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We measure both the linear and nonlinear coupling between transverse modes in a nanomechanical

resonator. The nonlinear coupling is due to the displacement dependent tension of the resonator and

leads to a frequency shift (“pulling”) of each mode proportional to the square of the orthogonal mode’s

displacement amplitude. The linear coupling is apparent as an avoided crossing of the resonant

frequencies that occurs when one electrostatically tunes the modes into degeneracy via a nearby DC

gate. We consider the possibility that the linear coupling results from an electrostatic interaction and

find that this effect can only partially explain the magnitude of the observed coupling. By measuring

the coupled amplitudes magnetomotively at various angles to the applied field, we find that as the

modes are tuned through the degeneracy point, they remain linearly polarized, while their planes of

vibration rotate by 90�. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821273]

I. INTRODUCTION

Due to their small masses, high operating frequencies, and

high quality factors, nanoelectromechanical systems (NEMS)

have attracted interest for use in areas such as ultrasensitive

mass sensing,1,2 force microscopy,3,4 and RF signal process-

ing.5,6 Recently, coupling between mechanical modes in these

systems has become a topic of interest.7–12 Such mode cou-

plings can be important to NEMS applications as they can

influence the resonator parameter that is being exploited.

For instance, one can tune the resonance frequency and

quality factor of one mechanical mode through a nonlinear

coupling to a second mode.13,14 Nonlinear interaction between

modes has also been proposed as a way to probe the energy

eigenstate of a resonator.15,16 Such a proposal is a mechanical

analog to quantum nondemolition strategies, which employ

the optical Kerr effect to detect the quantization of the electro-

magnetic field.17

This nonlinear coupling is realized by the stretching of

the resonator during oscillation. For instance, in a clamped

beam type resonator, the tension along the axis is given by18

Tðx; yÞ ¼ AE
D‘ðx; yÞ

‘
;

¼ AE

2‘

ð‘=2

�‘=2

@x

@z

� �2

þ @y

@z

� �2
 !

dz; (1)

where A is the cross sectional area, E is the Young’s modu-

lus, ‘ is the beam’s axial length along z, and x and y are

transverse displacements in and out of the plane of the sub-

strate, respectively (see inset to Fig. 1). This dependence of

the tension on the amplitude of transverse motion results in

the familiar Duffing response, where the peak amplitude fre-

quency of the mode shifts upward with increasing drive am-

plitude. The same mechanism will result in a nonlinear

coupling between two modes, as each mode will be affected

by the tension resulting from the other mode’s displacement.

This effect has previously been demonstrated between differ-

ent order modes oscillating in the same plane,14 whereas the

coupling we explore in this work is between fundamental

modes oscillating in orthogonal directions.

In addition to nonlinear coupling, many systems also ex-

hibit a linear coupling between modes. This type of coupling

has been applied to mass sensing,19 signal amplification,20

and synchronization of arrays of resonators.21

Linear coupling can be of an elastic nature when two or

more resonator modes share a common support.7,19 It can

also occur as a consequence of the electromagnetic environ-

ment that the resonator is embedded in, as when a resonator

is being actuated and detected capacitively. This coupling

can be observed between two resonators in proximity, medi-

ated through the capacitance between them,20 as well as

between orthogonal modes of a single resonator interacting

with one or more nearby gate electrodes, as demonstrated

recently.12 To understand the latter, consider a typical

capacitive detection scheme,22 where a resonator is capaci-

tively coupled to a nearby gate electrode. In order to achieve

sensitive detection, a DC bias (Vg) is applied between the

gate and the beam, which gives a force on the resonator

f ¼ �$U ¼
V2

g

2
$C; (2)

where the total energy in the system, U, is comprised of the

energy stored in the electric field between the beam and gate

as well as the energy in the voltage supply that maintains the

constant voltage Vg between them. Expanding the capacitancea)Electronic mail: truittp@mail.montclair.edu
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per unit length C in both displacements x and y, we find an

electrostatic force per unit length in the in-plane direction (x
mode) to be

fx ¼
V2

g

2

@C

@x
þ @

2C

@x2
xþ @2C

@x@y
y

 !
: (3)

The first term above leads to a static shift in the beam’s equi-

librium position. The second term, which is a linear function

of x, modifies the linear restoring force on the beam and gives

a voltage dependent contribution to the spring constant.23 The

last term produces a force in the x direction due to a displace-

ment in the y direction, providing a linear coupling between

transverse modes of oscillation. Electrostatic forces for the

out-of-plane displacement (y mode) follow the same form.

