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1 Introduction

The objective of this Electronic Supplement is to present in a concise manner the kinematic approach of limit
analysis for fluid saturated media as proposed in details by Leroy and Pons (2012). The limit analysis approach
[Chandrasekharaiah and Debnath, 1994; Salençon, 2002] is based on the principle of virtual powers and the
theorem of maximum rock strength [Maillot and Leroy, 2006]. The method investigates all possible collapse
mechanisms as a function of the frictional properties and selects the optimal one leading to the least upper bound
to the tectonic force. The method has previously been applied to retrieve frictional properties of accretionary
prism faults [Cubas et al., 2008; Souloumiac et al., 2009; Pons et al., 2013; Cubas et al., subm.a] and has been
validated quantitatively from comparison with analogue sandbox experiments [Cubas et al., subm.b]. In this
study, the Coulomb criterion is used for the maximum rock strength. The upper bounds to the tectonic force
for two of the collapse mechanisms used in the main text are presented.

2 Collapse Mechanism and main objective of the kinematic ap-
proach

The starting point of the kinematic approach of limit analysis is the concept of collapse mechanism and two such
mechanisms considered in the main text, as shown in Figure 3, are reproduced in Figure 1 of this supplement.

The first collapse mechanism assumes that the whole décollement is activated, although the sections AG
and GB have two different velocities. The velocity of the inner section is dictated by the displacement of the
back wall AC. The velocity of the frontal region is an outcome of the analysis as well as the orientation of the
single fault GE. This fault is normal or reverse depending on the difference in velocity between the two regions.
This first collapse mechanism is relevant for a super-critical wedge in the sense of Dahlen [1984] since the whole
décollement is activated. Note that this first collapse mechanism should be seen as an example of the various
single-fault mechanisms considered in the main text.

The second collapse mechanism requires only partial activation of the décollement from point A to point
G. Two faults are rooting at this last point and correspond to the onset of a thrust fold. The outcome of the
analysis is the dip of these two faults.

The position of point G, common to the two mechanisms, is set at the termination of the internal section of
the décollement.

The benefit of the kinematic approach of limit analysis is to determine upper bounds to the unknown force
applied at the back-wall to activate these two mechanisms. The free geometrical parameters are determined
to minimize the bounds and each collapse mechanism is optimized to get the minimized upper bound. The
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theorem of limit analysis states that the actual force cannot exceed the least of the two minimized upper bounds.
It is for that reason that the collapse mechanism corresponding to the least upper bound is proposed as the
dominant mode of the wedge deformation. The next section of this ES defines the framework of the kinematic
approach leading to this finding.
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Figure 1: The two collapse mechanisms considered consist of the total or the partial activation of the décollement
and the presence of a single fault or a conjugate set of faults rooting at the same point on the décollement and
typical of a thrust fold, a) and b), respectively.

3 Kinematic approach

3.1 Theorem of effective virtual powers

The following weak expression of mechanical equilibrium is our starting point:

Pext(Û) = Pint(Û) ∀ Û KA . (1)

It does not account for inertia and states the equality between the internal and the external powers. This theorem
of virtual powers is valid for any kinematically admissible (KA) velocity field. Any velocity field, and not just
the exact unknown one, is KA as long as it vanishes on the portion of the boundary where the displacements are
prescribed. For example, for our two collapse mechanisms in Figure 1, the velocity of the subducting plate is set
to zero with respect to the advancing back wall. Each region of the wedge, say regions AGEC and GBE for the
first collapse mechanism are assigned constant velocity resulting in velocity discontinuity along the décollement
and the single internal fault. This velocity field is KA and said to be virtual because it does not correspond to
the exact, unknown field. It is for that reason that these KA fields are noted with a superposed hat.

The internal power in (1) is defined by

Pint(Û) =

∫
Ωt

σ : d̂ dV +

∫
ΣU

T · Ĵ dS . (2)

It has two terms, the first corresponding to the power of the stress tensor σ by the rate of deformation tensor d̂
(the symmetric part of the virtual velocity field gradient) summed over the domain of the wedge (Ωt). The second
term is the power of the stress vector T times the velocity jump Ĵ . This velocity jump is the difference across
any discontinuity, for example the décollement section AG and the fault GE for the first collapse mechanism1.
The various discontinuities constitute the set ΣU over which the power is summed in (2). The external power
corresponds to

Pext(Û) =

∫
Ωt

ρg · Û dV +Q · ÛAC , (3)

and results from the power of the velocity field on the gravity field and on the applied force at the back-wall.
The velocity ÛAC is the velocity of the wedge material in contact with the back-wall.

