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Abstract. It is shown that surface tension 

can cause redistribution of melt in a partially 
molten medium, in accordance with a non-linear 
diffusion equation for the melt fraction. The 
associated diffusivity D depends on the surface 
energy and is positive (stable) for dihedral 
angle <60 ø and negative (unstable) for dihedral 

anise >•0ø•1 In the more likely stable case, D ~ . 

10 cm .s is typical •or •antle melts, but a 
value as high as 10-- cm-.s-- is conceivable for 
volatile-rich fluids. Surface tension may play 
an important role in creating pathways for meta- 
somatizing fluids in the Earth, but does not 
appear likely to affect substantiaily the 
existing estimates of large scale melt migration 
(e.g., beneath mid-ocean ridges). 

Introduction 

Melt migration through partially molten rock 
is the essential first step in igneous activity 
and has been the subject of considerable theoret- 
ical development and modeling, especially 
recently (McKenzie, 1984, 1985; Scott and 
Stevenson, 1986, and other references therein). 
However, one aspect of melt and fluid migration 
has remained poorly understood previously: the 
role of surface tension. There are conflicting 
views, ranging all the way from Turcotte (1982) 
who asserts (p. 401) that "surface tension can 
only play a role on the scale of the individual 
grains" to Waff (1980) who has argued that 
surface tension can sometimes prevent melt from 
migrating geologically relevant distances. In 
fact, neither of these extreme views is correct. 
I show here that surface tension effects can, by 
themselves, drive migration of melt or fluid over 
geologically interesting distances. The effect 
can be particularly large for a low viscosity 
fluid, and could be very important for meta- 
somatism, as Watson (1982) has stressed. How- 
ever, the model developed here predicts that sur- 
face tension does not affect melt migration in a 
sufficiently strong way that existing work on, 
for example, pressure-release melting beneath 
mid-ocean ridges is invalidated. 

There is no previous theoretical work in this 
area, so the model presented here is kept to the 
barest essentials. For convenience, the 
descriptions below refer to partial melts, but 
there is usually no difference in principle if it 
were a rock permeated by a volatile-rich fluid, 
except where explicitly noted otherwise. The 
basic ideas of the model are simple: in a 
partially molten, permeable medium the melt tends 
to redistribute so as to minimize the surface 

energy per unit volume. The driving force for 
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the redistribution is the variation with meat 

fraction of the pressure difference between the 
solid and liquid, caused by surface tension. 
This causes a pressure gradient within the liquid 
even at constant average pressure for the two 
phase medium. This pressure gradient drives melt 
migration in accordance with Darcy's law. I show 
below how these simple ideas lead to a non-linear 
diffusion equation for the melt fraction. 

The Model 

Here are the assumptions: 
1. Textural Equilibrium. The melt is assumed 

to distribute itself locally (i.e. on the grain 
size lengthscale) in accordance with surface 
tension equilibrium. This implies constant mean 
curvature of all liquid-solid interfaces if (as I 
assume throughout) only one solid phase is 
present (Bulau et al., 1979; yon Bargen and Waff, 
1986). This equilibrium takes no longer to 
achieve than solid state diffusion across a 

single grain and is therefore expected to be 
quick, geologically speaking (McKenzie, 1984). 
It usually implies a unique local melt topology 
for a given melt fraction and a well-defined 
pressure difference between liquid and solid 
(Landau and Llfshitz, 1969). 

2. Chemical Equilibrium. The melt and solid 
are in chemical equilibrium and maintain uniform 
composition. Changes in melt fraction occur only 
through redistribution of melt. 

3. No Compaction or Shear. For simplicity, 
it is assumed that the only stress differences 
present are those due to surface tension. 
Actually, deviatoric stresses and compaction can 
be easily included, as mentioned below, except 
for one difficulty: the permeability may become 
a tensor. 

4....•o Ripenlnff. Over a long period of time, 
grains grow. This process of Ostwald ripentng 
(Marder, 1985; 6licksman and Marsh, 1986) is 
assumed to be slow compared to surface tension- 
driven melt redistribution. I assume constant 

grain size. 
.5..Low Melt Fraction. This simplifies the 

theory but can be dispensed within a more 
complete development. 