In this work, we consider both linear and nonlinear cou-

pling between the two fundamental transverse modes of a sin-

gle resonator. Combining both couplings, the dynamics of two

modes can be described by two coupled equations of motion

Fx ¼ M €X þ Dx
_X þ KxX þ KxyY þ KTðX3 þ Y2XÞ; (4a)

Fy ¼ M €Y þ Dy
_Y þ KyY þ KyxX þ KTðY3 þ X2YÞ: (4b)

Uppercase X and Y are used to represent the time dependent

amplitudes of the fundamental transverse modes,

X ¼ X0cosðxxtÞ and Y ¼ Y0cosðxytÞ, as opposed to the

z-dependent transverse displacements, x, y. Coefficients

appearing in Eq. (4) are effective values including the effect

of the mode shape of the beam. M is the effective mass of the

beam and Dx and Dy are the dissipation constants. Kx and Ky

are the spring constants including the electrostatic contribu-

tion, Kxy ¼ Kyx are the linear coupling from the electrostatics,

and KT is the nonlinear spring constant due to tension. In what

follows, we have chosen to normalize X and Y by setting the

effective length of the beam equal to the actual length, which

defines X and Y as the average displacements over the length

of the beam, respectively. A more detailed explanation of Eq.

(4) and the coefficients therein can be found in the appendix.

II. SETUP

The structures used in this study are clamped-clamped

beams fabricated using standard electron-beam lithography

(EBL), e-beam evaporation, and reactive ion etching

(RIE).24–26 We began with a substrate consisting of 500 lm

thick p-type silicon coated with 100 nm of amorphous, low-

stress, LPCVD Si3N4. We used EBL and e-beam evaporation

to define an array of beam and gate electrodes with a bilayer

of 30 nm Al þ 5 nm Au. The beam/gate patterns were con-

nected to bond-pads by Ti þ Au traces defined in an addi-

tional EBL step. The metallic coating on the beam and gate

is used for transducing the resonator motion and also served

as a mask during the etching steps described next.

The beams were freely suspended by using a two-step

undercutting RIE scheme, as follows: Over the beam, we

defined a window of length 16:2 lm in a PMMA mask using

EBL. We then used an anisotropic RIE recipe (175 W, 40 mT,

18 ccm CHF3, 2 ccm O2) to remove the Si3N4 within the win-

dow. This etch was immediately followed by an isotropic RIE

FIG. 1. SEM of a typical device along with measurement circuits. The amplifier used for magnetomotive detection (CLC425) has a 3 kX input impedance (DC

resistance of beam ’1.6 kX), while a tank circuit (Lt ¼ 62 lH; Ct ¼ 5:4 pF; Rt ¼ 120 X) is used to match the impedance of the beam to a 50 X amplifier

(Miteq) for capacitive detection at approximately 8.5 MHz. The inset schematic shows a cross section of the device and the coordinate system used: the in-

plane mode and magnetic field are along x, with the transverse out-of-plane mode along y.

114307-2 Truitt et al. J. Appl. Phys. 114, 114307 (2013)
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recipe (75 W, 40 mT, 20 ccm SF6) to etch the silicon beneath

the beam and leave a freestanding Si3N4 (plus metal) beam.

This technique produces beams of well-defined length and

width but leads to uncertainty in the thickness of the metal

coating: the plasma etch thins the metal on top of the beam. In

addition, an unknown residue of silicon can be expected on the

underside of the beam, which is impossible to view with the

scanning electron micrograph (SEM). Using other test samples,

we estimate that about 25 6 5 nm of Al is left on the beam.

The dimensions of the beam measured in this study are

as follows: length ‘ ¼ 16:260:01lm, width in the plane of

the substrate w¼ 220 6 10 nm, and thickness h¼ 125 6

10 nm. A gate electrode of length 8.75 lm is positioned 165

6 10 nm away. For the given dimensions, we calculate a res-

onator mass of 1.3 picograms. Fig. 1 shows an SEM image

of a device similar to the ones measured.

We placed each device in a high vacuum chamber

(<10�5 Torr) in thermal contact with a 4.2 K liquid helium

bath. A carbon-glass thermometer attached to the gold-

plated, copper sample package indicated that the sample

temperature was below 5 K. We grounded one end of the

beam at the sample package, with the other end of the beam

and the gate connected to room temperature electronics

through semi-rigid coaxial cables. A magnetic field was

applied perpendicular to the beam axis and in the plane of

the sample. Fig. 1 includes schematics of both detection cir-

cuits. By fitting the frequency response of each detection cir-

cuit using the appropriate electromechanical impedance

model for the resonator,22,27 we determined the magnetic

field strength at the sample, and also determined an estimate

of the total beam-gate capacitance, Cbg ¼ 46 aF.

