̃〉 = i|0̃1̃〉; T |0̃1̃〉 = i|1̃0̃〉 (28)

Thus, in the basis |1̃0̃〉 and |0̃1̃〉, we can derive the representation T = UK with:

U =

 0 i

i 0

 , (29)

We see that T 2 = 1 in the basis |1̃0̃〉 and |0̃1̃〉, which is also consistent with the fact that

cL(R) carries the SO(2) spin instead of SU(2) spin.

12



III. MAJORANA ZERO MODES IN HIGHER DIMENSIONS AND EMERGENT

RELATIVISTIC DISPERSION, SU(2) SPIN AT QUANTUM CRITICALITY

A. Majorana zero modes in higher dimensions

In the previous section, we discuss a simple example of a 1D T 2 = −1 TSC with Majorana

zero modes on its ends. Indeed, Majoranoa zero modes exist in DIII class TSC in higher

dimensions as well. In 2D, it is well known that a single Majorana zero mode can emerge

in the vortex core of a p + ip or p − ip TSC[25], however, the time reversal symmetry is

broken in this class of chiral TSC. Nevertheless, the DIII class TSC in 2D that is realized as

a composition of a p+ ip and a p− ip TSC with opposite spins[52] can preserve the T 2 = −1

time reversal symmetry. Apparently, the vortex core of such a TSC has a pair of Majorana

zero modes γ↑ and γ↓ with opposite spins. In the following, we argue that they also carry a

T 4 = −1 representation of time reversal symmetry. As having been discussed in Ref. [52],

a time reversal action on a single vortex core will change the local fermion parity of the

complex fermion zero mode cL = γ↑ + iγ↓ for the ground state wavefunction, therefore we

expect the same representation theory Eq.(26),Eq.(18) and Eq.(19) for the zero modes inside

the vortex core, which satisfies T 4 = −1. For the anti-vortex core with Majorana modes

γ′↑ and γ′↓, we can define a complex fermion mode cR = γ↑ − iγ↓ and derive the T 4 = −1

representation theory as well. Now we see that the cL/cR complex fermion is similar to

the two complex fermion modes defined on the left/right end of the 1D T 2 = −1 TSC.

The T 4 = −1 time reversal operators for the Majorana spinons (γ↑, γ↓) and (γ′↑, γ
′
↓) can be

defined by Eq.(7) and Eq.(12).

The 3D analogy of the vortex would be a hedgehog and the possibility of the emergence

of a Majorana zero mode on the hedgehog has been proposed recently[30]. However, there

is an important difference in 3D. Since the classical configuration of a hedgehog will have

a divergent energy, the only way to introduce a UV cutoff is to couple the system to a

gauge field, e.g., an SU(2) gauge field[53]. By turning on the SU(2) gauge field, a single

Majorana mode will suffer from the Witten anormally[54] and the only way to cancel this

anormally is to introduce a pair of Majorana zero modes. Therefore, the Majorana zero

modes are unstable in the absence of time reversal symmetry(a mass term can be dynamically

generated) and the analogy of p + ip TSC does not exist in 3D. However, in the presence
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FIG. 2: (color online)Majorana zero modes in 2D and 3D can be realized as the bound states on

the vortex/anti-vortex core and hedgehog/anti-hedgehog core of DIII class TSC. The red line in

(b) represents a quantized flux line that connects a pair of hedgehog and anti-hedgehog.

of T 2 = −1 time reversal symmetry, the pair of Majorana zero modes γ↑ and γ↓ on the

hedgehog can be stabilized(similar to the 1D and 2D case, the mass term is forbidden by

the time reversal symmetry) and we argue that they also carry a T 4 = −1 time reversal

symmetry according to the same reason as in 2D – the time reversal action changes the local

fermion parity of the complex fermion mode cL = γ↑+iγ↓ for the ground state wavefunction.

The DIII class TSC in 3D labeled by odd integers(there is a Z classification[43, 44] for free

fermion system in this case) could be good candidates to realize a pair of Majorana zero

modes on its hedgehog/anti-hedgehog. Detailed discussions of these interesting 3D models

are beyond the scope of this paper and will be presented elsewhere. Finally, we point out

an important difference for the Majorana zero modes between 1D and higher dimensions.

In 1D, for a generic Hamiltonian, the zero modes are only well defined in the infinite long

chain limit. However, in 2(3)D, the distance between vortex(hedgehog) and anti-vortex(anti-

hedgehog) can be finite(but much larger than penetration depth) since the zero modes are

well defined bound states and they can be regarded as local particles.
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B. Deconfined Majorana zero modes in 1D

In the following we will show that relativistic dispersion and SU(2) spin rotational sym-

metry will emerge at a quantum critical point where Majorana zero modes are proliferated.

Let us begin with a 1D model by adding a chemical potential term into the Hamiltonian

Eq.(1):

H ′ =
N∑
i=1

∑
σ

(
ci,σ − c†i,σ

)(
ci+1,σ + c†i+1,σ

)
− 2µ

N∑
i=1

∑
σ

(c†i,σci,σ −
1

2
), (30)

As having been discussed in Ref. [24], a phase transition occurs at µ = 1 and the system

becomes a trivial superconductor when µ > 1. In terms of Majorana operators, we will have

a simple picture to visualize the above phase transition.

H ′ =
N∑
i=1

∑
σ

iσγ′i,σγi+1,σ + µ
N∑
i=1

∑
σ

iσγ′i,σγi,σ, (31)

As seen in Fig. 3, in the limit where the on site hopping t2 ≡ µ is dominant, the above

Hamiltonian describes a trivial superconductor, while in the limit where the inter site hop-

ping t1(= 1) is dominant, it describes a topological superconductor and Majorana modes are

confined on both ends. At the phase transition point t2 = t1 = 1, the Majorana spinon with

1/4 spin and T 4 = −1 time reversal symmetry becomes deconfined. The analogy of such

a deconfined quantum critical phenomenon has been known for long time in 1D spin chain

models with T 2 = 1 time reversal symmetry, e.g., in certain spin-1 chain systems[55], 1/2

spinon with T 2 = −1 time reversal symmetry on its ends become deconfined at the phase

transition point.

At low energy, the critical theory has emergent relativistic dispersion and SU(2) (pseudo)

spin. In terms of cL(R) fermions, we can rewrite the critical Hamiltonian as:

H1D = i
∑
i

(c†i,Lci+1,R − c†i+1,Rci,L) + i
∑
i

(c†i,Lci,R − c
†
i,Rci,L) (32)

In momentum space, the above Hamiltonian can be diagonalized by:

H1D =
∑
k

(c†L(k), c†R(k))

 0 i(1 + eik)

−i(1 + e−ik) 0

 cL(k)

cR(k)

 (33)

It has one positive energy mode and one negative energy mode with Ek = ±2t| cos k
2
|. The

dispersion relation is relativistic around the momentum points k = ±π. The particle and
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FIG. 3: (color online) At the deconfined quantum critical point, the proliferating of Majorana

zero modes lead to the emergence of relativistic dispersion and SU(2) (pseudo) spin rotational

symmetry.

hole excitations in such a systems form an SU(2) doublet. However, for a 1D chain, the

SU(2) (pseudo) spin rotational symmetry does not carry angular momentum and is a purely

internal symmetry.

C. Deconfined Majorana zero modes in 3D and emergent relativistic dispersion,

SU(2) spin

Now, let us construct a quantum critical model in 3D. First, we construct a 3D cubic

lattice model consisting of hedgehog/anti-hedgehog, with hedgehog occupied sublattice A

and anti-hedgehog occupied sublattice B, as seen in Fig 4. We use red dots to represent

the pair of Majorana modes (γ↑, γ↓) on the hedgehog and blue dots to represent the pair of

Majorana modes (γ′↑, γ
′
↓) on the anti-hedgehog. Similar to the 1D cases, we then turn on

the hoping among those Majorana modes and consider the following Hamiltonian:

H3D = −
∑

i∈A;j=i±x̂

(
iγi,↑γ

′
j,↓ + iγi,↓γ

′
j,↑
)

+
∑

i∈A;j=i±ŷ

(
iγi,↑γ

′
j,↑ − iγi,↓γ′j,↓

)
+

∑
i∈A;j=i+ẑ

(iγi,↑γj,↓ − iγi,↓γj,↑) +
∑

i∈B;j=i+ẑ

(
iγ′i,↑γ

′
j,↓ − iγ′i,↓γ′j,↑

)
(34)
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FIG. 4: (color online)A 3D hedgehog/anti-hedgehog cubic lattice. Red dots represent the pair

of Majorana modes (γ↑, γ↓) on the hedgehog and blue dots represent the pair of Majorana modes

(γ′↑, γ
′
↓) on the anti-hedgehog. Solid/dashed lines represent the hopping amplitude 1/−1. Lines with

arrows represent the hopping amplitudes ±i. Multiplications of the hopping amplitudes surround

a square surface give rise to −1, e.g., tijtjktkltli = −1. Such a hopping amplitudes pattern is the

so called π-flux pattern.

