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I. SUPPLEMENTARY DISCUSSION

A. Theoretical Framework

In this Section, we present the theoretical framework following the approach of Ref. [1]. To a good approximation, the
atomic density is constant across the probe beam, and all experiments are done in the regime where the blockade radius
is larger than the beam waist. For these reasons, a one-dimensional approximation holds. Along the propagation
direction z, we consider a Gaussian atomic density ρ(z) = exp[−z2/(2σ2

ax)], normalized by the peak density ρ0,
with root-mean-square width σax. We define the peak atom-photon coupling constant gp via g2p/(Γc) = ρ0σp =

OD/(
√
2πσax), where σp is the resonant atomic cross-section and OD the resonant optical depth of the medium.

We consider the evolution of the slowly varying operators Ê†(z), P̂†(z), and Ŝ†(z) corresponding to the creation of
a photon, an intermediate-state excitation (|e〉), and a Rydberg excitation (|r〉), respectively, at position z. These

satisfy the same-time commutation relations [Ê(z), Ê†(z′)] = [P̂(z), P̂†(z′)] = [Ŝ(z), Ŝ†(z′)] = δ(z−z′). The Heisenberg
equations of motion are then given by [2]

∂tÊ(z, t) = −c∂z Ê(z, t) + i
gp
2

√
ρ(z)P̂(z, t), (1)

∂tP̂(z, t) = −
(
Γ

2
− i(∆ + δ)

)
P̂(z, t) + i

gp
2

√
ρ(z)Ê(z, t) + i

Ωc

2
Ŝ(z, t), (2)

∂tŜ(z, t) = −
(γgr

2
− iδ

)
Ŝ(z, t) + i

Ωc

2
P̂(z, t)− i

∫
dz′V (z − z′)Ŝ†(z′, t)Ŝ(z′, t)Ŝ(z, t), (3)

where V (z) = C6/z
6, ∆ = ωre − ωcontrol and δ = ωprobe + ωcontrol − ωrg. Here ωprobe and ωcontrol are the probe

and control frequencies, while ωre and ωrg are the |e〉 → |r〉 and |g〉 → |r〉 transition frequencies, respectively. The
Langevin noise is omitted since it does not affect our calculations [3]. As in Ref. [1], the input is assumed to be a
weak coherent state of the form

exp

[
α

∫
dz(Ê†(z)− Ê(z))

]
|0〉, (4)

where, for simplicity, α is assumed to be real. The single-photon and two-photon probability amplitudes are defined
as E(z) = 〈0| Ê(z) |Ψ〉 and EE(z1, z2) = 〈0| Ê(z1)Ê(z2) |Ψ〉, respectively, where |Ψ〉 is the wavefunction of the system
while |0〉 is the vacuum state. We define

ψ(z1, z2) =
EE(z1, z2)

E(z1)E(z2)
, (5)

which is unity in the absence of interactions, and

ψ(τ) = ψ(z1 = z0 + cτ, z2 = z0), (6)

where z0 is chosen to be outside of the medium: z0 � σax. Then g(2)(τ) = |ψ(τ)|2 and φ(τ) = argψ(τ), provided
that the single-photon component dominates the denominator of g(2). (This approximation may break down in the
presence of strong linear absorption.)
In order to compute ψ(τ) numerically (solid lines in Figs. 2c and 2d, and solid blue lines in Fig. 3 in the main

text), we follow the approach described in the Supplementary Information of Ref. [1]. In particular, the denominator

in ψ(τ) can be easily found analytically using

E(z ≥ z0) = α exp

[
−

Γ
2

(γgr

2 − iδ
)

OD
2(

Ωc

2

)2
+
(
Γ
2 − i(∆ + δ)

) (γgr

2 − iδ
)
]
. (7)

This formula (divided by α) is used to obtain the blue and, for Ωc = 0, the gray dashed curves in Fig. 1c of the main

text and in Fig. SI2. It also shows that peak linear transmission is at δ = −∆γgr

Γ + O(γ2
gr), while peak (Raman)

absorption is at δ =
Ω2

c

4∆

(
1− γ2

gr

Ω2
c

)(
1 +

Γγgr

Ω2
c

)
+O(∆−3).