III. RESULTS AND DISCUSSION

A. Nonlinear coupling

Before looking at the coupling between the two modes,

we first measured their individual spring constants by record-

ing the frequency response of the two modes at low gate bias

and low driving amplitude (under 1 nm displacement), such

that the nonlinear and coupling terms in Eq. (4) can be

ignored. Lorentzian fits give resonant frequencies of f0;x
¼ 8:74 MHz and f0;y ¼ 8:42 MHz with quality factors

Qx ¼ 2:50 � 104; Qy ¼ 3:30 � 104. With such high quality

factors, the natural frequencies are related to the spring con-

stants through K ¼ Mð2pf0Þ2. Using this relationship, we

find our experimentally measured spring constants to be

Kex
x ¼ 5:760:5 N=m and Kex

y ¼ 5:360:5 N=m. Assuming a

simple rectangular cross section for the beam, theoretical

values (see appendix) were determined to be Kth
x ¼ 4:8 N=m

and Kth
y ¼ 1:2 N=m.

The measured Kx for the in-plane mode, is seen to have

good agreement with theory (within 20%), while the out-of-

plane value is observed to be 4.5 times larger than our pre-

diction. We believe that the most likely explanation for this

discrepancy is the possibility of residual silicon attached

under the beam after etching. Since the moment of inertia is

proportional to the cube of the thickness in the direction of

motion, such an addition to the cross section of the beam

would have a substantial effect on the out-of-plane stiffness

without affecting the in-plane value. In fact, we find that

assuming a 100 nm deep triangle of silicon is left under and

attached to the beam after etching gives Kth
x ¼ 4:7 N=m and

Kth
y ¼ 2:7 N=m, thus significantly improving the agreement

between theory and experiment for the out-of-plane mode,

while not significantly affecting the in-plane agreement.

Next, we measured the nonlinear response and nonlinear

mode coupling. By monitoring the frequency of each mode as

its amplitude was changed, we determined the mode’s Duffing

response behavior at amplitudes well below the critical point.

By monitoring each mode’s frequency as the amplitude of the

orthogonal mode was changed, we determined the nonlinear-

coupling or “frequency pulling” behavior. During all four sets

of measurements, we set the magnetic field and gate voltage

to 0.38 T and 2 V, respectively. While at high DC voltages,

the static deflection of the resonator toward the gate can intro-

duce an additional quadratic nonlinearity,23 we estimate that

the static deflection generated here is less than 0.3 nm and pro-

duces a negligible correction to the nonlinear response. The

out-of-plane mode was driven and detected using the magne-

tomotive method, while the in-plane mode was driven and

detected capacitively. Frequencies were determined by

Lorentzian fits, except for the measurement of frequency pull-

ing of the in-plane mode by the out-of-plane mode, during

which the frequency of the in-plane mode was monitored by a

phase locked loop. The results are shown in Fig. 2. We note

that if the orthogonal mode is driven a few linewidths off reso-

nance, the “pulling” effect disappears—which demonstrates

that heating (which might also be expected to produce a quad-

ratic frequency shift with increasing drive amplitude due to

the difference in thermal expansion coefficients of Si and

Si3N4) is not the origin of the “pulling” effect.

For low oscillation amplitudes, the beam is in the

weakly nonlinear regime and one can use a perturbative tech-

nique such as the Poincar�e-Lindstedt method28 to find an

expression for the mode frequencies. Assuming negligible

damping and ignoring the capacitive terms that are small at

low gate bias, then to first order in ðKT=KxÞX2
0 and

ðKT=KyÞY2
0 , we find

xx ¼ x0;x 1þ 3

8

KT

Kx
X2

0 þ
1

4

KT

Kx
Y2

0

� �
; (5a)

xy ¼ x0;y 1þ 3

8

KT

Ky
Y2

0 þ
1

4

KT

Ky
X2

0

� �
: (5b)

The second term in each equation gives the quadratic depend-

ence of frequency on amplitude characteristic of a weakly

driven Duffing oscillator. For the last term in each equation,

we used the time average displacement of the orthogonal

mode. This procedure works given that the two mode frequen-

cies are separated by many linewidths. For degenerate eigen-

frequencies, parametric oscillations due to the resonator

tension varying at 2x0 would have to be taken into account,

an effect not studied here. The quadratic relationship of fre-

quency on oscillation amplitude of either mode is clearly seen

in Fig. 2. According to Eqs. (5a) and (5b), the Duffing-type

frequency shift of a mode due to its own amplitude should

be 1.5 times larger than the frequency pulling due to the

114307-3 Truitt et al. J. Appl. Phys. 114, 114307 (2013)
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amplitude of the orthogonal mode. In Fig. 2, this relationship

holds for the in-plane mode, which exhibits a ratio of 1.53.

