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Kinetic Pathways of Order-Disorder and Order-Order Transitions
in Weakly Segregated Microstructured Systems
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The kinetics of hexagonal to disordered and hexagonal to body-centered-cubic phase transitions in
weakly segregated, microstructured systems (e.g., diblock copolymers) is studied using a time-dependent
Ginzburg-Landau (TDGL) approach. Both computer simulation of the TDGL equation and analysis of
a simplified two-mode model reveal nontrivial pathways during the transition.

PACS numbers: 81.10.Aj, 64.70.—p, 81.30.Hd, 83.70.Hq

A wide variety of chemical and physical systems, suchin three dimensions. Although the specific origins may
as Langmuir films, ferrofluids, and diblock copolymers, differ from system to system, the formation of spatially
exhibit ordered periodic domain structures [1]. Irrespecperiodic patterns can be attributed to the competing short-
tive of differences in the systems, the domain structuresange and long-range interactions. Near the order-disorder
have surprisingly similar appearance: stripes and circutransition, these systems can be phenomenologically de-
lar droplets in two dimensions, and lamellae, hexagonascribed by an order parameter free energy functional of
(HEX) cylinders, and body-centered-cubic (bcc) spheTesshe form

FpGN = [ i~y @R + SI@P + 5@ + @t + S [ an [ ano - mwGose. @

where s (7) is the order parameter, e.g., the local magrLeGinzburg-Landau equation as [9]

tization in magnetic systems, or the local density contrast i SF
between the two types of monomers in diblock copoly- o MV2<5—> + n(r,1). (2)
mers. 7 is related to the distance from the order-disorder t 4

transition temperature, and the coefficiebts:, u, andv Here M is a mobility coefficient, which we assume to be
are phenomenological parameters which can be computedconstanty (7, ¢) is a random force, which for a system
from more microscopic models. The last term in Eq. (1)in equilibrium at temperatur&, satisfies the fluctuation-
represents the long-range repulsion, which penalizes longlissipation relation

wavelength inhomogeneities. The equilibrium properties > S1 N 2a02 _ 2 o

of systems described by Eq. (1) have been the subject of (G O 1)) 2MkgTV3(F = 7)ot t)'s
extensive experimental and theoretical studies [1,2]. )

In this Letter, we address the phenomenology of the kiAs a minimal model, we ignore any hydrodynamic effects
netics of the various order-order and order-disorder tranand possible nonlocality in the mobility coefficient [10,11].
sitions in weakly segregated, microstructured systemdjVe will also ignore the noise term in subsequent discus-
using a time-dependent Ginzburg-Landau approach. Spsions except to include it as providing an initial random-
cifically we study the kinetic pathways of HEX to disor- ness inthe system. We have conducted studies that include
dered and HEX to bcc phases after a sudden temperatutiee noise term and have confirmed that for the issues we fo-
jump. This study is motivated by the general intrinsiccus on in this Letter, its effects are not crucial. It may also
interest in understanding kinetics of phase transitions inbe commented that the distinction between conserved and
volving spatially modulated phases, in particular, by recenhonconserved order parameter dynamics in the weak seg-
experiments on diblock copolymers [3—7]. To be con-regation limit is not essential because only a single wave
crete, we shall use diblock copolymers as the context; howaumber dominates in this regime. Therefore, most of our
ever, we believe the phenomenology is quite general foresults for the case of conserved order parameters should
the class of systems described by the free energy Eq. (1pe applicable also for nonconserved order parameters.
and will not limit our choice of parameters specifically to  We first report results of numerical simulation of
those for diblock copolymers [8]. Egs. (1) and (2). To facilitate the numerical procedure, we

For conserved order parameters, as is appropriate fdring Eq. (2) into a cell-dynamics form suggested by Oono
diblock copolymers, we may write the time-dependentand co-workers [12,13], with the following choice of the
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parametersM =1, 1 =024, b = 0.5, ¢ = 0.02, v = the y-z cross section. The breaking of the cylinders into
—0.3,andu = 0.5. G(¥; — r,) is taken to be the solution droplets with a well-defined spacing seems evident. This
of the Laplace equatiory>’G(7; — 7») = —8(7; — 7).  intermediate state of modulated droplets lasts for about