1The frictional power along the back-wall AC could be accounted for. However, since this contribution is the same for the two
collapse mechanisms, it is disregarded in the following discussion.
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The effective stress carried by the solid phase of our fluid-saturated continuum is defined by

σ′ = σ + pδ , (4)

in which p is the pressure of the fluid phase (continuum mechanics convention: compressive stress negative).
This pressure is discontinuous across the décollement. The effective stress vector acting on any discontinuity Σ
is

T ′ = T + pΣn , (5)

where n is the normal to the discontinuity pointing towards the plus side. The stress decomposition (4) and
(5) introduced in the theorem (1), following Pons and Leroy [2012], results in the theorem of effective virtual
powers:

P ′
ext(V̂ ) = P ′

int(Û) ∀ Û KA , (6)

in which the internal and the external effective powers are defined by

P ′
int(Û) =

∫
Ωt

σ′ : d̂ dV +

∫
ΣU

T ′
Σ · Ĵ dS , (7)

and

P ′
ext(Û) = Pext(Û) +

∫
Ωt

p div(Û) dV +

∫
ΣU

pΣn · Ĵ dS , (8)

respectively. The difference between (6-8) and (1-3) is that in the former set of equations, it is the effective stress
tensor or vector which enters the internal power. Furthermore, the pressure field is presented as an external
field acting on the virtual volume change or the virtual opening of the discontinuities.

The pressure field needs now to be defined and it is proposed for that purpose to make use of the pressure
ratio proposed by Hubbert and Rubey [1959]:

λ(x) = − p(x)− ρfgD(x)

σ(x) + ρfgD(x)
with σ(x) = ρg(z +D(x))− ρfgD(x) , (9)

in which ρf , ρ, g and D(x) are the fluid volumetric mass, the saturated solid volumetric mass, the gravity
acceleration and the thickness of the fluid above the saturated continuum at point x, Figure 1a, respectively.
The stress σ is negative and corresponds to the pressure resulting from the weight of the column above the
point x of interest. The z-axis is vertical and directed upwards, Figure 1, so that the gravity vector is g = −gez.
The pressure p at any point of the medium is thus expressed as

p = g[−λρz + (ρf − ρλ)D] , (10)

so that the variation of λ between ρf/ρ and 1 corresponds to the range of pressure between hydrostatic and
lithostatic. Note that the décollement has its own pressure ratio noted λD.

The internal power is an unknown since the stress field is unknown. It is for that reason that an upper
bound to the internal power is proposed in the next subsection by application of what is referred to in Maillot
and Leroy [2006] as the maximum strength theorem.

3.2 Maximum strength theorem

The effective stress vector acting on any discontinuity is decomposed in a normal σ′
n and a tangential component

τ in the right-handed basis {n, t} composed of the normal and tangential vector to the discontinuity. These two
scalars are within the strength domain

G = {T ′ | |τ ′|+ tan(φ)σ′
n − C ≤ 0} , (11)

bounded by the Coulomb criterion defined in terms of the friction angle φ and the cohesion C. This set is
convex in the space (τ ′, σn) and application of convex analysis [Salençon, 2002] reveals that there is a maximum
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to the power T ′ · Ĵ which is called the support function π(Ĵ). This function for the strength domain defined in
(11) reads

{
case 1 : 0 ≤ η < π/2− φ
case 1′ : −π/2 + φ < η ≤ 0

, π(Ĵ) = ĴCcotan(φ) cos(η) ,

cases 2 & 2’: η = ±(π/2− φ), π(Ĵ) = ĴC cosφ ,{
case 3 : π/2− φ < η ≤ π
case 3′ : −π ≤ η < −π/2 + φ

, π(Ĵ) = +∞ , (12)

in which Ĵ is the norm of the velocity jump and η the angle between the velocity jump and the normal to
the discontinuity. This angle is counted positively anti-clockwise. The structure of this support function has
two consequences for our selection of virtual velocity field candidates. Cases 3 and 3’ for the orientation of the
velocity jump leads to an infinite upper bound of no interest. It is thus necessary to avoid the corresponding
ranges of angle and to orientate the velocity jumps according to cases 1,1’,2 or 2’. The velocity jumps have
thus to be oriented within the cone of the normal to the discontinuity with the half angle π/2 − φ. The
experience gained from previous works with this theoretical framework without pressure field [Cubas et al.,
2008] or including the fluid phase [Pons and Leroy, 2012] is that the velocity jumps are always on the boundary
of the cone, corresponding to case 2 and 2’ in (12). This conclusion is applied here without any further proof.

