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We reconsider the problem of the anomalous Hall effect in ferromagnetic SrRuO3, incorporating
insights from the recently developed theory of Weyl semimetals. We demonstrate that SrRuO3

possesses a large number of Weyl nodes, separated in momentum space, in its bandstructure. While
the nodes normally do not coincide with the Fermi energy, unless the material is doped, we show
that even the nodes inside the Fermi sea have a significant effect on the physical properties of
the material. In particular, we show that the common belief that (non-quantized part of) the
intrinsic anomalous Hall conductivity of a ferromagnetic metal is entirely a Fermi surface property,
is incorrect: there generally exists a contribution to the anomalous Hall conductivity that arises
from topological Fermi-arc surface states, associated with the Weyl nodes, which is of the same
order of magnitude as the Fermi surface contribution.

I. INTRODUCTION

Understanding topological properties of the electronic
structure of materials and their experimentally observ-
able consequences has become one of the most important
themes of the modern condensed matter physics, grad-
ually replacing the traditional focus on the properties,
determined by symmetry. This shift has become par-
ticularly obvious in recent years, after the discovery of
topological insulators.1 An interesting new development
in this field is the realization that to possess topologi-
cally nontrivial properties a material does not have to
be an insulator, which significantly expands the range
of potential realizations of such materials.2–7 In particu-
lar, it is now understood that nondegenerate accidental
band crossings, named Weyl nodes in Ref. 3, which oc-
cur generically in any three-dimensional material with a
broken time reversal or inversion symmetry, have topo-
logically nontrivial properties. These crossings act as
“magnetic monopoles” in momentum space and the cor-
responding quantized topological charge gives the band-
crossing points stability to perturbations.

An alternative view of the Weyl nodes, which ap-
plies specifically to ferromagnetic materials, in which
the nodes appear due to broken time reversal symmetry,
is based on regarding the three-dimensional (3D) band-
structure as a set of two-dimensional (2D) bandstruc-
tures, parametrized by the crystal momentum compo-
nent kz, where the z-axis is taken to be along the mag-
netization direction. Weyl nodes in this picture corre-
spond to gap-closing quantum phase transitions, at which
Chern numbers of the 2D bands change pairwise by plus
and minus the topological charge of the corresponding
node. In other words, a Weyl node can be viewed as a
quantum Hall transition point in momentum space. One
interesting consequence, that immediately follows from
this, is the existence of chiral Fermi-arc surface states,
corresponding to pairs of bands with nonzero Chern num-
bers, where the Fermi arc connects projections of the
Weyl nodes with opposite topological charge on the sam-

ple surface Brillouin zone (BZ).3,5

As we show in this paper, this viewpoint is particu-
larly useful in discussing the role of the Weyl nodes in
intrinsic anomalous Hall effect (AHE) in metallic ferro-
magnets. AHE in ferromagnets is an old problem,8 the
interest in which has been revived recently with the real-
ization that topological properties of the electronic struc-
ture likely play a very important role in it.9–16 In partic-
ular, here we demonstrate that Weyl nodes, and the as-
sociated topological Fermi-arc surface states contribute
significantly to the intrinsic anomalous Hall conductivity
of ferromagnetic metals, which implies that the anoma-
lous Hall conductivity in ferromagnets can not be viewed
as a Fermi surface property.

II. TIGHT-BINDING MODEL OF SrRuO3

While our results likely apply to most metallic ferro-
magnets, we choose SrRuO3 as the specific material we
focus on. The main reason for this choice is a relative sim-
plicity of its relevant electronic structure near the Fermi
energy, which to a good approximation consists of six
bands, corresponding to the three t2g Ru d-orbitals,17

which are 2/3-filled in the undoped material. We also
assume undistorted cubic perovskite crystal structure for
SrRuO3, which should be a good approximation, espe-
cially since we are interested in topological properties of
the bandstructure, insensitive to minor variations of the
parameters.