To obtain analytical insight into the physics underlying the numerator of ψ(τ), we approximate the medium as a
homogeneous slab with length L = 4.2σax [1], i.e. we re-define ρ(z) to be 1 in [0, L] and 0 otherwise and rescale g2p by√
2πσax/L. Furthermore, we take δ = γgr = 0, so that, in particular, E(z) = α. Then for z1, z2 ∈ [0, L], repeating the

same approximations as in Ref. [1], we obtain a Schroedinger-like equation for the two-photon probability amplitude

i∂REE(R, r) =

[
− 1

2m̃(r)
∂2
r + U(r)

]
EE(R, r), (8)

where the spatially dependent mass m̃(r) and potential U(r) are given by

− 1

2m̃(r)
=

4L

OD

(
2∆

Γ
+ i−

(
Ωc

Γ

)2

V(r)
)
, (9)

U(r) =
OD

L
V(r), (10)

and

V(r) =
1

2∆
Γ + i+ 2 r6

r6b

. (11)

Here R = (z1 + z2)/2, r = z1 − z2, and the resonant blockade radius is defined as rb = (2ΓC6/Ω
2
c)

1/6. The initial
condition is a uniform wavefunction EE(z1 = 0, z2) = EE(z1, z2 = 0) = α2.

By comparing the solutions of Eq. (8) with numerical simulations of the full dynamics, we find that for ∆ �= 0,
this equation does not approximate the full dynamics as well as it does for ∆ = 0, with the error in EE as large
as ∼ 20%. However, we find that it still captures the main qualitative features of the two-photon evolution. In the
regime |∆| � Γ,Ωc, an excellent agreement with the full dynamics can be achieved by keeping higher-order derivatives
in the effective equation.

In the presence of nonzero ∆, the blockade radius is increased to r̄B = rb

((
2∆
Γ

)2
+ 1

)1/12

. In the limit of |∆| � Γ,

it corresponds to the off-resonant blockade radius rB = (4 |∆|C6/Ω
2
c)

1/6, defined in the main text. Outside the
blockade region, m̃(r > r̄B) stems directly from the effective mass of a single dark-state polariton, which, in the limit
|∆| � Γ, is given by [4–6]

m =
2�
vg

m̃ = − 1

16π

c

vg

λ

la

Γ

∆

�ω
c2

. (12)

For our parameters, at the center of the medium, it corresponds to |m| ≈ 103 �ω
c2 .

These considerations indicate that, for ∆ > 0(< 0) and |∆| � Γ,Ωc, we obtain a Schroedinger equation with
negative (positive) mass and a potential barrier (dip) within the blockade radius. Note that, for the boundary value
problem, the solution for a negative mass and a repulsive potential is formally equivalent to that for a positive mass
and an attractive potential under the exchange EE → EE∗. However, for ∆ < 0, V(r), and hence the potential, have
a resonant Raman feature around the blockade radius, which breaks this symmetry.
To simplify the analysis, we make an additional approximation by assuming that the boundary conditions are

EE(R = 0, r) = EE(R, r = ±∞) = α2. We find that this approximation is more forgiving than the approximations
used in the derivation of Eq. (8). Dropping the r-dependent term in the effective mass (since it is typically small) and
approximating the potential with a square well, we end up with a Schroedinger equation with a complex mass and a
square-well potential with a complex amplitude, which can be solved directly (see, e.g., the top theoretical curve in
Fig. 1d of the main text). The analytical solution is further simplified if one approximates the square-well potential
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in ψ(τ) can be easily found analytically using

E(z ≥ z0) = α exp

[
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Γ
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2 − iδ
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)2
+
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Γ
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) (γgr

2 − iδ
)
]
. (7)

This formula (divided by α) is used to obtain the blue and, for Ωc = 0, the gray dashed curves in Fig. 1c of the main

text and in Fig. SI2. It also shows that peak linear transmission is at δ = −∆γgr

Γ + O(γ2
gr), while peak (Raman)

absorption is at δ =
Ω2

c

4∆

(
1− γ2

gr

Ω2
c

)(
1 +

Γγgr

Ω2
c

)
+O(∆−3).