For the out-of-plane mode, however, the measured frequency

shifts are nearly equal, with a ratio of 1.1.

The reason for the discrepancy between theory and

experiment in the frequency shifts of the out-of-plane mode

is not clear. It may indicate that KT is not the same for the

four nonlinear terms in Eq. (4). Equal nonlinear spring con-

stants are a result of assuming that the two modes share the

same mode shape, which appears reasonable in that they are

both oscillations of a clamped-clamped beam in its lowest

vibrational mode. However, it is possible that the out-of-

plane mode has a slightly longer effective length due to the

isotropic etch leaving a thin ledge of Si3N4 at the edge of the

etch window that is able to flex in the out-of-plane direction

along with the beam. The perimeter of this undercut can be

seen as a bright line around the etch window in Fig. 1. From

the SEM image, we estimate that the out-of-plane mode may

be 0:4 lm longer than the in-plane mode. This difference

raises the expected ratio of Duffing and pulling slopes for the

in-plane mode to 1.54, thus improving the already good

agreement with experiment in that case, and lowers the

expected ratio for the out-of-plane mode to 1.46, which is a

very small improvement. Another assumption implicit in our

choice of mode shape is that the beam dynamics are domi-

nated by the stiffness of the beam, and thus we ignored any

residual tensile stress, r, present in the Si3N4. The relative

importance of these terms can be quantified through the ratio

R ¼ rA‘2=12EI. For the LPCVD Si3N4 used, E ’ 300 GPa

and r is on the order of MPa, resulting in R ranging from

about 0.1 to 1. Even in this range, using the zero stress mode

shapes is expected to be a good approximation. For instance,

we estimate the effect of residual stress on the mode

natural frequencies to be limited to about 10%. However,

because the bending moment, I, is about three times smaller

for the out-of-plane mode than the in-plane mode, its mode

shape will be affected more by the residual stress. In

addition, deviations from ideal clamping at the beam end-

points may also effect the mode shapes. Finally, however, it

should be noted that the agreement between theory and

experiment in Fig. 2(a) depends on the mode shapes being

identical and so it is unlikely that the observed discrepancy

in Fig. 2(b) can be explained fully through mode shape

differences.

Using Eqs. (5a) and (5b), the measured spring constant of

each mode, and the measured frequency shifts, one can deter-

mine KT. From the out-of-plane and in-plane Duffing slopes,

we find Kex
T ¼ 4:05� 1013N=m3 and 5:36� 1013N=m3,

respectively. From the pulling of the in-plane mode by the

out-of-plane mode, we find Kex
T ¼ 5:29� 1013N=m3, while

the pulling of the out-of-plane mode by the in-plane mode

gives 2:13� 1014N=m3. An analytical expression for KT is

given in the appendix and gives the theoretical value

Kth
T ¼ 2:6� 1014 N=m3, �1.2 to 6.4 times higher than our ex-

perimental values.

B. Linear coupling

We then examined the linear coupling by measuring the

resonance frequencies of the two modes, while increasing

the DC gate bias. Fig. 3 shows the result of such a measure-

ment using magnetomotive detection to measure the

resonances. Note that while the sample was mounted with

the in-plane mode approximately parallel to the magnetic

field, a sight misalignment allowed us to detect the in-plane

mode even at zero bias. As expected from the signs of the

second derivatives of capacitance with respect to x and y, the

in-plane (out-of-plane) resonance frequency decreases

(increases) as the gate voltage increases. As the modes

approach degeneracy, there is a clear avoidance observed.

The avoidance is consistent with a linear coupling.7,8,12

Because the spectrum did not change as we lowered the drive

power, and because the same spectrum was found using two

very different detection methods, we again rule out paramet-

ric oscillations or other nonlinear effects.

For small amplitudes near degeneracy, we may neglect

the nonlinear terms in Eq. (4). It will be convenient to put

FIG. 2. Measured frequency shift of the (a) in-plane mode, measured using

capacitive detection (using Vg ¼ 2 V), and (b) out-of-plane mode, measured

using magnetomotive detection (using B¼ 0.38 T), plotted against driven

amplitudes. Triangular data points indicate that the in-plane mode is being

driven, while squares indicate an out-of-plane drive. Lines are linear fits to

the data. To determine resonator displacements, the signal measured by each

detection circuit was fit to determine the gate capacitance and magnetic

field, which determines the forces on the beam. The amplitudes of the beam

were then calculated as X0 ¼ FxQx=Kx and Y0 ¼ FyQy=Ky.