Figure I shows a cross-section through a melt 
tubule at a grain edge intersection (i.e. triple 
Junction). At low melt fraction and dihedral 
angle e < 60* (defined in the figure), this is 
where most of the melt resides (Bulau et al., 
1979; Waff and Bulau,.1979; yon Bargert and Waff, 
1986). Since the radius of curvatur• along the 
tubule (perpendicular to the •lane of the figure) 
is large, the surface tension pressure difference 
between solid and liquid phases is 

Ps - PA -- • ¾s• (1) 
11•t9 
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Fig. 1. Cross-section of a tubule at a grain- 
edge intersection (triple junction). The radius 
of curvature of the gr•in-melt interface is r, 
and 8 is the dihedral angle. 

where ¾ _ > 0 is the sQlid-ltquid interfacial 

energy a•d r • 0 fo• 8 • 60 ø . After some tedious 
trigonometry, the cross-sectional area of the 

tubule, A t , is found to be 
3r 2 2• 

A t = ( sin 2 - + sin? - ? ) 
2 3 2 

? ; -- e 

3 
(2) 

Since the melt fraction f is proportional to the 
ratio of A. to the cross-sectional area of a 

grain, It [ollows that f • r z and 

•,P = (3) 
• fl/2 

where a • 0 for e • 60 ø and is of order ¾ l/R, where R is the grain size. However, {a{ •s small 
if e is very near 60 ø . These results agree with 
detailed numerical models, provided f < 0.05 
(yon Bargen and Waff, 1986). It has o•ly limited 
applicability at e > 60 ø , where pockets rather 
than tubules develop at low f, but most systems 
ot geological interest have e < 60 ø (Waff and 
Bulau, 1979; Vaughan and Kohlstedt, 1982; 
Jurewicz and Watson, 1984). 

Consider a two-phase medium with constant mean 

pressure (1 - f)p_ + fPl but variable f << 1. To 
a good approximation, Ps is then constant (P) o 
and 

P• = P - •P (4) o 

Darcy's law states that the melt flux u (volume 
of 1..iouid per unit area per unit time) is given 

by 

-k(f) ePl 
u = (5) 

assuming that the pressure gradient is in the x- 

direction. Here, k is the permeability and •1 is 
the liquid dynamic viscosity. Each phase is 
incompressible, so there is also a continuity 
equat i on: 

3u •f 

•x •t 
(6) 

where t is time. Combining equations (3)-(6)- 

•f • •f 

-- = --[ D(f) -- ] (7) 
•t •x •x 

a k(f) 
D(f) • ' (8) 

2nlf 3/2 
-- a nonlinear diffusion equation for surface 
tension-driven melt migration. Notice that it is 
the melt fraction that diffuses, not the melt 
itself. The diffuslvity D is positive for e ( 
60 ø (i.e. fluctuations in melt fraction are 
spontaneously smoothed) and negative for e > 60 ø 
(fluctuations are spontaneously amplified). 
Equation (7) can also be derived and understood 
by an energy approach (extension of Scott and 
Stevenson, 1984, 1986) which leads to the 
Identification 

(9) 

where AE Is the surface energy per unit volume of 
the two phase medium. This result can also be 
derived explicitly for the geometry of Figure 1, 
and agrees with numerical modeling (von Bargen 
and Wall, 1986). Equation (7) can be 

generalized to larger f and then D = 
-•-(1 - f)k(f) d/df[(1 - f)hP_]. It Is also 
straightforward to modify equation (5) to Include 
gravity and compaction. For example, the 
equivalent of nondimensionalized equations (3) 
and (4) in Scott and Stevenson (1984) now become 

Uz = -ft 

E 
u = [ 1 f + u ] (10) 

2f3/2 z zz 

• = a/aogL 

where L is the 'compaction length' (ko•_/•.)1/2, 
k • k fn n is the bulk viscosity of m•tr•x 0 ' S 
(assumed constant), subscripts are partial 
derivatives, • is a nondimensional surface 
energy, and ho Is the density difference between 
solid and liquid. 

A Simple Solution 

Consider the standard 'step function' problem; 
relevant to experiments on melt Infiltration 
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Fig. 2. Solution of the non-linear diffusion 
problem (equations 7, 11). The curves are 
labeled by the value of B, with B = 0 correspond- 
ing to the usual error function solution. 

(e.g., Watson, 1982): 

f = fo ' x = 0 , Wt 
f = 0 , x > 0 t = 0 (11) 

For example, this represents melt in contact with 
dry rock and the subsequent infiItration. It is 
assumed that the diffusivit• is positive and 
expressibIe as D = D (f/f)'. For • = O, the 

o usual error function solution appIies. For • • 
O, the diffusion equation (7) can be solved 
numerically by extension of the techniques 
discussed in Crank (1956), p. 162 fl. The 
resulting solutions are shown in Figure 2. The 
important point is that for all •, the correct 
long term behavior is characterized by the 
scaling parameter f • x/(4D_t) •'-, the usual 
diffusion scaIing. For 0 <u• < 1, the melt 
fraction and its gradient both go to zero at 
finite •. For B = 1, the melt fraction goes to 
zero at finite • and with finite slopeß For 5 > 
1, the melt fraciion goes to zero at finite f but 
with infinite slope, i.e. the solution exhibits a 
"front." The value of B depends on the behavior 
of k(f) at small f. It is now generally agreed 
that k remains finite as f • 0 if ß < 60 ø (see 
discussion in McKenzie, 1984) but the func•tonal 

dependence is uncertain. Many favor k • f3, 
corresponding to B = 1ß5, but this form is chosen 
to model a wide range of f and does not describe 
the small f limit of the numerical models 

(yon Bargen and Wall, 1986)_where long tubules 
dominate (Fig. 1) and k • f2. This corresponds 
to B = 1/2 and the absence of a "front" in the 
diffusive profile. 