We start from a 6-orbital tight-binding model for
SrRuO3, which can be written down based on symme-
try considerations.18 The momentum space Hamiltonian
has the following form:

H =
∑
k

[
εakσδabδσσ′ + fabk δσσ′ + iλεabcτ cσσ′

]
d†kaσdkbσ′ ,

(1)
where summation over repeated orbital and spin indices
is implicit. The first term in Eq. (1) corresponds to spin-
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split unhybridized t2g-orbital band dispersions:

ε1=yzkσ = −2t1[cos(ky) + cos(kz)]− 2t2 cos(kx)−mτzσσ,
ε2=xzkσ = −2t1[cos(kx) + cos(kz)]− 2t2 cos(ky)−mτzσσ,
ε3=xykσ = −2t1[cos(kx) + cos(ky)]− 2t2 cos(kz)−mτzσσ,

(2)

where t1 and t2 are the in-plane and out-of-plane or-
bital hopping matrix elements, m is the rigid momentum-
independent exchange spin splitting, which is nonzero in
the ferromagnetic phase, and crystal momentum is mea-
sured in units of the cubic structure lattice constant. Sec-
ond term corresponds to inter-orbital spin-independent
hopping, which is induced by hybridization between the
oxygen p-orbitals and ruthenium d-orbitals:

fabk = −4f sin(ka) sin(kb). (3)

Finally, the third term corresponds to spin-orbit (SO) in-
teractions, projected onto the t2g orbital manifold, where
λ denotes the strength of the SO interactions, εabc is the
fully antisymmetric tensor and τ1,2,3 is the triplet of Pauli
matrices. We should point out here that we will not at-
tempt any quantitative comparison with experiments in
this paper and treat parameters in Eq. (1) with some
freedom. What we are after in this work is qualitative
features of the bandstructure and their role in the AHE,
and we expect our results to apply quite generally to
metallic ferromagnets, not just to SrRuO3.

In the absence of the SO interactions, the eigenstates
of H exhibit multiple band crossings, which arise due to
the spin splitting. One might think that once the SO
interactions are turned on, these band crossings will be
eliminated and replaced by gaps of magnitude, propor-
tional to the SO interaction strength λ for small λ.16

Recent work on Weyl semimetals, however, has demon-
strated that this is not the case: nondegenerate band
crossings in three dimensions possess topological stabil-
ity and can not be eliminated by small perturbations. We
find that a large number of band crossings in SrRuO3 sur-
vive even in the presence of the SO interactions and have
a very significant qualitative effect on the anomalous Hall
conductivity, as will be shown below.

III. INTRINSIC ANOMALOUS HALL EFFECT
AND WEYL NODES: GENERAL DISCUSSION

As is well-known, intrinsic anomalous Hall conductiv-
ity can be calculated as an integral of the Berry curvature
over all the occupied states:16

σxy =
e2

h̄

∑
n

∫
d3k

(2π)3
nF (εnk)Ωznk, (4)

where nF (ε) is the Fermi-Dirac distribution function,
εnk is the band dispersion, and Ωnk is the Berry cur-
vature vector, which is a curl of the Berry connection
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FIG. 1. (Color online). Band dispersion for t2/t1 =
−0.2, f/t1 = 0.2, λ/t1 = 0.4,m/t1 = 1, plotted along high-
symmetry directions using tetragonal lattice system notation.
There are multiple band crossings between different bands.
Some of the crossings are in fact away from high-symmetry
directions and can not be seen in this plot.

Ank = i〈nk|∇k|nk〉, and may be thought of as an ana-
log of magnetic field in momentum space. One way to
understand the important role, played by the Weyl nodes
in the intrinsic AHE, is to realize that these nodes act
as magnetic-monopole-like sources of the Berry curva-
ture field, which is divergenceless in the absence of such
sources. For our purposes, however, it will be more useful
to adopt a different viewpoint. Namely, since the magne-
tization m along the z-axis introduces a preferred direc-
tion and reduces the cubic symmetry down to tetragonal,
we can separate the 3D momentum space integration in
Eq. (4) into a 1D integral over kz and a 2D integral over
k⊥ = (kx, ky):

σxy =

∫ π

−π

dkz
2π

σ2D
xy (kz), (5)

where

σ2D
xy (kz) =

e2

h̄

∑
n

∫
d2k⊥
(2π)2

nF [εnk⊥(kz)]Ω
z
nk⊥

(kz). (6)

We may then regard σ2D
xy (kz) as the Hall conductivity

of a set of 2D systems, parametrized by kz. This repre-
sentation of σxy turns out to be extremely useful, as we
show below.