In terms of complex fermions ci,L = γi,↑ + iγi,↓ and ci,R = γ′i,↑ − iγ′i↓, we have:

H3D =
∑

i∈A;j=i±x̂

(
c†L,icR,j + c†R,jcL,i

)
+ i

∑
i∈A;j=i±ŷ

(
c†L,icR,j − c

†
R,jcL,i

)
+

∑
i∈A;j=i+ẑ

(
c†L,icL,j + c†L,jcL,i

)
−

∑
i∈B;j=i+ẑ

(
c†R,icR,j + c†R,jcR,i

)
(35)

The special hopping pattern in the above Hamiltonian is one way to realize the so called

π-flux pattern, namely, a pattern with the enclosed flux π on each face of the cubic lattice.

The Hamiltonian is invariant under the time reversal symmetry T̃ = T (−)iz . Without such

a twisted definition of the time reversal symmetry, the fermion hopping in the z-direction

will change sign under the time reversal. It is clear that such a twisted definition is allowed

because we can choose either T or T−1 as the definition of the time reversal symmetry.

In momentum space, we have:

H3D =
∑
k

(c†L(k), c†R(k))

 2 cos kz 2 cos kx + 2i cos ky

2 cos kx − 2i cos ky −2 cos kz

 cL(k)

cR(k)

 (36)
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The above Hamiltonian has one positive energy mode and one negative energy mode with:

Ek = ±2
√

cos2 kx + cos2 ky + cos2 kz, (37)

Around the momentum point k0 = (π/2, π/2, π/2), the above Hamiltonian describes a chiral

Weyl fermion:

Heff
(π/2,π/2,π/2) = 2

∑
k

(c†L(k), c†R(k))

 k̄z k̄x + ik̄y

k̄x − ik̄y −k̄z

 cL(k)

cR(k)

 (38)

where k = k0 + k̄. It is clear that the above Hamiltonian has a relativistic dispersion

Ek = ±2|k̄| and an emergent SU(2) spin carrying angular momentum.

In the above, we construct a particular 3D hedgehog/anti-hedgehog lattice model with

proliferated Majorana zero modes. Other models with deconfined Majorana modes have

also been considered recently, e.g., the fermion dimer model[56] and the Majorana flat bands

model in certain gapless TSC[57]. However, one of the most important features in our model

is that it has a sublattice structure, and the sublattice degeneracy naturally leads to an SU(2)

spin degree of freedom at low energy. Actually, our model can be viewed as the 3D analogy

of the 2D graphene system, where the valley degeneracy becomes the emergent SU(2) spin

at low energy. But why hedgehog/anti-hedgehog lattice models with a sublattice structure

is more natural than those models without sublattice structure? One possible reason is that

the hedgehog and anti-hedgehog pair are always confined in a superconductor[58], therefore

any stable 3D hedgehog/anti-hedgehog lattice model must contain a hedgehog and anti-

hedgehog pair per unit cell.

Our analysis for condensed matter systems implies that the presence of SU(2) spin at

low energy has a deep relationship with the sublattice structure at cutoff scale. A very

interesting question is that whether the SU(2) spin for all the fundamental particles arises

from a similar discrete structure at cutoff scale. Unfortunately, it is very difficult to examine

the above idea theoretically since a quantum field theory with an explicit cutoff is absent

so far. Although lattice models could be thought as a natural venue to regulate the theory,

any pre-assuming lattice structure for space-time will break the Lorentz invariance seriously.

To overcome this difficulty, a discrete topological non-linear sigma model with a dynamic

background is a promising candidate. Important progress along this direction has been made

recently[59, 60], even with super-coordinates[61]. It would be very interesting to examine

these ideas in future.
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IV. P 4 = −1 PARITY SYMMETRY, C
4

= −1 CHARGE CONJUGATION SYMME-

TRY AND SUPER CPT ALGEBRA FOR MAJORANA FERMION

So far, we have constructed concrete condensed matter models with emergent Majorana

zero modes carrying T 4 = −1 time reversal symmetry on point like defects in certain classes

of TSC. Furthermore, we have also shown that the proliferating of Majorana zero modes

will lead to a chiral Weyl fermion with emergent relativistic dispersion and SU(2) spin at

low energy. Since neutrinos are described by the chiral Weyl fermion, it is very natural to

ask if they can be interpreted as the (proliferated) Majorana zero modes. However, such

a conjecture could be very challenging as it requires a strongly correlated vacuum instead

of the trivial vacuum which we have assumed for the traditional quantum field theory.

Nevertheless, in the semiclassical limit, it is still possible to investigate other fractionalized

(discrete) symmetries carried by Majorana zero modes and to discuss the interesting physical

consequence. In this section, we limit our discussion at the single particle level, and the

generalization into the quantum field theory will be presented in the next section.

As having been discussed in last the section, the confinement of hedgehog and anti-

hedgehog pair in 3D superconductor suggests that the four Majorana zero modes γ↑, γ
′
↑, γ↓

and γ′↓ identify the local degrees of freedom with respect to translational symmetry.(For a

lattice model, that are the degrees of freedom in a unit cell.) On the other hand, a relativistic

Majorana fermion is a four component Lorentz spinon, hence, it is natural to investigate

the full symmetry properties of the four dimensional zero energy subspace expanded by

the four Majorana zero modes γ↑, γ
′
↑, γ↓ and γ′↓. Particularly, we will discuss the other two

fundamental discrete symmetries – parity and charge conjugation.

A. P 4 = −1 parity symmetry

For a single particle, we only consider the parity symmetry as a Z2 action on the internal

degrees of freedom, and in quantum field theory, we will include its action on coordinates

as well. Interestingly, in the zero energy subspace expanded by four Majorana zero modes,

we can define a P 4 = −1 symmetry for each parity pair of Majorana zero modes γ↑, γ
′
↑ or

γ↓, γ
′
↓. The reason why we can have such a fractionalized parity symmetry for Majorana

zero modes is the same as the reason for time reversal symmetry. The parity symmetry for

19



an interacting spin-1/2 fermion system is actually P 2 = P f . Therefore, for the Fock basis

c†↑|0〉, c
†
↓|0〉 and |0〉, c†↑c

†
↓|0〉, the parity odd sector satisfies P 2 = −1 while the parity even

sector satisfies P 2 = 1. Here the complex fermion operator c↑ and c↓ are defined by:

c↑ = γ↑ + iγ′↑; c↓ = γ↓ − iγ′↓, (39)

which give rise to a natural notion of spin basis out of four Majorana zero modes.