The introduction of the support function integrated on the discontinuities constituting the set ΣU provides
the maximum resisting power

P ′
mr(Û) =

∫
ΣU

π(Ĵ) dS ≥ P ′
int(Û) , (13)

which is bounding by above the unknown internal power. Combined with the theorem of effective virtual power
in (7), one obtains

P ′
ext(Û) ≤ P ′

mr(Û) ∀ Û KA , (14)

and more specifically:

Q · ÛAC ≤
∫

ΣU

π(Ĵ) dS −
∫

Ωt

ρg · Û dV +

∫
ΣU

pΣn · Ĵ dS ∀ Û KA , (15)

recognizing that the velocity field considered for our two collapse mechanism are divergence free. It is the
right-hand side of (15) which provides an upper bound to the force of magnitude Q applied on the back-wall
once the velocity field is normalized by the velocity of the wedge material in contact with the surface AC.

4 Virtual velocity fields

The theorem presented in the two previous sections is now applied to the two prototypes of Figure 1. The only
technical difficulties in obtaining the upper bound based on (15) is the selection of the virtual velocity field
which is now presented.

The velocity of the internal region of the wedge for the first collapse mechanisms has a norm of one for sake
of normalization and is oriented at φDI from the décollement dipping at β. This orientation corresponds indeed
to case 2 of the support function in (12) since the friction angle is φDI over the internal part of the décollement.
This vector reads

Û I = cos(β + φDI)e1 + sin(β + φDI)e2 . (16)

The external region at the wedge front has a velocity oriented at φDE from the décollement but its norm ÛE

is unknown. The difference between the two velocities Ĵ = ÛE − Û I is the jump over the fault GE dipping at
θ, as shown in Figure 1. This jump should be oriented at φ (bulk friction angle) from this fault, as illustrated
in Figure 2a. The norm of the jump and the norm of the external velocity are dictated from this constraint as
seen in the hodogram of Figure 2a. Application of the law of sines to this triangular construction provides
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Figure 2: The hodogram of the velocity fields for the two collapse mechanisms presented in Figure 1.

Ĵ

sin(φDE − φDI)
=

1

sin(θ − φ− β − φDE)
=

ÛE

sin(θ − φ− β − φDI)
, (17)

with obvious constraints on the three internal angles.
The internal region of the velocity field for the second collapse mechanisms is the same as in (16). The

external region is at rest and the motion of the rear part of the wedge is accommodated by two faults GE and
GF , typical of a thrust fold. The velocity of the hanging wall ÛHW is oriented at φ from the ramp GE dipping
at γ:

ÛHW = ÛHW

(
cos(γ + φ)e1 + sin(γ + φ)e2

)
. (18)

The difference between this velocity and the internal velocity is the jump across the fault GF dipping at θ. This
jump has an unknown norm Ĵ and is orientated at φ from the fault. The construction of this velocity field is
illustrated by the hodogram in Figure 2b. Application of the rule of sines to this second triangular construction
provides:

ÛHW

sin(β + φDI + θ + φ)
=

1

sin(γ + θ + 2φ)
=

Ĵ

sin(γ + φ− β − φDI)
. (19)

These conditions define entirely the velocity fields of the two collapse mechanisms for a given orientation of
the fault GE (θ) and of the two faults GE and GF (θ and γ) for the first and the second collapse mechanism,
respectively. Application of (15) to get the upper bound for each mechanism is then rather straight forward.
These upper bounds are then minimized to obtain the least upper bound by varying θ or θ and γ depending on
the collapse mechanism. This minimization is done numerically following the method discussed in Cubas et al.
[2008]. The least of the two minimized upper bounds determines the dominant collapse mechanism.
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