114307-4 Truitt et al. J. Appl. Phys. 114, 114307 (2013)
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the coupled equations describing the amplitudes on reso-

nance in matrix form

�Mx2 þ Kx þ
iMxxx

Qx
Kxy

Kxy �Mx2 þ Ky þ
iMxxy

Qy

0
BBB@

1
CCCA X0

Y0

� �

¼
Fx

Fy

� �
: (6)

Assuming negligible damping and solving for the eigenfre-

quencies gives

xhi;lo ¼
1ffiffiffiffiffiffiffi
2M
p ½Kx þ Ky6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKx � KyÞ2 þ 4K2

xy

q
�

1
2; (7)

where xhi;lo refers to the upper and lower branches in Fig. 3.

Here, Kx is the uncoupled in-plane spring constant including

the electrostatic softening and Ky is the out-of-plane spring

constant including the electrostatic stiffening, both of which

are proportional to V2
g as per Eq. (3). xx and xy are the corre-

sponding uncoupled natural frequencies of the two modes.

To test a purely electrostatic coupling model, we fit the

data in Fig. 3 with a five-parameter nonlinear least squares

curve fit to Eq. (7), including a voltage-dependent coupling

parameter Kxy ¼ aV2
g . Additional measurements were made

over the course of 8 months, with cycles to room temperature

in between each measurement that shifted the zero bias reso-

nance frequencies of the two modes. In all cases, the fit

yields a reduced v2 value better than 0.04. Fit parameters

appear as the first five columns in Table I. The voltage de-

pendence of spring constants Kx and Ky may be determined

from the fit parameters dðf 2
x Þ=dðV2Þ and dðf 2

y Þ=dðV2Þ. The

intersection point (last column of Table I) indicates the volt-

age at which the uncoupled modes would be degenerate in

the absence of a linear coupling.

Near degeneracy the modes are no longer purely in-

plane or purely out-of-plane, but rather a superposition of the

two. The coupling should thus also lead to coupled ampli-

tudes and quality factors. Including the driving force in the

equations of motion, we can solve for normal mode ampli-

tudes projected onto the in-plane and out-of-plane directions.

For instance, the motion projected onto the out-of-plane

direction is given by

Y0ðxÞ ¼

Fy

M
x2

x � x2 þ ixxx

Qx

� �
� KxyFx

M2

x2
x � x2 þ ixxx

Qx

� �
x2

y � x2 þ ixxy

Qy

� �
� Kxy

M

� �2

(8)
with x ¼ xhi;lo. An identical expression, with x and y trans-

posed, gives X0ðxÞ, the amplitude projected onto the in-plane

direction. In our initial measurements, the magnetomotive

detection is strongly sensitive only to out-of-plane motion.

Measured amplitudes vs. gate bias, along with results from Eq.

(8) (normalized to match the measured values at low bias) are

plotted in Fig. 4(a). We interpret this data in light of the above

model: at voltages far below degeneracy, the lower frequency

mode is comprised of out-of-plane motion and the higher fre-

quency mode is in-plane motion; as the modes couple near

degeneracy, both modes become a superposition of oscillations

in both directions; at degeneracy, the modes project equally

onto the external field; and for voltages far above the degener-

acy point, the mode polarizations are reversed, with the high fre-

quency mode now comprising out-of-plane motion, and the low

frequency mode being in-plane motion. This rotation behavior

of normal mode angles for the three voltage ranges is indicated

by the diagrams above the plot. The discrepancy between data

and model for the low frequency mode at high bias can be

attributed to a loading effect described later in this article.

To experimentally determine the relative phase between

the two modes and whether they remain orthogonal through

degeneracy or go through a “whirling” motion, we tilted the

sample U ¼ 45� relative to the magnetic field and repeated

the amplitude vs. gate bias measurements. Fig. 4(b) shows the

results. Since the magnetomotive amplitude depends on the

mode’s projection onto the magnetic field, a magnetic field at

this angle will drive and detect both in-plane and out-of-plane

motion equally. Driving the mode at xhi will detect an ampli-

tude proportional to jX0ðxhiÞsinðUÞ þ Y0ðxhiÞ cosðUÞj, while

the measured amplitude of the xlo mode will be proportional

to jX0ðxloÞsinðUÞ þ Y0ðxloÞcosðUÞj. When the two modes

mix near degeneracy, the low frequency mode vanishes,

TABLE I. Fitting parameters assuming voltage dependent coupling.

f 2
0;x f 2

0;y

dðf 2
x Þ

dðV2Þ
dðf 2

y Þ
dðV2Þ a=2p2M V2

degen

MHz2 (MHz/V)2 (MHz/V)2 V2

76.65 70.82 0.0388 0.0090 0.02280 121.9

68.36 65.52 0.0444 0.0035 0.05040 59.4

68.12 64.77 0.0444 0.0056 0.04336 67.0

68.38 63.99 0.0452 0.0086 0.03507 82.1

67.13 64.20 0.0505 0.0084 0.04231 49.8

FIG. 3. Square of normal mode frequencies versus square of gate bias.