To obtain analytical insight into the physics underlying the numerator of ψ(τ), we approximate the medium as a
homogeneous slab with length L = 4.2σax [1], i.e. we re-define ρ(z) to be 1 in [0, L] and 0 otherwise and rescale g2p by√
2πσax/L. Furthermore, we take δ = γgr = 0, so that, in particular, E(z) = α. Then for z1, z2 ∈ [0, L], repeating the

same approximations as in Ref. [1], we obtain a Schroedinger-like equation for the two-photon probability amplitude

i∂REE(R, r) =

[
− 1

2m̃(r)
∂2
r + U(r)

]
EE(R, r), (8)

where the spatially dependent mass m̃(r) and potential U(r) are given by

− 1

2m̃(r)
=

4L

OD
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2∆

Γ
+ i−

(
Ωc

Γ

)2

V(r)
)
, (9)

U(r) =
OD

L
V(r), (10)

and

V(r) =
1

2∆
Γ + i+ 2 r6

r6b

. (11)

Here R = (z1 + z2)/2, r = z1 − z2, and the resonant blockade radius is defined as rb = (2ΓC6/Ω
2
c)

1/6. The initial
condition is a uniform wavefunction EE(z1 = 0, z2) = EE(z1, z2 = 0) = α2.

By comparing the solutions of Eq. (8) with numerical simulations of the full dynamics, we find that for ∆ �= 0,
this equation does not approximate the full dynamics as well as it does for ∆ = 0, with the error in EE as large
as ∼ 20%. However, we find that it still captures the main qualitative features of the two-photon evolution. In the
regime |∆| � Γ,Ωc, an excellent agreement with the full dynamics can be achieved by keeping higher-order derivatives
in the effective equation.

In the presence of nonzero ∆, the blockade radius is increased to r̄B = rb

((
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Γ
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+ 1

)1/12

. In the limit of |∆| � Γ,

it corresponds to the off-resonant blockade radius rB = (4 |∆|C6/Ω
2
c)

1/6, defined in the main text. Outside the
blockade region, m̃(r > r̄B) stems directly from the effective mass of a single dark-state polariton, which, in the limit
|∆| � Γ, is given by [4–6]

m =
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m̃ = − 1

16π

c

vg

λ

la

Γ

∆

�ω
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. (12)

For our parameters, at the center of the medium, it corresponds to |m| ≈ 103 �ω
c2 .

These considerations indicate that, for ∆ > 0(< 0) and |∆| � Γ,Ωc, we obtain a Schroedinger equation with
negative (positive) mass and a potential barrier (dip) within the blockade radius. Note that, for the boundary value
problem, the solution for a negative mass and a repulsive potential is formally equivalent to that for a positive mass
and an attractive potential under the exchange EE → EE∗. However, for ∆ < 0, V(r), and hence the potential, have
a resonant Raman feature around the blockade radius, which breaks this symmetry.
To simplify the analysis, we make an additional approximation by assuming that the boundary conditions are

EE(R = 0, r) = EE(R, r = ±∞) = α2. We find that this approximation is more forgiving than the approximations
used in the derivation of Eq. (8). Dropping the r-dependent term in the effective mass (since it is typically small) and
approximating the potential with a square well, we end up with a Schroedinger equation with a complex mass and a
square-well potential with a complex amplitude, which can be solved directly (see, e.g., the top theoretical curve in
Fig. 1d of the main text). The analytical solution is further simplified if one approximates the square-well potential
with a δ function of the same area. This is a reasonable approximation because the variations in EE(R, r) occur at a
scale much larger than r̄B ; for |∆| � Γ, when the mass and the potential are real, this follows from the fact that there
is a single bound state and its extent is much larger than r̄B , as we will verify below. The mass and the potential
then simplify to

− 1

2m̃
=

4L

OD

(
2∆

Γ
+ i

)
,

U(r) = c02ODB
1

2∆
Γ + i

δ(r), (13)

where ODB = OD× r̄B/L is the optical depth within a blockade radius and c0 = π
21/63

ei arg (
2∆
Γ +i)