The explicit construction of P 4 = −1 operator for a pair of Majorana zero modes is very

similar to that for the T 4 = −1 time reversal symmetry. For the pair of Majorana modes

γ↑, γ
′
↑ and γ↓, γ

′
↓, their parity operators are defined by:

P↑↑′ =
1√
2

(1 + γ↑γ
′
↑) = e

π
4
γ↑γ

′
↑ ; P↓↓′ =

1√
2

(1− γ↓γ′↓) = e−
π
4
γ↓γ

′
↓ , (40)

We see such a definition satisfies P 4
↑↑′(↓↓′) = −1 for each pair of Majorana modes. The total

parity action on the four Majorana zero modes is defined by P = P↑↑′ ⊗ P↓↓′ . Its action on

the four Majorana modes reads:

Pγ↑P
−1 = −γ′↑; Pγ↓P

−1 = γ′↓

Pγ′↑P
−1 = γ↑; Pγ′↓P

−1 = −γ↓, (41)

It is easy to verify that the complex fermion c↑ and c↓ representing the spin basis transform

in an expected way:

Pc↑P
−1 = ic↑; Pc↓P

−1 = ic↓

Pc†↑P
−1 = −ic†↑; Pc†↓P

−1 = −ic†↓, (42)

We note that although the spin of a particle does not change under parity, there could be

a nontrivial phase factor for the spin-1/2 particle. On the other hand, cL = γ↑ + iγ↓ and

cR = γ′↑ − iγ′↓ transform like a particle and an anti-particle pair:

PcLP
−1 = −cR; PcRP

−1 = cL

Pc†LP
−1 = −c†R; Pc†RP

−1 = c†L (43)

Our definition of parity operator is comparable with the time reversal operator PTP−1 =

PfT with T = e
π
4
γ↑γ↓e

π
4
γ′↑γ

′
↓K, and Pf = γ↑γ↓γ

′
↑γ
′
↓ is the total fermion parity operator.
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B. C
4

= −1 charge conjugation symmetry

Since the Majorana fermion describes a charge neutron particle, the charge conjugation

action is trivial from a traditional perspective. Strikingly, we find a way to define a nontrivial

C
4

= −1 charge conjugation symmetry for a pair of Majorana zero modes. Similar to the

T 4 = −1/P 4 = −1 time reversal/parity symmetry, for each pair of Majorana zero modes

with opposite spins, we can define a C
4

= −1 charge conjugation operator:

C↑↓′ =
1√
2

(1 + γ↑γ
′
↓) = e

π
4
γ↑γ

′
↓ ; C↓↑′ =

1√
2

(1 + γ↓γ
′
↑) = e

π
4
γ↓γ

′
↑ , (44)

and the total action of charge conjugation symmetry on four Majorana zero modes is C =

C↑↓′ ⊗ C↓↑′ . It is straight forward to verify:

Cγ↑C
−1

= −γ′↓; Cγ↓C
−1

= −γ′↑

Cγ′↑C
−1

= γ↓; Cγ′↓C
−1

= γ↑, (45)

which implies:

Cc↑C
−1

= ic†↓; Cc↓C
−1

= −ic†↑

Cc†↑C
−1

= −ic↓; Cc†↓C
−1

= ic↑, (46)

and

CcLC
−1

= −icR; CcRC
−1

= −icL

Cc†LC
−1

= ic†R; Cc†RC
−1

= ic†L, (47)

We note that for the spin basis c↑(↓), the charge conjugation acts like a particle-hole symme-

try, however, for the cL(R) basis it acts like a charge conjugation symmetry(if we interpret cL

as a particle while cR as an anti-particle). Similar to the commutation relation between time

reversal and parity symmetry, the C
4

= −1 charge conjugation symmetry also commutes

with the other two symmetries up to a total fermion parity.

CTC
−1

= P fT ; CPC
−1

= P fP (48)
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C. Super C,P, T algebra

Let us summarize the closed algebraic relation of C,P, T, and P f symmetry for a Majo-

rana fermion formed by four Majorana zero modes.

C
2

= P f ; P 2 = P f ; T 2 = P f ; (P f )
2

= 1

TP f = P fT ; PP f = P fP ; CP f = P fC

TP = P fPT ; TC = P fCT ; PC = P fCP, (49)

The above algebra satisfied by the C,P, T symmetries is indeed a super algebra, which can

be regarded as a super extension of the usual charge conjugation, parity and time reversal

symmetries over the fermion parity symmetry P f . This super algebra is one of the central

results of this paper. It arises from the topological nature of the Majorana zero modes and

reflects the strongly correlated nature of vacuum.

In next section, we will show that the above super C,P, T algebra is also applicable for

Majorana field. In quantum field theory, such a super extension is allowed because P f is not

a physical observable, or in other words, there is no way to measure the total fermion parity

for a quantum state since any physical process must preserve fermion parity symmetry. From

a traditional point of view, our results suggest that the C,P, T transformations for Majorana

field can be different from a Dirac field, just like a scalar field and a Dirac field have very

different CPT transformations. Therefore, a Majorana field with a topological origination

has a completely new physical meaning and indicates a strongly correlated vacuum, despite

the equivalence between Majorana representation and Weyl representation[62].

In addition to the fundamental discrete symmetries C,P, T , we can also define a spin

rotational symmetry in the spin basis, where c†↑|0〉, c
†
↓|0〉 carry spin-1/2 while |0〉, c†↑c

†
↓|0〉

carry spin-0. Therefore, the SU(2) spin operator S can be naturally defined by:

Sα =
1

2

∑
σ,σ′

c†στ
α
σσ′cσ′ ;α = x, y, z (50)

where τα is the usual Pauli matrix. It is easy to verify that:

TST−1 = −S; PSP−1 = S; CSC
−1

= S, (51)

The above nice property makes the CPT symmetries commute with the SU(2) spin rota-

tional symmetry and allows us to generalize the CPT super algebra into the relativistic

quantum field theory.
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V. C,P, T SYMMETRIES FOR MAJORANA FIELD AND THE ORIGIN OF NEU-

TRINO MASS

A. C,P, T symmetries for relativistic quantum field theory

Let us implement the C,P, T symmetries to a Majorana field. We choose four real gamma

matrices:

γ0 = −iρz ⊗ σy; γ1 = I ⊗ σz; γ2 = −ρy ⊗ σy; γ3 = −I ⊗ σx, (52)

where ρ and σ are Pauli matrices and I is the identity matrix. We can define a real γ5 by:

γ5 = γ0γ1γ2γ3 = iρx ⊗ σy (53)

The four component Majorana field describing the pair of complex fermions cL and cR reads:

ψc(x) =

 ξ(x)

η(x)

 , (54)

where

ξ(x) =

 γ↑(x)

γ↓(x)

 ; η(x) =

 −γ′↑(x)

γ′↓(x)

 , (55)

Here the Majorana spinon basis ξ(x) and η(x) are equivalent to complex fermions cL and

cR, which give rise to a natural notion of particle and anti-particle.

The (equal time) canonical commutation relation reads:

{ψ†c(x), ψc(y)} = 2δ(3)(x− y). (56)

In terms of γσ(x) and γ′σ(x), we have:

{γσ(x), γ′σ′(y)} = 0; {γσ(x), γσ′(y)} = 2δ(3)(x− y)δσσ′ , (57)

which is the continuum version of the commutation relation Eq.(2). The CPT symmetry

operators can be defined by:

C =
∏
x

e
π
4
γ↑(x)γ

′
↓(x)e

π
4
γ↓(x)γ

′
↑(x) = e

π
4

∫
d3xγ↑(x)γ

′
↓(x)e

π
4

∫
d3xγ↓(x)γ

′
↑(x)

P = UPP0 =
∏
x

e
π
4
γ↑(x)γ

′
↑(x)e−

π
4
γ↓(x)γ

′
↓(x)P0 = e

π
4

∫
d3xγ↑(x)γ

′
↑(x)e−

π
4

∫
d3xγ↓(x)γ

′
↓(x)P0

T = UTK =
∏
x

e
π
4
γ↑(x)γ↓(x)e

π
4
γ′↑(x)γ

′
↓(x)K = e

π
4

∫
d3xγ↑(x)γ↓(x)e

π
4

∫
d3xγ′↑(x)γ

′
↓(x)K

P f =
∏
x

γ↑(x)γ↓(x)γ′↑(x)γ′↓(x) = C
2

= T 2 = P 2 (58)
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Here P0 is the action on the spacial coordinates with P0xP
−1
0 = −x. It is easy to check that

the above CPT symmetry operators satisfy the super algebra Eq.(49).

The transformations of the Majorana field under the above CPT symmetries can also be

derived:

Cψc(x)C
−1

= C

 ξ(x)

η(x)

C
−1

=

 −εη(x)

−εξ(x)

 = −γ5ψc(x);

Pψc(x)P−1 = P

 ξ(x)

η(x)

P−1 =

 η(x̃)

−ξ(x̃)

 = γ0γ5ψc(x̃);

Tψc(x)T−1 = T

 ξ(x)

η(x)

T−1 =

 −εξ(−x̃)

εη(−x̃)

 = γ0ψc(−x̃), (59)

where x̃ = (t,−x). Let us consider the Majorana field Lagrangian in the massless limit:

L0 =
1

4
ψc(x)iγµ∂µψc(x); ψc(x) = ψ†c(x)γ0, (60)

Apparently, L0 is invariant under the C,P, T symmetries:

CL0(x)C
−1

= L0(x); PL0(x)P−1 = L0(x̃); TL0(x)T−1 = L0(−x̃), (61)

B. Charge conjugation as a Z2 gauge symmetry and its spontaneously breaking–

the origin of right-handed neutrino mass

Given the new (potentially correct) definition of C,P, T symmetries for a Majorana

fermion, we are ready to discuss the origin of the neutrino mass, assuming that the neutrino

is a Majorana fermion. We can construct a mass term preserving time reversal symmetry,

parity symmetry and spin rotational symmetry:

Hm =
m

2

[
iγ↑(x)γ′↑(x)− iγ↓(x)γ′↓(x)

]
(62)

However, such a mass term breaks the charge conjugation symmetry since CHmC
−1

= −Hm.