Measurements made magnetomotively using B ’ 1.5 T. Solid lines are least-

squares fits to the predicted eigenfrequencies of the two coupled modes of

the NEMS resonator, assuming that each mode frequency includes an elec-

trostatic energy term proportional to the square of gate voltage, V2
g , and that

the linear coupling between the two modes is also proportional to V2
g .
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indicating that its physical angle is parallel to the B field and

rotated 45� relative to the uncoupled modes. At the same

point, the high frequency mode reaches a maximum, indicat-

ing that the modes remain perpendicular and linearly polar-

ized but rotate their planes of polarization as they pass the

degeneracy point. Also shown in Fig. 4(b) is the prediction of

Eq. (8). (All prediction curves are scaled using a single scaling

factor, to match the measured amplitudes over as much of the

voltage range as possible.) We note improved agreement

between theory and experiment if we assume U ¼ 55
�
, rather

than U ¼ 45
�
. Such a deviation of 10� is the maximum angu-

lar error we expect in our apparatus.

Retaining the damping term in Eq. (6), the imaginary solu-

tions to the resulting characteristic equation are equal to the

half-width at half maximum for the two modes, or x=2Q. In

Fig. 5, we plot normalized quality factors vs gate bias along

with results from the model (normalized to match the measured

quality factor at zero bias). At high bias, the high frequency

mode’s quality factor reduces to that of the low frequency

mode at zero bias, as expected. In the low frequency mode,

however, the measured quality factor does not reach the zero

bias value of the high frequency mode, but rather drops far

below it. This deviation is probably due to loading of the in-

plane motion by the tank circuit29 and 50 X external circuitry

shown in Fig. 1. At high bias voltages, the low frequency mode

comprises primarily in-plane motion and will be increasingly

affected by such loading, reducing its quality factor below its

unloaded value Q. We may estimate the loading as follows: the

beam-gate system is modeled as a series LRC network com-

prising equivalent electromechanical impedances Lm, Rm, and

Cm.22 In parallel to the electromechanical impedance is the

matching network comprising Lt, Ct, and Rt plus the 50 X ca-

bling and amplifier (Fig. 1), exhibiting a quality factor

Qt ¼
ffiffiffiffi
Lt

Ct

q
=ðRt þ 50Þ. Inserting the tank circuit parameters

given in Fig. 1, we find Qt ¼ 20. Solving the complex imped-

ance of this combined network for its resonant frequencies and

retaining the imaginary term as x=2QL, we find an approxi-

mate expression for the loaded quality factor QL, assuming that

the mechanical and tank resonances are degenerate

QL �
Q

1þ Rtþ50
Rm

Q2
t

: (9)

For Rm ¼ d2Mx
V2

g C2
bg

Q
with d¼ 165 nm being the beam-gate

distance, it is clear that QL falls with increasing Vg. At Vg ¼ 12

V, we find that QL=Q � 0:8. This amount of loading is consist-

ent with the reduction in quality factor evident in Fig. 5.

To examine whether the electrostatic coupling model

can fully account for the observations, it is useful to look at

the derivatives of capacitance in Eq. (3). To this end, we con-

structed a 2-dimensional finite element model using

FEMLAB software. We modeled a cross-section of the

beam-gate system to match the device dimensions in Fig. 1,

using known dielectric constants of silicon and silicon

nitride. On the underside of the beam, we assumed a residual

ridge of silicon 100 nm thick. Using this model, we calcu-

lated the capacitance per unit length C of the metallized

beam relative to the nearby gate. We neglected capacitance

edge effects in the z dimension, treating C as constant over

the length of the gate (i.e., for jzj < ‘g=2) and zero else-

where. We displaced the beam position in successive steps

of 5 nm forward and backward in the in-plane and out-of-

plane directions to find C as a function of x and y, and fit this

dependency to a 2nd-order polynomial. The fit values yield

@2CðzÞ=@x2 ¼ 535 F=m3 and @2CðzÞ=@y2 ¼ �128 F=m3.

FIG. 5. Quality factors of high frequency (triangles) and low frequency

(circles) modes vs gate voltage. Sample oriented with in-plane mode parallel

to applied B¼ 1.5 T field. Solid lines are the predicted behavior, assuming a

voltage-dependent mode coupling. Prediction does not include the effect of

loading of the resonator by the capacitive detection circuit.