1/6

is chosen to keep∫
drU(r) unchanged under the approximation. For |∆| � Γ, arg(c0) = 0 and π/6 for ∆ > 0 and ∆ < 0, respectively,

accounting for non-negligible Raman absorption for ∆ < 0 and capturing the asymmetry between positive and negative
∆ in Figs. 3a and 3b of the main text. The resulting problem is equivalent to a free-particle Schroedinger equation
on R ∈ [0, L] and r ∈ [0,∞] with mixed boundary conditions at r = 0. Using Laplace transformation in R, we find

ψ(τ = 0) = ψ(R = L, r = 0) = eu
2

erfc(u), (14)

where erfc is the complementary error function and

u =
c0
√
ODODB

2
(
1− i 2∆Γ

)3/2 . (15)

This formula was used to make the solid black curves in Figs. 3a and 3b of the main text. At small u, we have
ψ(τ = 0)− 1 = − 2u√

π
+O(u2), which, for |∆| � Γ, gives arg[ψ(0)− 1] = ±π/4 + arg(c0) for ∆ ≶ 0.

B. Bound state

Within the δ-function approximation and by further assuming that ∆ � Γ, we obtain a real (negative) mass and
a real (positive) potential. To get insight into the role of the bound state, we solve for the dynamics in this case
analytically:

ψ(R, r) = ψb(R, r) + ψs(R, r), (16)

where ψb and ψs are the contributions of the bound state and the scattering states, respectively,

ψb(R, r) = 2e−κ|r|e−i8κ2RL∆/(ODΓ), (17)

ψs(R, r) =

∫ ∞

0

dk
i(b−1

k − 1)

2πk

(
eik|r| + bke

−ik|r|
)
ei8k

2RL∆/(ODΓ), (18)

κ = c0(ODΓ/∆)2r̄B/(16L
2) and bk = (ik+κ)/(ik−κ). Taking OD = 22, ∆/(2π) = 14 MHz, and Ωc/(2π) = 10 MHz,

the condition κr̄B = c0 (ODBΓ/∆)
2
/16 ≈ 1/14 � 1 ensures that the extent of the bound state is indeed much wider

than the blockade radius justifying the δ-function approximation. For the case of a square well, ψb(0, r), ψs(0, r),

and |ψ(L, r)|2 are shown as red, black, and solid blue curves in Fig. 1d in the main text. Within this solution,
the observed bunching can be understood as resulting from the relative phase evolution between the bound and the
scattering states. For the parameters given above, both terms in Eq. (16) contribute to the superpoissonian feature
|ψ|2 > 0 at r = 0. The bound state ψb acquires a phase and becomes the dominant contribution to the imaginary part
of ψ. The superposition of scattering states ψs starts with a dip (because the bound-state contribution is subtracted),
but its phase evolution quickly ”fills in” the dip associated with the real part of ψ, while contributing very little
to the imaginary part. A combination of both the real and imaginary parts of ψ results in the bunching feature of
|ψ|2. Therefore, consistent with a simple intuition, the superpoissonian g(2)(0) is indeed driven by the bound-state
formation.
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C. Relation between ψ(τ) and the solution to Eq. (8)

As in Ref. [1], under the approximation of a homogeneous medium, the intuition we have just developed for the
region of the z1-z2 plane where both photons are inside the medium is not sufficient for computing ψ(τ �= 0). Indeed,
one has to use this solution to obtain the boundary condition to the problem in the region where one photon is
inside the medium while the other photon is already outside. As in Eqs. (9-11) of the Supplementary Information
of Ref. [1], the latter problem is equivalent to the retrieval from the medium of a spin-wave (defined along z1 = L)
corresponding to the second excitation (see, for example, Eq. (23) in Ref. [7]). While at ∆ = 0 and OD � 1, the
retrieval can be described in terms of simple rescaling by the group velocity vg (provided EIT bandwidth effects are
ignored), at nonzero ∆ the situation is more complicated [7]. At the same time, the theoretical prediction shown
in Fig. 1d of the main text (obtained with EE(R = L, vgτ) calculated from Eq. (8) using the boundary conditions
EE(R = 0, r) = EE(R, r = ±∞) = α2) is in a good qualitative agreement with both the measured ψ(τ) and the
full calculations described above. We emphasize that this comparison can only be interpreted qualitatively, especially
at large photon separations, since it (1) assumes simple group velocity propagation and (2) corresponds to a read
out of the second excitation along R = L instead of z1 = L. The comparison is, however, better than one might
naively expect since the two approximations partially compensate for each other as they, respectively, underestimate
and overestimate the mass-induced broadening of the second excitation.