If we elevate the charge conjugation symmetry to a Z2 gauge symmetry, the origin of the

Majorana mass term can be explained as the spontaneous gauge symmetry breaking through

the Anderson-Higgs mechanism[36]. Now we come up with the most important concept in

this paper: The spontaneous breaking of the (nontrivial) charge conjugation gauge symmetry
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leads to a mass term of a Majorana fermion. The fundamental Z2 gauge field will lead to a

fifth force among fundamental particles, and it is possible to detect such a new force in future

LHC experiments. Finally, to be comparable with the SM, the neutrino mass discussed here

should be the mass of the right-handed sterile neutrino, since a Majorana mass term for

the left-handed light neutrino is not allowed and can only be induced through the seesaw

mechanism[20–22].

To implement the above idea in quantum field theory, we can introduce a new real scalar

field φ(x) = φ(t,x) which carries Z2 guage charge one(thus it transforms as Cφ(x)C
−1

=

−φ(x)) and couple it to the Majorana field. The Anderson-Higgs mechanism[36] can be

realized by condensing the real scalar field φ(x). We assume that such a fundamental scalar

field does not carry other gauge charge and is invariant under the P and T symmetry. The

following Lagrangian preserves all the C,P, T symmetries:

L = L0 + Lm + Lφ + LZ2

=
1

4
ψc(x)iγµDµψc(x) +

ig

4
φ(x)ψc(x)γ5ψc(x) + |Dµφ|2 − V (φ) + LZ2 (63)

If we assume that the real scalar field condenses at 〈φ(x)〉 = φ0, a mass term

imψc(x)γ5ψc(x) arises with m = gφ0/4. Here Dµ represents the covariant derivative and

LZ2 represents the action of Z2 gauge field. We need to regulate the field theory in a

discrete space-time to write down its explicit form and we will leave these details in our

future publications. Interestingly, the neutrino mass term in our approach is described by

a ”chiral” charge.(We note that γ25 = −1 for Majorana field and it does not really have

a physical meaning of chirality.) However, we can redefine the Majorana field ψ′c(x) by

ψ′c(x) = 1+γ5√
2
ψc(x)(Again due to γ25 = −1, 1+γ5√

2
is unitary transformation rather than ”chiral

projection”.) and transform the mass term into the usual form.

Lm =
ig

4
φ(x)ψ

′
c(x)ψ′c(x), ψ

′
c(x) = (ψ′c)

†(x)γ0 (64)

However, ψ′(x) transforms differently under the CPT symmetries.

Cψ′c(x)C
−1

= −γ5ψ′c(x); Pψ′c(x)P−1 = γ0ψ
′
c(x̃); Tψ′c(x)T−1 = −γ0γ5ψ′c(−x̃) (65)
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VI. ORIGIN OF THREE GENERATIONS OF NEUTRINOS

A. General discussion and physical pictures

The existence of three generations of neutrinos is one of the biggest mysteries in our

universe. In this section, we will show that such a puzzle can be naturally resolved by

assuming that a Majorana fermion is made up of four Majorana zero modes. The key

observation is that there are three inequivalent ways to define a pair of Majorana spinons

that describe a particle and an anti-particle out of four Majorana zero modes. More precisely,

the pair of Majorana spinons can be made up not only by (γ↑, γ↓), (γ
′
↑, γ
′
↓), but can also by

(γ′↑, γ↓), (γ↑, γ
′
↓) or (γ↑, γ

′
↑), (γ↓, γ

′
↓).

Since a Majorana spinon that describes a particle or an anti-particle is equivalent to a

spinless complex fermion, let us define:

dL =
1

2
(γ↑ − iγ′↓); dR =

1

2
(γ′↑ − iγ↓), (66)

Under the C,P, T symmetries, they transform as:

CdLC
−1

= −idL; CdRC
−1

= idR

PdLP
−1 = −dR; PdRP

−1 = dL

TdLT
−1 = id†R; TdRT

−1 = id†L, (67)

Similarly, we can define:

fL =
1

2
(γ↑ + iγ′↑) = c↑; fR =

1

2
(γ↓ + iγ′↓) = c†↓ (68)

Under the C,P, T symmetries, they transform as:

CfLC
−1

= ifR; CfRC
−1

= ifL

PfLP
−1 = ifL; PfRP

−1 = −ifR

TfLT
−1 = −f †R; TfRT

−1 = f †L, (69)

We see that dL(R) and fL(R) fermions transform differently under the C,P, T symmetries.

Especially, the local Fock space of dL(R) caries the (TP )4 = −1 projective representation

of TP symmetry while the local Fock space of fL(R) caries the (TC)4 = −1 projective
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FIG. 5: (color online)The other two 1D TSC models protected by TP and TC symmetries, the

Majorana modes on their ends carry the (TP )4 = −1 and (TC)4 = −1 projective representations.

representation of TC symmetry. We have:

(TP )dL(TP )−1 = −id†L; (TP )dR(TP )−1 = id†R

(TC)fL(TC)−1 = −if †L; (TC)fR(TC)−1 = if †R, (70)

Apparently the above TP and TC transformations for dL(R) and fL(R) fermions have the

same form as Eq.(16), therefore they carry the same representation theory as Eq.(19).

From a condensed matter theory point of view, the above argument can be understood

as there are three different types of point like topological defects in a TSC protected by

CPT symmetries, characterized by the T 4 = −1, (TP )4 = −1, and (TC)4 = −1 projective

symmetries that the corresponding Majorana zero modes carry. Since point like defects can

only be created/anihilated in pairs, there is a natural notion of particle and anti-particle

pair. In the following, we again construct some explicit 1D TSC models to further explain

this idea.

Similar to the time reversal protected Majorana chain that has been discussed at the very

beginning of this paper, we can also construct TP (Here again we only consider the internal

action of P symmetry, since the symmetry protection nature of Majorana zero modes only

relies on the internal action and has nothing to do with the coordinate action.) and TC
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protected Majorana chains explicitly. Let us consider the following Hamiltonian:

Hd =
N∑
i=1

(
iγ′i,↑γi+1,↑ + iγi,↓γ

′
i+1,↓

)
, (71)

and

Hf =
N∑
i=1

(
iγi,↓γi+1,↑ + iγ′i,↓γ

′
i+1,↑

)
, (72)

It is clear that Hd is invariant under the TP symmetry and Hf is invariant under the TC

symmetry. In Fig. 5, we see that for Hd, the pair of Majorana modes on both ends form a

(TP )4 = −1 representation, while for Hf , the pair of Majorana modes on both ends form a

(TC)4 = −1 representation. All our discussions for the 1D model can be generalized into 3D

as well, where the Majorana modes will be localized on the hedgehog/anti-hedgehog, and

similar hedgehog/anti-hedgehog lattice model Eq.(35) with proliferated Majorana modes

can be constructed in the same way, replacing cL(R) fermion by dL(R) and fL(R) fermions.