In reality, D remains finite in the limit f • 
O because of solid state diffusionß Although 
this diffusion is very small, it is essential to 
the achievement of the long term behavior in 
Figure 2. In fact, all the solutions have a 
small error function-like tail at small f. A 

related problem is the formal breakdown of eoua- 
tion (7) when f varies significantly across a 
single grain diameter. However, neither of these 
difficulties appear to modify significantly the 
long time behavior, provided assumption (1) is 
valid, 

Magnitude of the Diffusion 

Assuming k(f) = 10-3af2R 2 and a = bY I/R S ' 

-7 2 -1 
D = ab(5 x 10 cm .s ) 

¾ f R 103 P 
( sl 102 erg cm -2) (•)1/2 ( ,, ,) (•) ß O.Ol o.1 cm rl• 

(12) 

where ab ~ 1 (von Bargen and Waff, 1986). Other 

parameters are refer nce• t91Plauslble choices. A dtffusivity of 10 -• cm .s is much lower than 
heat diffusion, but much faster than most solid 
state diffusions and possibly comparable to 
solute diffusion in some magmas (Holmann, 1980). 
Watson (1982) performed an experiment on melt 
infiltration in a simplified basalt-perldotite 
analog in which the initial state corresponded to 
the step function problem above. The infiltra- 
tion of ~1•2 m• inla day (10 v secs) corresponds 
to D ~ 10- cm .s- , crudely consistent with 
equation (12). However, it is likely that Watson 
was observing some chemical effects as well as 
simple surface tension. More experiments are 
desirable. 

If equation (12) can be applied to fluids, 
then D could be spectacularly large. For -2 
example a wa er- P and D ~ 10 -• iChlflUid might have •_ ~ 10 cm .s- , an order of magnitude 
higher diffusion than heat! There are several 
difficulties with applying the model directly to 
metasomatising fluids, including the complica- 
tions of chemistry (for a recent assessment, see 
Schneider and Egglet, 1986) and the uncertain 
surface energies and fluid distribution (but see 
Murphy et al., 1984). Nevertheless, it is possi- 
ble that surface tension effects could play a 
significant role in creating the pathways for 
metasomatism. More experimental work is clearly 
needed. 

The Effect of Gravity 

Including the gravitational body force, 
equation (5) becomes 

k(f) • •f 

u = [ g•o - 2f3/2 •z ] (13) 
where gravity acts in the -z direction. Con- 
sider, first, the steady state solution (u = O) 
corresponding to a column, length D, of partial 
melt with impermeable boundaries. If the average 
melt fraction is f then the melt distribution 

o 
f(z) is given by 

f(z) = 
f(o) 

[ I - 
gApzj•(o) 

D 

f f(z) dz = Df 
o 

o 

(14) 

where z = 0 is the bottom of the colum n . We can 
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define the critical length D as the one for 
which gravity overwhelms surface tension and f(D) 
- 1, corresponding to the onset of macroscopic 
melt segregation at the top of the column. This 
is given approximately by 

D • (15) 
c 

gAof 
o 

For a 103 -3 ~ erg.cm , AO ~ 0.2 g.cm -3, and f_ ~ 
0.02, D ~ few •eters. This is closely rela•ed 
to the •engthscale determined by •aff (1980) for 
the "balance" between surface tension and 

gravity. However, it does not have the interpre- 
tation Waff gave it. AlthOugh this lengthscale 

is small geologically, it implies •ha• in all 
laboratory experiments, surface tens•On is •ore 
important than gravity. 

If we now consider large sca•e •elt •igration 
as in the region beneath mid-ocean ridges, then 
the static solution is Irrelevant and the 

s•allness of D i•ediately i•plies that surface 
tension effect• are unimportant, since the 
•elting is distributed over geologically large 
lengthscales. The correction ter• to the usual 
Darcy law prediction for u will be of order 
D /D. where D. > 10 k• is the lengt•cale C t' I ~ 
determined by •antle convection and the phase 
diagram for melting (cf. Fig. I of Turcotte, 
1982). 