FIG. 4. Amplitude vs. gate bias of high

frequency (triangles) and low fre-

quency (squares) modes. Diagrams

above graphs show orientation of

modes relative to external field as gate

bias is increased. (a) Sample oriented

with in-plane mode parallel to applied

B¼ 1.5 T field. Solid lines are the pre-

dicted behavior, assuming a voltage

dependent mode coupling, scaled to

match the zero bias data. (b) Sample

oriented with in-plane and out-of-plane

modes 458 to B¼ 1 T field. Solid lines

are the predicted behavior with modes

at 458 (solid) and 558 (dashed) to the

field.

114307-6 Truitt et al. J. Appl. Phys. 114, 114307 (2013)

 [This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.215.71.79 On: Thu, 24 Oct 2013 14:56:00



Assuming a resonator mass of 1:3� 10�15 kg, these predict

frequency shifts of dðf 2
x Þ=dðV2Þ ¼ 0:0820 ðMHz=VÞ2 and

dðf 2
y Þ=dðV2Þ ¼ 0:0196 ðMHz=VÞ2. These values are greater

by about a factor of two than those found by the fit and given

in Table I. The model also finds @2CðzÞ=@x@y ¼ 11 F=m3.

This value predicts (see appendix) a mode coupling of

3:3� 10�3ðMHz=VÞ2, about an order of magnitude smaller

than the experimental fit values for a voltage dependent cou-

pling. Thus, at this point, we cannot rule out the majority of

the coupling being due to some other effect besides the

electrostatics.

For comparison, we also fit the frequency vs gate bias

data with a voltage independent (fixed) coupling parameter,

Kxy ¼ b, and found that it was also able to fit the frequency

vs bias data in Fig. 3 as well as the voltage dependent cou-

pling model. The adjusted R-squared value for the data pre-

sented in Fig. 3 is 0.99913 for both fits. The resulting fit

parameters for the different trials assuming voltage inde-

pendent coupling are given in Table II.

IV. CONCLUSION

We have measured both the elastic nonlinear coupling

as well as a linear coupling between the two fundamental

transverse modes of a nanomechanical resonator. Combining

these terms, we derive the following Hamiltonian for a sys-

tem of two fundamental transverse modes of a doubly

clamped beam

H ¼ 1

2M
ðP2

x þ P2
yÞ þ

1

2
ðKxX2 þ KyY2Þ

þ 1

4
KTðX4 þ Y4 þ 2X2Y2Þ þ KxyXY; (10)

where Px and Py are the generalized momenta of the two

modes.

Magnetomotive measurements at different angles to the

applied field indicate that the linearly coupled modes stay

linearly polarized, while rotating their plane of polarization

about the beam axis, which could be useful in applications,

where one would like to control the spatial motion of a reso-

nator using a single gate. With a sequence of gate voltage

pulses, one should be able to move energy rapidly between

one polarization and the other.

While others have observed mechanical mode coupling

and identified electrostatic coupling as a likely mecha-

nism,12,30 to the best of our knowledge, no one has demon-

strated a calculation of the capacitance derivatives modeled

from the device geometry that reproduces the magnitude of

the observed linear coupling. Indeed, while an electrostatic

coupling is based on well-established theory and must be

present, our capacitance model seems to indicate that it is a

small contribution to the overall coupling. One possibility is

that field gradients in the direction of the resonator’s long

axis, which are not accounted for in our 2D model, are the

dominant source of coupling. In this case, careful shaping of

the gate electrode may provide a mechanism for tuning the

coupling to a desired strength. Another possibility is that the

electrostatic coupling is a small correction to a much larger

voltage independent coupling, perhaps an elastic coupling

through the resonator supports. An alternative method to

tune the resonator modes into degeneracy that does not rely

on the gate voltage would be helpful in determining the na-

ture of the coupling.

APPENDIX: DERIVATION OF EQUATIONS OF MOTION
FOR TRANSVERSE MODES

Equations (4a) and (4b) are the coupled equations of

motion for the two transverse modes, where X and Y repre-

sent the mode amplitudes. Here, we derive the in-plane (X)

equation. The out-of-plane (Y) equation can be found in a

similar manner.