B. Possible internal structure of Majorana fermion

Although the picture of topological defect provided by condensed matter models is very

promising and insightful for us to understand the origin of three generations of neutrinos, a

fundamental theory does not necessarily to be emerged from any pre-assuming topological

defect model. Here we provide an alternative understanding for the origin of three genera-

tions of neutrinos by proposing a possible internal structure of a Majorana fermion. As seen

in Fig. 6, we conjecture that a Majorana fermion is actually made up of four Majorana zero

modes located on the four vertices of a tetrahedra at cutoff scale. In this picture, the SO(3)

spacial rotation can be realized by the classical rotation of the tetrahedra. The origin of

three generations of neutrinos can be explained by three different ways to form a pair of par-

ticle and anti-particle out of four Majorana modes, namely, c†L(R), d
†
L(R) and f †L(R), identified

by the T 4 = −1, (TP )4 = −1 and (TC)4 = −1 symmetries that the particles/anti-particles

carry. Indeed, both the internal structure and topological defect picture share the same

spirit: the Hilbert space for each pair of Majorana modes must be spatially separated at

cutoff scale to make the projective representations T 4 = −1, (TP )4 = −1 and (TC)4 = −1

meaningful. Thus, the neutrino mass mixing physics can be naturally understood as the

resonance among the three different quantum states out of four Majorana zero modes, and
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FIG. 6: (color online)A conjectured internal structure of a Majorana fermion, which consists of

four Majorana zero modes located on the vertices of a tetrahedra. Such an internal structure is

comparable with SO(3) rotational symmetry. The internal structure of neutrino indicates that the

three generations of neutrinos and anti-neutrinos can be explained by three different ways to form

a pair of particle and anti-particle out of four Majorana modes.

such a picture would be very useful for us to compute the mass mixing matrix, which will

be presented in next section. Unfortunately, the above single particle picture can not be

generalized into quantum field theory since a rigorous way to incorporate the internal struc-

ture of a fundamental particle is absent so far, however, if we have already introduced three

independent Majorana fields, there is no difficulty for us to use quantum field theory to

describe them. In the following, we present the quantum field theory description for the

three generations of neutrinos.

C. Quantum field theory description for three generations of neutrinos

The quantum field theory description for neutrino(anti-neutrino) made by cL(R) fermion

has already been presented in section V. To describe neutrino(anti-neutrino) made by fL(R)

fermion in the quantum field theory, we just need to define the Majorana fermion field

ψf (x) =

 ξ̃(x)

η̃(x)

 with a different Majorana spinon basis:

ξ̃(x) =

 γ↑(x)

γ′↑(x)

 ; η̃(x) =

 γ↓(x)

γ′↓(x)

 , (73)
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The above Majorana fermion field satisfies the CPT symmetries:

Cψf (x)C
−1

= −γ5ψf (x); Pψf (x)P−1 = γ0ψf (x̃); Tψf (x)T−1 = −γ0γ5ψf (−x̃), (74)

It is clear that the fL(R) fermion transforms differently under CPT symmetries, and for the

fL(R) fermion, its mass term takes the usual form:

Lm =
ig

4
φ(x)ψf (x)ψf (x), ψf (x) = ψ†f (x)γ0 (75)

Finally, for the neutrino(anti-neutrino) made by the dL(R) fermion, we need to choose

γ̄0 = Rγ0R
−1 = iρx ⊗ σy ≡ γ5 with:

R =
1√
2

 1 1

−1 1

 =
1√
2

(1 + γ0γ5) (76)

The corresponding γ1,2,3 and γ5 transform as: γ̄1,2,3 = Rγ1,2,3R
−1 = γ1,2,3 and γ̄5 = Rγ5R

−1 =

iρz ⊗ σy ≡ −γ0). Indeed, this representation was first proposed by Ettore Majorana.

The quantum field theory can be obtained by defining ψd(x) =

 ξ̂(x)

η̂(x)

 with:

ξ̂(x) =

 γ↑(x)

γ′↓(x)

 ; η̂(x) =

 γ↓(x)

−γ′↑(x)

 , (77)

Under the CPT symmetries with above definition, ψd(x) transforms as:

Cψd(x)C
−1

= −γ̄5ψd(x) ≡ γ0ψd(x);

Pψd(x)P−1 = γ̄0ψd(x̃) ≡ γ5ψd(x̃);

Tψd(x)T−1 = −γ̄0γ̄5ψd(−x̃) ≡ −γ0γ5ψd(−x̃), (78)

For the dL(R) fermion, the mass term also takes the usual form:

Lm =
ig

4
φ(x)ψd(x)ψd(x), ψd(x) = ψ†d(x)γ̄0 = ψ†d(x)γ5 (79)

Since ψc, ψf and ψd transform differently under the CPT symmetries and one can not

transform them from one to the other with continuous proper orthochronous Lorentz trans-

formation, they can be regarded as three independent fields in quantum field theory.(We

note that any continuous proper orthochronous Lorentz transformation will not change the

definition of Majorana spinon basis.)

The three generations of neutrino fields described by cL(R), fL(R) and dL(R) fermions

can also be identified by their different CPT transformation laws in momentum space, see

Appendix A for details.
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VII. NEUTRINO MASS MIXING MATRIX

A. Seesaw mechanism

It is well known that a Majorana mass term of the form mψ(x)ψ(x) is prohibited for

left-handed light neutrinos since it breaks the electric-weak gauge symmetry, and that is

why the SM predicts zero neutrino mass. A nice way to fix this problem is to assume the

existence of three generations of heavy sterile neutrinos, and masses of the left-handed light

neutrinos can be induced by the see-saw mechanism[20–22]. The total mass matrix reads:

Mtotal =

 0 mD

mD M

 , (80)

where mD is the 3 by 3 Dirac mass matrix and M is the 3 by 3 Majorana mass matrix of

right handed sterile neutrinos.(We note that the left-handed neutrinos have a zero mass.) If

we assume that mD is on the electric-weak symmetry breaking energy scale(250GeV ) and

M is on the grand unification theory(GUT) energy scale(1015GeV ), a mass on the energy

scale of 0.1eV can be induced for the left-handed light neutrino. With a proper choice of

basis, mD can be chosen as a diagonal matrix. Here we further assume mD to be uniform,

with the form mD = diag(m,m,m). The particular reason why we choose such a form is

that the three generations of left-handed/right-handed neutrinos can be regarded as three

distinguishable resonating states out of four Majorana zero modes at cutoff scale, as having

been discussed in last section. Under such an assumption, the mass mixing pattern of the

left-handed light neutrino is uniquely determined by the mass mixing pattern of the right-

handed heavy sterile neutrinos. In principle, the mass mixing in charged lepton sector should

also be taken into account for the experimentally observed left-handed light neutrino mixing

pattern, however, as the charged lepton has a huge mass hierarchy, the contribution should

be small and negligible within LO approximation. The mass matrix Mtotal can be complex

in the presence of CP violation, but this effect is observed to be small and therefore is

negligible within LO approximation.

In section V, we propose that the origin of the right-handed neutrino mass can be un-

derstood as the spontaneously breaking of the Z2 charge conjugation gauge symmetry. In

the following we will apply the same idea to derive the entire right-handed neutrino mass

matrix M .
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B. Mixing pattern and predictions of neutrino mass

Firstly, according to the Z2 gauge (minimal coupling) principle, we can write down the

most general CPT invariant mass term for three generations of right-handed neutrinos. We

have:

Lm =
ig

4
φ(x)

[
ψf (x)ψf (x) + ψd(x)ψd(x) + ψc(x)γ5ψc(x)

]
+

ig′

4
φ(x)

[
ψd(x)(1 + γ0γ5)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)(1− γ0γ5)ψd(x)

]
+

ig′

4
φ(x)

[
ψf (x)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)ψf (x)

]
+

ig′

4
φ(x)

[
ψf (x)(1− γ0γ5)ψd(x) + ψd(x)(1 + γ0γ5)ψf (x)

]
(81)

Here we use the same coupling g for all the diagonal mass terms and g′ for all the off-diagonal

mass terms. Again, this is because the three generations of right-handed neutrinos are the

three resonating states out of the same four Majorana zero modes at cutoff scale. The above

argument can also be incorporated into traditional quantum field theory language(in the

absence of cutoff physics) by imposing an additional Z2 ⊗ Z2 flavor symmetry to constraint

the coupling constant, see Appendix B for details. We note that for ψc(x) and ψf (x), the

boost generators are defined by S0i = 1
4
[γ0, γi] while for ψd(x), the boost generator is defined

by S̄0i = 1
4
[γ̄0, γi] = 1

4
[γ5, γi]. Such an interesting twist makes the above mass term invariant

under the Lorentz transformation, despite the existence of (1 ± γ0γ5) term which does not

seem to be invariant under the Lorentz boost.