D. Engineering the two-photon potential with a non-zero Raman detuning

While we focused so far on the case of δ = γgr = 0, let us briefly consider the case of nonzero δ and γgr. To get
a qualitative insight, let us assume that δ and γgr are small enough that the approximations leading to Eq. (8) still
hold. Then Eqs. (9,11) are modified to

− 1

2m̃(r)
=

4L

OD

(
2(∆ + 2δ)

Γ
+ i

(
1 +

γgr
Γ

)
−
(
Ωc

Γ

)2 (
1 +

2δ + iγgr
2(∆ + δ) + iΓ

)
V(r)

)
, (19)

V(r) =

(
2(∆ + 2δ)

Γ
+ i(1 +

γgr
Γ

) +
2iΩ2

c

2Γ(γgr − i2δ) + iΩ2
c(rb/r)

6

)−1

. (20)

Since |δ|, 1
2Ωc � |∆|, the mass is affected by changes in δ only weakly. At the same time, the potential U(r) is

affected substantially by changes in δ. Specifically, we observe (Fig. SI1) that moving towards (away from) the
Raman absorption peak at δ ≈ Ω2

c/(4∆) makes the well deeper (shallower) by shifting the r � r̄B baseline, which
implies tighter (weaker) binding of photons, and resulting in more (less) bunching, consistent with the experimental
observations in Figs. 3c and 3d of the main text.

r/r̄B
�5 0 5�0.05

0.00
0.05
0.10
0.15
0.20

R
e
[V
]

Supplementary Figure SI1: The shape of the effective potential well. For ∆/(2π) = 18 MHz, Ωc/(2π) = 10 MHz,
γgr/(2π) = 500 kHz, δ = 0 (solid blue) and δ/(2π) = 250 kHz (dashed red), we plot Re[V(r)]. Moving from δ = 0 towards the
Raman resonance at δ = 1.3 (2π) MHz ≈ Ω2

c/(4∆) makes the potential well deeper by shifting the r � r̄B baseline.
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II. SUPPLEMENTARY METHODS:
MEASUREMENT OF THE NONLINEAR PHASE

This section provides supplementary information to the Methods section. In order to measure the conditional
phase acquired by two circularly polarized σ+ photons, we effectively create an interferometer, where σ− photons
are used as a phase reference. The interaction of the σ− field with the atomic medium is much weaker than that of
the σ+ field, as described in Fig. SI2. The incoming state is chosen to be an equal superposition of the two circular
polarizations, (|σ+〉+ |σ−〉) /

√
2. In the absence of decoherence, the outgoing one-photon state, detected at time t, is

|1〉t = (η+ |σ+〉t + η− |σ−〉t) /
√
2. Here, η+ and η− characterize the linear susceptibility of the medium (see Fig. SI2a),

accounting for absorption and phase shift leading to polarization rotation. For two photons arriving at times t1 and
t2 on two single-photon detectors, the corresponding outgoing state is:

|1, 1〉t1,t2 =
[
η2+ψt1,t2 |σ+σ+〉t1,t2 + η+η−χt1,t2

(
|σ+σ−〉t1,t2 + |σ−σ+〉t1,t2

)
+ η2−µt1,t2 |σ−σ−〉t1,t2

]
/2. (21)

The photon-photon interactions are described by ψt1,t2 , χt1,t2 , and µt1,t2 , which are chosen to be unity in the absence
of nonlinear response. Here, the main quantity of interest is arg (ψt1,t2), while the squared amplitude of ψt1,t2 is equal

to the normalized second-order correlation function of σ+ photons g
(2)
++(t1, t2).