As was first pointed out by Haldane,14 we can use
Stokes theorem and rewrite σ2D

xy in the following way:

σ2D
xy (kz) =

e2

2πh

∑
n

∮
dk ·Ank(kz), (7)

where the integral is along the 1D Fermi surface of a 2D
system, corresponding to a given kz. This suggests that
the intrinsic anomalous Hall conductivity may be thought
of as a Fermi surface property, like all other transport
properties of metals.14 However, there is a subtlety in
this argument. The Stokes theorem applies only when
the corresponding band has a zero Chern number.19,20
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FIG. 2. (Color online). (a) Chern number for the second low-
est band as a function of kz for the same parameter values
as in Fig. 1. The Chern number experiences multiple integer-
valued jumps as a function of kz in the first BZ. The jumps
are the evidence of the existence of Weyl nodes. (b) Locations
of all Weyl nodes in the bandstructure of SrRuO3. Only one
quarter of the first Brillouin zone is shown. The remaining
points are obtained by successive π/2-rotations around the
z-axis. Dots are linear (charge one) Weyl nodes, while crosses
denote quadratic (charge two) Weyl nodes. The solid (con-
necting pairs of nodes with opposite topological charge) and
dashed lines are guides to the eye.

Chern number is an obstruction to the Stokes theorem20

and the correct form of Eq. (7) is:

σ2D
xy (kz) =

e2

2πh

∑
n

∮
dk ·Ank(kz) +

e2

h

′∑
n

Cn(kz), (8)

where

Cn(kz) =
1

2π

∫
d2k⊥Ωznk⊥

(kz), (9)

is the Chern number of the two-dimensional band n at
momentum kz and the sum over n in the second term in
Eq. (8) is restricted to completely filled 2D bands only,
which is indicated by the prime. To make Eq. (8) well-
defined we may regard the first BZ as an open square
rather than a torus, so that when a band is completely

filled, the line integral in the first term becomes an inte-
gral over the BZ boundary and gives the corresponding
Chern number. Gauge ambiguity in the first term may
be eliminated by comparing Eq. (8) with the explicitly
gauge-invariant result, obtained from Eq. (6).

If Weyl nodes were not present in the bandstructure,
all the Chern numbers Cn(kz) would not in fact depend
on kz, and it is normally assumed that they are zero,
since a very large spin splitting would be needed to cre-
ate a band with a constant nonzero Cn(kz), implying
a contribution to the total Hall conductivity from this
band, quantized in units of e2G/2πh, where G = 2π is
the smallest reciprocal lattice vector. Thus one may con-
clude that the anomalous Hall conductivity is entirely
a Fermi surface property.14 This, however, is incorrect,
since Cn(kz) are not independent of kz in the presence of
Weyl nodes, and they are in general present in any ferro-
magnet, even when the magnetization is small. Indeed,
as discussed above, a Weyl node may be thought of as
a gap-closing transition point for the 2D bandstructure,
parametrized by kz. At the transition point, the Chern
numbers of the two bands, that touch at the Weyl node,
change by ± the topological charge of the node.3–6 The
corresponding contribution to the total 3D Hall conduc-
tivity is then not quantized in units of G, but is still not
a Fermi surface property: it instead corresponds to the
Fermi-arc surface states, associated with pairs of Weyl
nodes with opposite topological charge.

IV. INTRINSIC ANOMALOUS HALL EFFECT
AND WEYL NODES: SrRuO3

Let us now see how the above picture is realized
in SrRuO3. The 6-band tight-binding Hamiltonian of
SrRuO3 Eq. (1) is easily diagonalized numerically. The
bandstructure, plotted along high-symmetry directions
in the first BZ in the standard way, is shown in Fig. 1.
Some of the Weyl nodes are in fact clearly visible in
Fig. 1. In general, however, finding all the nodes, along
with their topological charges, is quite a difficult task.
What makes it significantly easier is the relation between
the Weyl nodes and the change of the Chern number as
a function of kz, discussed above. To evaluate the Chern
numbers, we use a discrete lattice version of Eq. (9),21

corresponding to the discrete values of the crystal mo-
mentum in a finite sample with periodic boundary con-
ditions. Namely we calculate the lattice Berry connection
fields as:

Ank,µ = 〈nk|nk + µ〉, (10)

where µ are the nearest-neighbor vectors of the square
momentum-space lattice with a fixed kz. The Chern
number is then evaluated as:

Cn(kz) =
1

2π

∑
k

Im ln(Ank,x̂A
n
k+x̂,ŷA

n
k+x̂+ŷ,−x̂A

n
k+ŷ,−ŷ).

(11)
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FIG. 3. (Color online). Total anomalous Hall conductivity
σxy (solid line) and the edge-state contribution to the con-
ductivity σedge

xy (dashed line) as a function of Fermi energy εF
for m/t1 = 1 (a), and magnetization m for εF /t1 = 0 (b). σxy

is in units of e2/h (the lattice constant is set to unity).