In the extended SM, three generations of right-handed neutrinos are described by three

copies of the same Majorana field. Let us redefine ψd(x) by:

ψ′d(x) = R−1ψd(x) =
1√
2

(1− γ0γ5) (82)

The corresponding γ̄0 and γ̄1,2,3 will change back to γ0 and γ1,2,3. It is easy to see that

ψ′d(x), ψ′c(x) ≡ 1+γ5√
2
ψc(x) and ψf (x) transform in the same way under the CPT symmetries,

therefore, they can be interpreted as the three generations of right-handed sterile neutrinos

in the extended SM. In terms of ψ′d(x), ψ′c(x) and ψf (x), the CPT invariant mass term takes

the following form:

Lm =
ig

4
φ(x)

[
ψf (x)ψf (x) + ψ′d(x)ψ′d(x) + ψ′c(x)ψ′c(x)

]
+

2ig′

4
φ(x)

[
ψ′d(x)ψ′c(x) + ψ′c(x)ψ′d(x)

]
+

√
2ig′

4
φ(x)

[
ψf (x)ψ′c(x) + ψ′c(x)ψf (x)

]
+

√
2ig′

4
φ(x)

[
ψf (x)ψ′d(x) + ψ′d(x)ψf (x)

]
(83)

32



with ψ
′
c(x) = (ψ′c)

†(x)γ0 and ψ
′
d(x) = (ψ′d)

†(x)γ0.

We see that the mass mixing pattern has already been fixed, regardless of the relative

strength of g and g′. The mass matrix can be diagonalized by(the basis is ordered as

ψf , ψ
′
c, ψ

′
d and φ0

4
is set to be 1):

M =


g
√

2g′
√

2g′

√
2g′ g 2g′

√
2g′ 2g′ g

 = V †


(1−

√
5)g′ + g 0 0

0 (1 +
√

5)g′ + g 0

0 0 −2g′ + g

V (84)

with

V † =


√

5+
√
5

10

√
5−
√
5

10
0

−
√

5−
√
5

20

√
5+
√
5

20
− 1√

2

−
√

5−
√
5

20

√
5+
√
5

20
1√
2

 '


0.85 0.53 0

−0.37 0.6 −0.71

−0.37 0.6 0.71

 (85)

In terms of mixing angle, we have:

θ23 = −45◦; θ13 = 0; θ12 = 31.7◦(tan2 θ12 =

√
5− 1

2
) (86)

We note that the physical masses of the mass egienstates are the absolute value of Eq.(84),

with M1 = |(1−
√

5)g′ + g|, M2 = |(1 +
√

5)g′ + g| and M3 = | − 2g′ + g|, and the ± sign in

front of θ23 is just a gauge choice of the basis.

Finally, due to the same reason that the three generations of right-handed neutrinos are

the three resonating states out of the same four Majorana zero modes at cutoff scale, we

further argue that the diagonal Yukawa coupling must have the same strength as the off-

diagonal coupling with |g| = |g′|(see appendix B for detail discussions). According to the

seesaw mechanism, the mass mixing matrix for left-handed light neutrino takes the same

form as Eq.(85)(in the limit mD � M), however, the mass hierarchy is reversed. The

solution with g = −g′ implies M1 = M2 =
√

5g and M3 = 3g, which leads to m1/m3 =

m2/m3 = 3/
√

5(here m1,m2 and m3 are eigen masses of the left-handed light neutrinos)

and can match the current experimental observations.(If we assume the small mass splitting

∆m12 is negligible within LO approximation.) However, The solution g = g′ leads to M1 =

(
√

5 − 2)g < M3 = g < M2 = (
√

5 + 2)g and contradicts to the current experimental

results with either m1 ' m2 < m3 or m1 ' m2 > m3. Therefore, here we make the choice

with g = −g′. Based on the current experimental data ∆m2
23 ' 2.5 × 10−3eV 2, we obtain

m1 = m2 ' 0.075eV and m3 ' 0.054eV .
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C. Symmetry properties of neutrino mass mixing matrix

Now let us examine the symmetry of the derived mass mixing matrix. Although the mix-

ing angle derived above is consistent with the GR pattern, the symmetry group is different

from that in Ref.[37, 38], and it contains three Z2 generators U , S and R, defined by:

U =


1 0 0

0 0 1

0 1 0

 ;S =
1√
5


1 −

√
2 −

√
2

−
√

2 − (
√
5+1)
2

(
√
5−1)
2

−
√

2 (
√
5−1)
2

− (
√
5+1)
2

 ;R =
1√
2


0 i i

−i 1√
2
− 1√

2

−i − 1√
2

1√
2

 , (87)

They satisfy:

UTMU = M ; STMS = M ; RTMR = M, (88)

and

U2 = 1; S2 = 1; R2 = 1,

US = SU ; UR = RU ; SR = −URS, (89)

U is the center of the above symmetry algebra since it commutes with both S and R. As a Z2

generator, U can have eigenvalue ±1. In the subspace with U = −1, S and R commute with

each other, which leads to a Z2⊗Z2 group symmetry. While in the subspace with U = 1, S

and R anticommute with each other, which leads to a Z2 Heisenberg group symmetry. We

note that U and S are the two Z2 generators of the GR pattern[37, 38] characterized by the

Z2 ⊗ Z2 Klein symmetry and apply to generic g, g′ in Eq.(84), while R is a new generator

which arises from the special relation g = −g′.

D. The effect of CP violation

Before conclusion, we discuss the effect of CP violation for the neutrino mass mixing

matrix. Recently, the DaYa-Bay’s experiment has reported a non zero θ13 ' 8.8◦[16]. From

our point of view, the experimentally observed (not very small) θ13 has already implied the

presence of CP violation! This is because the GR pattern we derived has a zero θ13 within

LO approximation, and if we ignore the charged lepton contribution for θ13 due to its huge

mass hierarchy(This assumption is reasonable since in the CKM quark mass mixing matrix,

θ13 is significantly small due to its huge mass hierarchy.), the experimentally obseved θ13
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must come from CP violation. On the other hand, our theory predicts m1 = m2 within

LO approximation, therefore the experimentally observed small mass splitting ∆m12 is also

contributed by CP violation. Interestingly, the current experiment results point to the

relation |∆m12/∆m23| ∼ θ13/θ23. Our theory suggests that such a relation should not be a

coincidence, and it actually indicates that the nonzero ∆m12 and θ13 have a common origin

– the CP violation. However, the mechanism of CP violation in lepton sector is not clear,

and in our framework, the topological Berry phase[30] of Majorana zero modes could be a

possible source of CP violation. We will leave a detailed study of CP violation physics in

our future publications.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we start with a simple 1D TSC model protected by T 2 = −1 time reversal

symmetry and show that the pair of time reversal protected Majorana zero modes on each

end carry a T 4 = −1 representation of time reversal symmetry and 1/4 spin. Then we

generalize the T 4 = −1 fractionalized representation for a pair of Majorana zero modes into

a P 4 = −1 parity symmetry and a C
4

= −1 nontrivial charge conjugation symmetry as

well. We also construct explicit condensed matter models and show that the proliferating

of Majorana zero modes will lead to a relativistic dispersion and an SU(2) spin.

These interesting observations from condensed matter systems motivate us to interpret a

Majorana fermion as four Majorana zero modes(or a Lorentz spinon zero mode) and revisit

its CPT symmetries. Surprisingly, we find that the CPT symmetries for a Majorana fermion

made up of four Majorana zero modes satisfy a super algebra. The CPT super algebra for a

Majorana fermion can be generalized into quantum filed theory as well. We further point out

that the nontrivial charge conjugation symmetry C can be promoted to a Z2 gauge symmetry

and its spontaneously breaking leads to the origin of (right-handed) neutrino mass. The Z2

gauge symmetry indicates the existence of the fifth force in our universe, which is possible

to be detected in future LHC experiment. Indeed, the seesaw mechanism scenario requires

such a fifth force. This is because the right-handed sterile neutrino does not carry electric-

weak charge, therefore if we assume all the coupling terms arise from (gauge) interactions,

there should be no coupling term between left-handed neutrinos and right-handed neutrinos.