We start with the Euler-Bernoulli equation for the free

vibration of an undamped beam. With the long axis of the

beam along the z direction, the displacement profile of the

beam in the plane of the substrate, x(z, t), satisfies the wave

equation

m

‘

@2x

@t2
þ EIx

@4x

@z4
¼ 0; (A1)

where m=‘ is the mass per unit length, E is the Young’s mod-

ulus, and Ix is the in-plane area moment of inertia, all con-

stant over the length of the beam. This equation can be

solved by separation of variables

xnðz; tÞ ¼ XnðtÞunðzÞ; (A2)

where X is the amplitude and unðzÞ is the mode shape of the

nth normal mode, given by

unðzÞ ¼ Nn coshðgnÞcos
2gnz

‘

� �
� cosðgnÞcosh

2gnz

‘

� �� �
:

(A3)

We are only interested in the lowest (n¼ 1) vibrational

mode, so we will leave off the subscript n from here on. For

this mode, g ’ 2:365. We determine the normalization con-

stant, N1, by setting the integral of the mode shape equal to

the length of the beamð‘=2

�‘=2

uðzÞdz ¼ ‘: (A4)

This choice of normalization gives N ’ 3:1821�1, and

defines X(t) as the average displacement of the beam, which

is apparent

TABLE II. Fitting parameters assuming voltage independent coupling.

f 2
0;x f 2

0;y

dðf 2
x Þ

dðV2Þ
dðf 2

y Þ
dðV2Þ b=2p2M V2

degen

MHz2 (MHz/V)2 MHz2 V2

76.36 71.11 0.0414 0.0116 2.52 99.2

67.92 65.96 0.0552 0.0143 2.06 28.2

67.71 65.18 0.0525 0.0137 2.19 38.2

68.02 64.35 0.0504 0.0136 2.41 57.4

66.86 64.48 0.0573 0.0152 1.71 32.9
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Xavg ¼
X

‘

ð‘=2

�‘=2

uðzÞdz: (A5)

We now include the displacement dependent tension

given in Eq. (1), a velocity dependent damping term, and the

electrostatic force given in Eq. (3), along with a driving

force

m

‘

@2x

@t2
þ lx

@x

@t
þ EIx

@4x

@z4
�

V2
g

2

@2C

@x2
x�

V2
g

2

@2C

@x@y
y

� Tðx; yÞ @
2x

@z2
¼ fDðz; tÞ; (A6)

where lx ¼ ðm=‘Þx0;x=Q and C are the dissipation and ca-

pacitance per unit length, respectively, and Vg is the gate

voltage. We treat the derivatives of the capacitance as con-

stant in time and in z over the length, ‘g, of the gate electrode

and zero elsewhere, so that the total beam-gate capacitance

is Cbg ¼ ‘gC. We omit the first term in Eq. (3), which serves

only to shift the beam’s equilibrium position. In principle,

this static deflection, Xs � V2
gC0=Kx, produces additional lin-

ear and nonlinear terms through added tension. Readers

wishing to learn more about the effect of these terms, partic-

ularly on the dynamic range, are encouraged to see Ref. 23.

In our case, the nonlinear measurements represented in Fig.

2 were performed at a low gate voltage, where the additional

voltage dependent nonlinear terms are insignificant, while

our voltage dependent measurements were performed at a

low drive amplitude so that the beam was in the linear

regime. At the highest gate voltage used (15 V), we find

that Xs < 30 nm. Even with this large a shift in equilibrium

position, however, we find the contribution to the spring con-

stant due to static deflection to be about 20 times smaller

than the contribution from the second order capacitance

derivatives.

Equation (A6) is a nonlinear differential equation that

must be solved numerically. Instead, we approximate a solu-

tion by assuming that the dissipation, tension, and electro-

static and driving forces are small enough that the mode

shape remains approximately that given in Eq. (A3).

Substituting Eq. (A2) with this mode shape into Eq. (A6),

multiplying both sides by u(z), and integrating over the

length of the beam, we get an equation for the time depend-

ence of the beam’s motion

M
d2X

dt2
þ x0;x

Qx

dX

dt

 !
þ KxX þ KxyY þ KTðX3 þ Y2XÞ ¼ Fx:

(A7)

In the last term, the amplitude of the out-of-plane mode, Y,

enters through the tension (see Eq. (1)). Fx is the product of

the mode shape u(z) with the driving force fD, integrated

over the length of the beam.

The coefficients in (A7) are given by

M ¼ m

‘

ð‘=2

�‘=2

u2ðzÞdz ’ 1:45 m; (A8)

Kx ¼ EIx

2g
‘

� �4ð‘=2

�‘=2

u2ðzÞdz�
V2

g

2

@2C

@x2

ð‘g=2

�‘g=2

u2ðzÞdz

’ 725:08
EIx

‘3
� 1:36‘

V2
g

2

@2C

@x2
; (A9)

Kxy ¼ �
V2

g

2

@2C

@x@y

ð‘g=2

�‘g=2

u2ðzÞdz ’ �1:36‘
V2

g

2

@2C

@x@y
; (A10)

KT ¼
AE

2‘

ð‘=2

�‘=2

duðzÞ
dz

� �2

dz

" #2

’ 158:8
AE

‘3
; (A11)
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