In the presence of decoherence, the outgoing state of the photons must be described by density matrices, with
ρ(1)(t) replacing |1〉t 〈1|t, and ρ(t1, t2) replacing |1, 1〉t1,t2 〈1, 1|t1,t2 . It is convenient to define the interaction matrix

ρ̃i,j(t1, t2) = ρi,j(t1, t2)/[ρ
(1)(t1) ⊗ ρ(1)(t2)]i,j , with arg [ρ̃++,−−(t1, t2)] = arg(ψt1,t2µ

∗
t1,t2) being the nonlinear phase-

shift of a σ+σ+ photon-pair with respect to that of the weakly interacting σ−σ− pair.
The density matrices for the one-photon and two-photon states are measured by quantum state tomography [8],

Supplementary Figure SI2: σ+ and σ− spectra. a, Transmission (top) of the σ+ polarization in the absence of control
field (©, gray dashed line) and of the σ+ (�, blue line) and σ− (�, red line) with a control field red-detuned by ∆ = 14
(2π) MHz. The phase shift between the two circular polarizations (bottom) exhibits a difference of ∼ π ≈ OD(Γ/∆)/4 at
EIT resonance (solid vertical line). b, Schematic representation of the atomic transitions. The atoms are initially pumped
into the ground state |g〉 = |5S1/2, F = 2,mF = 2〉 magnetic sublevel. The σ+ and σ− components of the incoming linearly
polarized probe light respectively couple to the |e〉 = |5P3/2, F = 3,mF = 3〉 and |e′〉 = |5P3/2, F = 3,mF = 1〉 excited states.
For our magnetic field, the Zeeman splitting between these levels is 6 (2π) MHz, comparable to their inverse lifetime Γ = 6.1
(2π) MHz. The coupling dipole matrix element for the σ+ transition is larger than for the σ− transition by a factor of

√
15.

The σ− polarized control field couples the stretched state |e〉 to the Rydberg state with maximal projections of the nucleus
spin (mI) and total electronic angular momentum (mJ), |r〉 = |100S1/2,mI = 3/2,mJ = 1/2〉. In addition, it couples |e′〉 to

|r′〉 = |100S1/2,mI = −1/2,mJ = 1/2〉 and |r′′〉 = |100S1/2,mI = 1/2,mJ = −1/2〉 with a
√
5-times weaker resonant Rabi

frequency. Because the magnetic dipole moment of the nuclear spin is negligible compared to that of the electron, the energies
of the levels |r〉 and |r′〉 are equally shifted by the magnetic field. As a consequence, both σ+ and σ− photons propagate
under Rydberg EIT conditions. Nevertheless, the combined effect of the Zeeman shift of the intermediate level and the reduced
dipole coupling strongly suppresses the probability for σ− photons to create or be affected by Rydberg blockade. As the σ−

probe photons interact only negligibly between themselves and weakly with σ+ photons, they provide a reliable reference for
measuring phase shifts of the σ+ photons.
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Supplementary Figure SI3: Normalized photon-photon correlation functions in 6 polarization bases for ∆ = 1.5Γ.
a, Each setting of the quarter wave-plate (QWP) at an angle q and the half wave-plate (HWP) at an angle h (angles specified on

the left) followed by a polarizing beam splitter determines a polarization basis for three g
(2)
αβ (τ) measurements (blue points): for

two transmitted photons (T), for two reflected photons (R), and for one-transmitted-one-reflected (X). The bases are equivalent
to those proposed in Ref. [10]. The 18 pair counts from 6 different bases are used to tomographically reconstruct the two-photon
density matrix using the maximum-likelihood estimation. Together with the reconstructed one-photon density matrix (obtained

from the single counts), one can calculate the reconstructed g
(2)
αβ (τ) (red line).