An example of the resulting plot of Cn(kz) is shown in
Fig. 2. Every discrete jump of the Chern number by an
integer is due to the presence of Weyl nodes in the plane
in 3D BZ, corresponding to the given value of kz. The
magnitude of the jump is equal to the total topological
charge of Weyl nodes in a given plane. The informa-
tion obtained from these plots, plus symmetry consider-
ations, confirmed by an explicit examination of the band
dispersions, allow us to identify all the Weyl nodes in
the bandstructure of SrRuO3, as shown in Fig. 2. We
find a total of 22 pairs of nodes with opposite topolog-
ical charges in the first BZ. Two of those pairs, sepa-
rated along the (kx, ky) = (0, 0) and (kx, ky) = (π, π)
lines, correspond to double-Weyl nodes with topological
charges ±2. These are stabilized by the cubic symme-
try of the undistorted perovskite structure and will be
split each into two pairs of ordinary Weyl nodes with
single unit of topological charge when the orthorhombic
distortion, typically present in real SrRuO3 material, is
taken into account.22 The rest of the nodes have topo-
logical charge ±1. Of those, four pairs are located on the
same lines as the double-Weyl nodes, four pairs are on
the (kx, ky) = (0, π), (π, 0) lines, eight pairs are located
in the kx = ±ky planes, and four pairs are located in the
kx = π and ky = π planes. The nodes are generally not
at the same energy, unless required by symmetry.

FIG. 4. Example of a calculated chiral surface state disper-
sion in the kz = 0 plane for a sample with open boundaries,
perpendicular to the y-axis. The intensity of gray is pro-
portional to the degree of surface localization of the corre-
sponding state, measured by the inverse participation ratio
of its wavefunction. The parameter values are the same as in
Fig. 1. Two pairs of chiral surface states, corresponding to
the double-Weyl nodes, separated along the (kx, ky) = (0, 0)
line, is clearly visible. Each pair of chiral surface states is
localized on one of the sample surfaces.

We can now explicitly identify two distinct contri-
butions to the total anomalous Hall conductivity of
SrRuO3: the contribution arising from the Femi-arc sur-
face states and the contribution, associated with the bulk
Fermi surface. We evaluate the surface state part of the
Hall conductivity by summing the Chern-number contri-
butions of all completely filled 2D bands at every kz:

20

σedgexy =
e2

h

∫ π

−π

dkz
2π

′∑
n

Cn(kz). (12)

The bulk Fermi surface contribution is then the difference
between the total Hall conductivity, given by Eq. (4),
and the surface state contribution, Eq. (12). The total
anomalous Hall conductivity is evaluated by summing
the lattice Berry curvature, Eq. (11), over all states below
the Fermi energy. The results are shown in Fig. 3. It is
seen that σxy is a highly nonmonotonic function of both
the Fermi energy (which can be varied to some degree
by doping) and the magnetization. The peaks and dips
in the dependence of σxy on εF correspond to the Fermi
level passing through the Weyl nodes. It can also be seen
that the Fermi-arc surface state contribution is always of
the same order as the Fermi surface contribution and
can not be regarded as an insignificant correction. An
example of a chiral surface state dispersion, calculated
for a sample with open boundaries, is shown in Fig. 4.

Eq. (12) appears to suggest that all Weyl nodes be-
low the Fermi energy contribute to the anomalous Hall
conductivity. This, however, is not correct. As discussed
above, Weyl nodes may be thought of as points of quan-
tum Hall transitions in momentum space, at which the
corresponding 2D bands experience equal in magnitude
but opposite in sign change of the Chern number. This
means, in particular, that when both 2D bands in the
pair, joined by a pair of Weyl nodes, are filled, the total
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contribution of this pair of nodes to the anomalous Hall
conductivity is zero.

V. CONCLUSIONS

In conclusion, we have identified the role, played by
nondegenerate band-touching nodes (Weyl nodes) in the
intrinsic AHE in ferromagnetic metals. We have shown
that, in general, even the non-quantized part of the
anomalous Hall conductivity is not a Fermi liquid prop-
erty, in the sense that a significant part of it arises from
the Femi-arc surface states, associated with pairs of Weyl
nodes of opposite chirality, and not with bulk states on
the Fermi surface. It is clear from our analysis that any
generic model of intrinsic AHE in ferromagnetic met-
als must incorporate Weyl nodes and the currently used

models are lacking in this regard.
It would be very interesting to try to observe chiral

edge states in SrRuO3 experimentally. One possibility
would be to use the ARPES technique, whose usefulness
in this regard has been clearly demonstrated in the study
of topological insulators.1 Another interesting possibility
is the scanning SQUID susceptometry, which can directly
image the edge currents.23
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