However, in the seesaw mechanism, there is a coupling term in the form of Lφ̃νR(the Dirac
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mass term with L as the lepton doublets, φ as the Higgs field and νR as the right-handed

neutrino field). Although it is an ”allowed” term by gauge invariance, it is not a ”natural”

term since there is no interaction between Lφ̃ and νR. In the presence of the Z2 gauge force,

such a term becomes nature since νL and νR can carry opposite half-Z2 charge. Here the

concept of half-Z2 charge arises from the transformation Eq.(67), where the dL(R) fermion

operator takes eigen value ∓i under charge conjugation symmetry, which is indeed a Z4

charge. The reason why a fermion can carry a half-Z2(or Z4) charge is again due to the

group extension of the nontrivial charge conjugation symmetry C over the fermion parity

symmetry that makes the total symmetry group to be Z4. The half-Z2 charge assignment

of a single fermion is also consistent with the fact that the mass term(a fermion bilinear)

carries Z2 charge one.

These new concepts even provide us a natural way to understand the origin of three

generations of neutrinos, as there are three inequivalent ways to form a pair of complex

fermions(a particle and an anti-particle) out of four Majorana zero modes, characterized by

the T 4 = −1, (TP )4 = −1 and (TC)4 = −1 fractionalized symmetries that the complex

fermions carry. This argument requires that a Majorana fermion is not a point like particle

and has an internal structure at cutoff scale. In the semiclassical limit, together with the Z2

gauge (minimal coupling) principle, we are able to uniquely determine the CPT invariant

mass term and compute the neutrino mass mixing matrix with no fitting parameters within

LO approximation(without CP violation and charged lepton contribution). We obtain θ12 =

31.7◦, θ23 = 45◦ and θ13 = 0◦(the golden ratio pattern), which is intrinsically close to the

current experimental results. We further predict an exact mass ratio for the three mass

eigenstates with m1/m3 = m2/m3 = 3/
√

5.

For future works, we would like to point out several interesting directions along this

line of thinking: (a) The quark CKM mass mixing matrix. Since a Dirac fermion can be

decomposed into a pair of Majorana fermions, the Majorana zero modes scenario will be

applicable for the Dirac fermion as well. As a result, the origin of three generations of

quarks and charged leptons can be understood in the same way. It is even possible to use

similar terminology to compute the quark CKM mass mixing matrix. However, a crucial

difference in the quark CKM mass mixing matrix is the mass hierarchy problem, which

leads to a significant suppressing for its mixing angles. It is important to understand the

origin of quark mass hierarchy. (b)The cutoff problem. To resolve the cutoff problem, the
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topological defects description for fundamental particles is very promising, and it has already

been shown that a dual SM can be constructed from SU(5) monopole[63]. Together with

the Majorana zero modes idea proposed in this paper, it is possible to explain the origin

of isospin, fractionalized charge and three colors of quarks. Of course, a more challenging

and deep way to deal with the cutoff problem is to develop a mathematical framework for

quantum field theory in discrete space-time. If a fundamental theory has extremely strong

quantum fluctuation at cutoff scale, the discrete structure would become crucial. In a recent

work[59, 60], topological non-linear sigma model in discrete space-time is proposed. Since

gauge field can emerge from non-linear sigma model approaching quantum criticality[64, 65],

it is possible to derive the SM from a discrete non-linear sigma model. (c) Hidden super

algebra for the SM. From experimental point of view, to avoid fine-tuning, a super algebraic

structure of the SM is demanded. Recent experimental results on the Higgs mass near

126GeV [66, 67] point to a relation MHiggs ' (Mu + Md + Mc + Ms + Mt + Mb)/
√

2(the

Higgs boson mass is intrinsically close to the summation of six quark masses divided by
√

2). We also notice Mt 'MW +MZ(top quark mass is intrinsically close to the summation

of W and Z boson masses) by pass. If the above two relations are not coincident, they

must be strong indications that SM might satisfy a hidden super algebra. We note that

these interesting mass relations are merely among the known fermions and bosons in the

SM, therefore they can not be explained by any traditional super-symmetry. Nevertheless,

the Majorana zero modes might provide us a natural way to understand these relations.

(d)Super-extension of space-time structure. The conjectured internal structure of a Majorana

fermion in Fig. 6 might imply the presence of super-coordinates at cutoff scale. The discovery

of Majorana zero modes brings us the novel concept of half degree of freedom[24, 25], but

from a classical point of view, half degree of freedom contradicts the locality principle and

there is no way to define half degree of freedom per spacial point. Thus the internal structure

in Fig. 6 with four Majorana modes located on the vertices of a tetrahedra seems to be

meaningless. Nevertheless, if we assume a cutoff theory contains not only the classical

space-time coordinates but also fermionic coordinates, and a single Majorana mode lives on

a fermionic coordinate, the locality problem can be resolved. Ref.[61] proposed a nice way

to incorporate super-coordinates in the discrete topological non-linear sigma model, hence

it has the potential to describe a quantum field theory with super-coordinates at cutoff.

The presence of super-coordinates might automatically imply a super algebraic structure of
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the SM. Finally, such kinds of discrete topological non-linear sigma models are background

independent and might provide us a new route towards super (quantum) gravity.

IX. ACKNOWLEDGEMENT

Z-C Gu thank T.K. Ng’s invitation for IAS Program on Topological Materials and

Strongly Correlated Electronic Systems at HKUST, where the work was initiated, and Henry

Tye, K.T. Law, Z-X Liu, T. Liu for helpful discussions on early results. Z-C Gu especially

thank John Preskill, Alexei Kitaev’s encourages and delightful discussions for this work. Z-C

Gu also thank X-G Wen, Y-S Wu, D. Gaiotto’s suggestions for improving presentations, and

his wife Y-F Ge’s help on investigating experiment results. This work is supported in part

by the Gordon and Betty Moore Foundation.

Appendix A: CPT symmetries in momentum space

In this section, we will use a momentum space picture to derive the three generations of

neutrinos. First, let us examine the CPT symmetry transformation of the Fourier modes

γσ(k) = 1√
V

∫
d3xe−ik·xγσ(x) and γ′σ(k) = 1√

V

∫
d3xe−ik·xγ′σ(x). It is straightforward to

derive:

Cγ↑(k)C
−1

= −γ′↓(k); Cγ↓(k)C
−1

= −γ′↑(k);

Cγ′↑(k)C
−1

= γ↓(k); Cγ′↓(k)C
−1

= γ↑(k), (A1)

Pγ↑(k)P−1 = −γ′↑(−k); Pγ↓(k)P−1 = γ′↓(−k);

Pγ′↑(k)P−1 = γ↑(−k); Pγ′↓(k)P−1 = −γ↓(−k), (A2)

Tγ↑(k)T−1 = −γ↓(−k); Tγ↓(k)T−1 = γ↑(−k);

Tγ′↑(k)T−1 = −γ′↓(−k); Tγ′↓(k)T−1 = γ′↑(−k), (A3)

We can apply the similar argument to the emergence of three generations of Majorana

fermions for their Fourier modes in momentum space as well.

dL(k) = γ↑(k)− iγ′↓(k); dR(k) = γ′↑(k)− iγ↓(k)

cL(k) = γ↑(k) + iγ↓(k); cR(k) = γ′↑(k)− iγ′↓(k)

fL(k) = γ↑(k) + iγ′↑(k); fR(k) = γ↓(k) + iγ′↓(k) (A4)
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They carry the projective representation of T, TP and TC symmetries:

(TP )dL(k)(TP )−1 = −id†L(−k); (TP )dR(k)(TP )−1 = id†R(−k)

TcL(k)T−1 = −ic†L(k); TcR(k)T−1 = ic†R(k)

(TC)fL(k)(TC)−1 = −if †L(k); (TC)fR(k)(TC)−1 = if †R(k), (A5)

with (TP )2 = −1,T 4 = −1 and (TC)4 = −1 symmetry.

Their corresponding Hamiltonians of massless Majorana Lagrangian Eq.(60) has the fol-

lowing form in momentum space, e.g., for dL(R) femion:

Hd =
1

4

∑
k

ψ†(k)γ̄0γ̄ikiψ(k), (A6)

where ψ(k) is the Fourier mode of ψ(x), defined as ψ(k) = 1√
V

∫
d3xe−ik·xψ(x). It is

straightforward to verify that ψ†(k) = ψt(−k). If we assume the chiral basis has a spin

polarization in the y-direction, we can fix the momentum to be k = (0, k, 0). Thus, we

obtain:

Hd =
1

4

∑
k

[
kγ↑(−k)γ↑(k)− kγ↓(−k)γ↓(k)− kγ′↑(−k)γ′↑(k) + kγ′↓(−k)γ′↓(k)

]
(A7)

In terms of the chiral fermion fields dL(k) and dR(k), we have:

Hd =
1

2

∑
k

[
kd†L(k)dL(k)− kd†R(k)dR(k)

]
(A8)

For any given momentum k, we can define its positive energy mode as a left-handed particle

and the negative energy mode as a right-handed anti-particle.