as described in Methods and Fig. SI3. The purity and the concurrence [9] in Fig. 4 of the main text are calculated

directly from the two-photon density matrix. Figure SI3 also presents a comparison between g
(2)
αβ (τ) curves measured

in different polarization bases (after rescaling for offset at large τ , see discussion below) and those calculated from the
reconstructed density matrices after maximum-likelihood estimation. The resulting scaled density matrices are plotted
in Fig. SI4 in the limits of proximal (t1 = t2) and distant (non-interacting) |t1 − t2| = 1 µs photons. As expected, at
large time separation, the elements of the interaction matrix are all equal to unity. For photons exiting the medium
simultaneously, we observe the existence of a large conditional phase-shift between |σ+σ+〉 and |σ−σ−〉. The small
phase emerging between the |σ+σ−〉 and |σ−σ−〉 components underlines that photons with opposite polarizations
interact very weakly.
At time seperations τ = |t1 − t2| ≈ 2 µs, much larger than the typical width of the bunching feature, the measured

g
(2)
++ functions exceed unity by about 0.2. Previous measurements of g

(2)
++ with 100 µs-long probe pulses [1] reveal

that this deviation is composed of a local (τ � 20 µs) super-Poissonian feature and a global offset. As discussed in
Ref. [1], the occasional decay of an atom in the Rydberg 100S1/2 state to another metastable Rydberg state creates
a temporary EIT blockade in the medium; the resulting fluctuations in the transmission account for the τ -dependent
increase in the correlation function. The τ -independent increase is attributed to drifts in the system much slower
than the duration of each experimental cycle, with the dominant factor being the frequency drift of the probe laser.

Due to this offset, the measured g
(2)
++ (t1, t2) deviates from its ideal value |ψt1,t2 |2, where ψt1,t2 is defined in Eq. (21).

To compensate for this deviation, we model both mechanisms – the temporary local Rydberg blockades and the slow
drift – as inhomogeneous fluctuations, and assume in general that, with probability pi, the linear transmission of the
medium changes to Ti. For an incoming photon rate n0, the mean count rate at the output is 〈n (t)〉 = ∑

i piTin0. We
further assume for both mechanisms that the change in the transmission does not affect the dynamics of the photon-
photon interaction, provided that both photons are eventually transmitted. Under this assumption, the coincident
count rate is 〈n1 (t1)n2 (t2)〉 =

∑
i pi |Tin0ψ (t1, t2)|2 , and the resulting normalized correlation function is

g
(2)
++(t1, t2) =

〈n1 (t1)n2 (t2)〉
〈n1 (t1)〉 〈n2 (t2)〉

=

∑
i piT

2
i

(
∑

i piTi)
2 |ψ (t1, t2)|2 . (22)

Finally, assuming no photon-photon interaction (ψ = 1) at large enough time separation (τ ≈ 2 µs), one finds that

normalizing the measured g
(2)
++(t1, t2) by its asymptotic value g

(2)
++(τ ≈ 2 µs) yields |ψ (t1, t2)|2 .
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Supplementary Figure SI4: Tomographic reconstruction of the scaled interaction matrix ρ̃. a,b,c,d, Amplitude and
phase of the scaled two-photon density matrix ρ̃i,j(τ) = ρi,j(τ)/[ρ

(1)⊗ρ(1)]i,j for two photons with time separation τ = 0 (a,c)
and τ = 1 µs (b,d) at a detuning of ∆ = 2.3Γ. All ρ̃i,j(1µs) = 1, as expected in the absence of nonlinearity. The bunching is
evident by ρ̃++,++ > 1 (a), while the nonlinear (conditional) phase shift is given by arg (ρ̃++,−−) ≈ −π/4 (b).
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[4] F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer, Opt. Comm. 264, 441 (2006).
[5] F. E. Zimmer, J. Otterbach, R. G. Unanyan, B. W. Shore, and M. Fleischhauer, Phys. Rev. A 77, 063823 (2008).
[6] J. Otterbach, R. G. Unanyan, and M. Fleischhauer, Phys. Rev. Lett. 102, 063602 (2009).
[7] A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. Sorensen, Phys. Rev. A 76, 033805 (2007).
[8] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001).
[9] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[10] R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, Phys. Rev. Lett. 98, 043601 (2007).