Concluding Comments 

The role of surface tension in •elt •igratton 
is a complicated problem but so•e aspects are now 
understood. In this preliminary assessment, 
interesting effects have been identified with 
pos'sible relevance to •antle and crustal 
•etaso•atis•. The sa•e ideas •ay also apply to 
weathering problems (formation of granitic 
grus?). In contrast, surface tension does not 
seem to affect greatly the existing quantitative 
work on large scale •elt migration. 

Acknowledgements. I had helpful discussions 
or correspondence with D.R. Scott, E.B. Watson, 
and N. von Bargen. Supported by NSF grant EAR- 
8418353. Contribution number 4358 from the 

Division of Geological and Planetary Sciences, 
California Institute of Technology, Pasadena, 
California 91125. 

References 

Bulau, J.R., H.S. Waff, and J.A. Tyburczy, 
Mechanical and thermodynamical constraints on 
fluid distribution in partial melts, J. 
G.eophys. Res., 8•4, 6102-6108, 1979. 

Crank, J., Mathematics of Diffusion, Oxford 
Press, London, 347 pp, 1956 

Glicksaan, M.E. and S.P. Marsh, Evolution of 
lengthscaJes in partially solidified systems. 
NATO Workshop on the Structure and Dynamics of 

Partially Solidified Systems Abstract Volume, 
ed. D. Loper, pp. 19-20, 1986. 

Hof•ann, A.W., Diffusion in natural silicate 
•elts: A critical review. In Physics of 
Ma•atlc Processes, ed. R.B. Hatgraves, 
Princeton Univ. Press, Princeton, NJ, pp. 385- 
417, 1980. 

JurewtcZ, S.R. and E.B. Watson, Distribution of 
partial •elt In a felslc syste•: The 
i•portance of surface energy, Contrib. 
Mineral. Petrol., 8_•5, 25-29, 1984. 

Landau, L.D. and E.M. Lifshitz, Statistical 
Physics, publ. Addison-Wesley, Reading, Mass., 
Ch XV, 1969. 

Marder, M., Correlations and droplet growth, 
Phys. Rev. Lett., 5_•5, 2953-2956, 1985. 

McKenzie, D., The generation and coupaction of 
partially •olten rock, J. Petrology, 2•5, 713- 
765, 1984. 

McKenzie, D.P., The extraction of •agma from the 
crust and •antle, Earth P•anet. Sci. Lett., 
7_•4, 81-91, 1985. 

Murphy, W.F. III, K.W. #inkier, and R.L. 
Kleinberg, Frame modulus reduction in 
sedimentary rocks: The effect of adsorption 
on grain contacts, Oeophys. Res. Let%.•, 1•1, 
805-809, 1984. 

Schneider, M.E. and D.H. Egglet, Fluids in 
equilibriu• with peridotire minerals: 
Implications for mantle •etaso•atls•, 6eochi•. 
Cos•ochi•. Acta 50, 711-724, 1986. 

Scott, •.R. and D.J. Stevenson, Magma solirons, 
6eophys. Res. Lett., 1__•1, 1161-1164, 1984. 

Scott, D.R. and D.J. Stevenson, Mag•a ascent by 
porous flow, J. Geophys. Rest, 9•1, 9283-9296, 
1986. 

Turcotte, D.L., Mag•a •igration, Ann. Rev. Earth 
Planet. •ci•, 1•0, 397-408, 1982. 

Vaughan, P.J. and D.L. Kohlstedt, DistributiOn o! 
the glass phase in hot-pressed, oilvine-basalt 
aggregates' An electron •icroscopy studY, 
Contrib. Mineral. petrol.., 8_!1, 253-261, 1982. 

von Bargert, N. and H.S. Waff, Permeabilities, 
interfacial areas and curvatures of partially 
•olten systems: Results of numerical 
computations of equilibrlu• •icrostructures, 
ß Geophys Res , 9__!1 9261-9276, 1986. 

Waff, H.S., E•,fects of the gravitational field on 
liquid distribution in partial •elts within 
the upper •antle, J. Geophys. Res., 8_•5, 1815- 
1825, 1980. 

Waff, H.S. and J.R. Bulau, Equilibriu• fluid 
distribution in an untra•afic partial •elt 
under hydrostatic stress conditions, J. 
6eophys. Res., 8•4, 6109-6114, 1979. 

Watson, E.B., Melt infiltration and •agma 
evolution, 6e•, 1_•0, 236-240, 1982. 

D.J. Stevenson, Division of Geological and 
Planetary Sciences, Caltech, Pasadena, CA 91125. 

(Received July 31, 1986; 
Accepted August 26, 1986. ) 