For cL(R) and fL(R), their Hamiltonian in momentum space read:

Hc(f) =
1

4

∑
k

ψ†(k)γ0γikiψ(k), (A9)

If we assume the chiral basis has a spin polarization in the z-direction, we can fix the

momentum to be k = (0, 0, k) In terms of the cL(R) and fL(R) fermion operators, we have:

Hd =
1

2

∑
k

[
kc†L(k)c†L(−k)− kc†R(k)c†R(−k) + h.c.

]
;

Hf =
1

2

∑
k

[
kf †L(k)f †L(−k)− kf †R(k)f †R(−k) + h.c.

]
, (A10)
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In the Nambu basis, we obtain:

Hc =
1

2

∑
k

[
c†L(k) + c†R(k), cL(−k)− cR(−k)

] 0 k

k 0

 cL(k) + cR(k)

c†L(−k)− c†R(−k)

 ,
Hf =

1

2

∑
k

[
f †L(k)− f †R(k), fL(−k) + fR(−k)

] 0 k

k 0

 fL(k)− fR(k)

f †L(−k) + f †R(−k)

 ,(A11)

After diagonalizing the above two Hamiltonians, we can again define a positive mode cor-

responding to the left-handed particle and a negative energy mode corresponding to the

right-handed anti-particle.

Appendix B: The Z2 ⊗ Z2 flavor symmetry and beyond

In this section, we provide a symmetry argument for the choice of Yukawa couplings

in Eq.(81). Let us start with the diagonal term and assume there are three independent

couplings gf , gd and gc.

Lm−d =
i

4
φ(x)

[
gfψf (x)ψf (x) + gdψd(x)ψd(x) + gcψc(x)γ5ψc(x)

]
(B1)

According to the definitions of ψf (x) and ψc(x), they are related to each other by a Z2

symmetry transformation ψc(x) = S1ψf (x), where:

S1 =


1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

 (B2)

Let us rewrite the diagonal mass term as:

Lm−d =
i

4
φ(x)

[
gfψf (x)S−11 S1ψf (x) + gdψd(x)ψd(x) + gcψc(x)γ5S1S

−1
1 ψc(x)

]
=

i

4
φ(x)

[
gfψf (x)†S−11 S1γ0S

−1
1 S1ψf (x) + gdψd(x)ψd(x) + gcψc(x)†S1S

−1
1 γ0γ5S1S

−1
1 ψc(x)

]
=

i

4
φ(x)

[
gfψf (x)†S−11 γ0γ5S1ψf (x) + gdψd(x)ψd(x) + gcψc(x)†S1γ0S

−1
1 ψc(x)

]
=

i

4
φ(x)

[
gfψc(x)†γ0γ5ψc(x) + gdψd(x)ψd(x) + gcψf (x)†γ0ψf (x)

]
=

i

4
φ(x)

[
gfψc(x)γ0γ5ψc(x) + gdψd(x)ψd(x) + gcψf (x)ψf (x)

]
(B3)
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Comparing Eq.(B1) and Eq.(B3), we obtain gc = gf .

Similarly, ψf (x) and ψd(x) are also related by another Z2 symmetry transformation

ψd(x) = S2ψf (x) with:

S2 =


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

 (B4)

Again, we can rewrite the diagonal mass term as:

Lm−d =
i

4
φ(x)

[
gfψf (x)S−12 S2ψf (x) + gdψd(x)S2S

−1
2 ψd(x) + gcψc(x)γ5ψc(x)

]
=

i

4
φ(x)

[
gfψf (x)†γ0S

−1
2 S2ψf (x) + gdψd(x)†γ5S2S

−1
2 ψd(x) + gcψc(x)γ5ψc(x)

]
=

i

4
φ(x)

[
gfψf (x)†S−12 S2γ0S

−1
2 S2ψf (x) + gdψd(x)†S2S

−1
2 γ5S2S

−1
2 ψd(x) + gcψc(x)γ5ψc(x)

]
=

i

4
φ(x)

[
gfψf (x)†S−12 γ5S2ψf (x) + gdψd(x)†S2γ0S

−1
2 ψd(x) + gcψc(x)γ5ψc(x)

]
=

i

4
φ(x)

[
gfψd(x)†γ5ψd(x) + gdψf (x)†γ0ψf (x) + gcψc(x)γ5ψc(x)

]
=

i

4
φ(x)

[
gfψd(x)γ5ψd(x) + gdψf (x)γ0ψf (x) + gcψc(x)γ5ψc(x)

]
(B5)

Comparing Eq.(B1) and Eq.(B5), we obtain gd = gf . Finally, we have gc = gd = gf = g.

Now we see that in traditional quantum field theory language, the choice of diagonal Yukawa

couplings in Eq.(81) can be achieved by imposing the above two Z2 symmetries, which leads

to a Z2 ⊗ Z2 flavor symmetry.

Nevertheless, traditional quantum field theory can not tell us why there are three genera-

tions of neutrinos and where the Z2⊗Z2 flavor symmetry comes from. To understand these

mysteries, the internal structure proposed in this paper – a Majorana fermion is made up of

four Majorana zero modes plays a crucial role. At cutoff scale, all the mass terms should be

regarded as interactions between the scalar particle φ and the four Majorana modes γ↑, γ↓, γ
′
↑

and γ′↓. For example, all the three terms in Eq.(B1) can be expressed as:

igf
4
φ(x)ψf (x)ψf (x) =

igf
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
;

igd
4
φ(x)ψd(x)ψd(x) =

igd
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
;

igc
4
φ(x)ψc(x)γ5ψc(x) =

igc
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
, (B6)

41



The above expression implies that the three mass terms are indeed the same term at cutoff.

In terms of traditional quantum field theory language, we can attribute the existence of

three generations of neutrinos to the three different (local) ways of making a pair of complex

fermions out of four Majorana zero modes. Therefore, the Z2⊗Z2 flavor symmetry is indeed

a gauge symmetry from our perspective and we obtain gc = gd = gf = g. However, at this

point, one may confuse that if the three mass terms are the same, why we observe three

generations of neutrinos rather than one. This is because discrete gauge theory can have a

deconfinement phase in 3D where the three generations of neutrinos becomes well defined

at low energy.

The same argument also apply to the off-diagonal mass term:

Lm−od =
igcd
4
φ(x)

[
ψd(x)(1 + γ0γ5)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)(1− γ0γ5)ψd(x)

]
+

igcf
4
φ(x)

[
ψf (x)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)ψf (x)

]
+

igdf
4
φ(x)

[
ψf (x)(1− γ0γ5)ψd(x) + ψd(x)(1 + γ0γ5)ψf (x)

]
, (B7)

which can be expressed as:

igcd
4
φ(x)

[
ψd(x)(1 + γ0γ5)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)(1− γ0γ5)ψd(x)

]
=

igcd
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
; (B8)

igcf
4
φ(x)

[
ψf (x)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)ψf (x)

]
=

igcf
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
; (B9)

igdf
4
φ(x)

[
ψf (x)(1− γ0γ5)ψd(x) + ψd(x)(1 + γ0γ5)ψf (x)

]
=

igdf
2
φ(x)

[
γ↑(x)γ′↑(x)− γ↓(x)γ′↓(x)

]
, (B10)

Thus we can derive gcd = gcf = gdf = g′. Finally, by comparing the diagonal and off-diagonal

mass terms, we can further derive |g| = |g′|. Here the relative sign of g and g′ can not be

fixed because this relation is not a consequence of Z2 ⊗ Z2 flavor symmetry(We note that

flavor symmetry can not relate diagonal and off-diagonal mass terms).

In conclusion, all the above results come from a single principle – the three generations

of neutrinos/anti-neutrinos are the three resonating states out of the same four Majorana
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zero modes at cutoff scale. We conjecture that the Z2⊗Z2 flavor gauge symmetry proposed

here is also crucial for understanding the charged lepton and quark mass hierarchy problem,

which might originate from the spontaneously breaking of such a flavor gauge symmetry.
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