The simulations are performed or3a X 32 X 32 simple 1000 steps, after which the droplets melt uniformly; the
cubic lattice. A two dimensional hexagonal sinusoidaldecay of the order paramet@rassociated with this latter
wave (in thex-y plane) in the order parameter is first  stage again appears to be exponential.
set as the initial condition with the wave vector chosen Although lacking perfect regularity, the microstructures
according to the minimum of the quadratic coefficient inshown in Fig. 1(c) are strongly reminiscent of a bcc sphere
the free energy Eq. (1). The system is then equilibrategphase. This impression is supported by the fact that the
for over 100000 steps at = 0.24. At this temperature, bcc sphere phase lies in between the HEX phase and
the system is in the stable HEX phase [see Figs. 1(a) artthe disordered phase in the equilibrium phase diagram.
1(b)] [14]. Starting from the well-equilibrated HEX Therefore, we have analyzed the microstructures in terms
phase, we change the temperature- tealues which are, of the amplitudes of the hexagonal and bcc waves, which
respectively, in the disordered phase and in the bcc spheree denote asA and B, respectively [15]. We observe
phase. To start the subsequent dynamics, a small randatimat during the melting process, the amplitudeBofirst
noise is added to the perfect HEX waves. The time evoluincreases and then decreases to zero; see Fig. 2(a).
tion of the system is then monitored by simulating Eq. (2) Next we study a temperature jump into the bcc sphere
numerically. To quantify the temporal behavior of the sys-phase from the HEX phase. Starting from the same
tem, we introduce a global order parameter= > ; l;|>  equilibrated HEX, we change the parameter abruptly from
where they;'s are the Fourier modes af(r). Atthe 7 =0.24 to 7 = 0.19. The bcc order becomes evident
mean field levelQ is zero in the disordered phase, and isafter 4000 steps, the spheres having grown epitaxially from
positive in the ordered phases. the cylinders. The amplitude & increases with time to a
For a large temperature jump deeply into the disorderefixed value; see also Fig. 2(b). Notice the relatively long
phase £ from 0.24 to 0.16), we find that the HEX cylinders incubation time before the appearance of the bcc waves.
melt after 1000 steps. The melting process appears to Our foregoing numerical results have shown that the
be a simple exponential one judged from the behavior opathways of hexagonal to disordered and bcc phase involve
the order parametap. Correspondingly, a direct visual the disappearance of the amplitude of the hexagonal waves
inspection of the microstructure [i.e., a gray-level plot ofand the appearance (although in some cases only transient
() in various cross sections] indicates that the meltingand imperfect) of bcc waves. This observation, together
is uniform with a monotonic decrease in the amplitude ofwith the fact that in the weak segregation limit the den-
the hexagonal waves. This behavior is consistent with theity modulations are nearly sinusoidal, suggests that con-
fact that atr = 0.16 the system is already outside of the siderable insight might be obtained by focusing on the time
limit of metastability for the HEX phase [14], and therefore evolution of these dominant modes. To this end, we make
the amplitude of the HEX wave should follow a strictly the simplifying assumption that time evolution of this sys-
downhill path in the free energy surface. tem can be described in terms of two order parameters
However, when the temperature jump is only slightlyandB corresponding to the amplitude of the hexagonal and
into the disordered phaser & 0.24 to = = 0.18), an  bcc waves at the optimal wave vector [16]. With this
interesting behavior shows up in the evolution®@f A  prescription for the representation of the modulation in the
much slower decay at intermediate times is observed. Adrder parameter, the free energy can be written as
the same time, a peak in the structure factor is observed at a
finite k., wherek, is the wave vector along the orientation _ 2 2 3 5
of the cylinders, indicating the formation of undulation in FIA.B] = = 31(A" + BY) — 4v(A + 345°)
that direction. The undulation is seen ditectly in Fig.. 1(c) n 45u (A* + B* + 4A2B?), (4)
where we plot the local order parametgfr) on a cut in 2

{a) 32 (b)

le 24 32
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FIG. 1. Cross-sectional, gray-level view of the instantaneous configurations from the simulation.y ¢apss section at = 0;
(b) y-z cross section at = 0; (c) y-z cross section at = 1000 steps. The dark regions are fg¢r> 0, and the light regions are
for ¢y < 0.
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0.002 y g B = 0 will initially grow. This is the scenario for the
transient appearance of the bcc structure during the melt-

0.0015 T ing of the hexagonal structure for a slight temperature
0.001 | jump to the disordered phase. Our calculation shows
that if the temperature jump is within some window, the
0.0005 melting of the cylinder will go through a transient bcc
- (a) phase. In the mean-field phase diagram, this window is
0 0 2000 4000 6000 bounded by the order-disorder boundary, which is given
t (Time Steps) by 1 = —32v2/405u, and the curver; = —2v2/15u.
We show the phase portrait in terms 4fand B for
0.03 " the slight temperature jump from the HEX phase to the
disordered phase in Fig. 3(a). The arrow indicates the
0.02 | direction of time progression. The trajectory clearly shows
the appearance of a bcc wave during the melting of the
0.01 | HEX cylinders.
In Fig. 3(b) we show the time evolution of the order
0 , . ! parameters—A and B after a temperature jump to the
0 2000 4000 6000 bcc phase. It is seen that while has a rapid initial

t (Time Steps) decay, the growth oB becomes appreciable only after
FIG. 2. Time evolution of the amplitude of bcc wavds 1.00 tlm.e units. This IS C0n3|$tent with th? result from our
(a) for a temperature jump slightly into the disordered phasésimulation. Another interesting feature is that there is a
(from 7 = 0.24 to 7 = 0.18), and (b) for a temperature jump long plateau region for in the intermediate times. In
into the bee phase (from = 0.24 to 7 = 0.19). The relatively  fact, between 50 and 100 time units, there is little change
large initial B in (a) is due to the initial noise that is included j, either A and B suggesting that the system has come
in the simulation. e

near to a saddle point.
_ _ Further insight into the time evolution of the microstruc-

where 7, = 7 — 2y/bc. Correspondingly, the dynamic tures after a temperature jump is obtained by considering

equation (2) becomes [16] the free energy surface in the order parameteend B.
A ) ) ) This is possible because in the single wave number ap-
9 —Mk;[ — Amy — 2v(A" + B) proximation, the Laplacian operator in Eq. (1) is trans-
formed to —k? [16], a constant factor. Thus, Egs. (5)
3 2 C 1 1
+ 15u(A” + 2AB7)], ®)  and (6) simply describe the steepest descent of the order
% = —Mk*[—B7; — 4vAB + 15u(B® + 2BA?)]. 0
A
(6)
Note that if we setB = 0, the stationary solution of -0.04 }

Eq. (5) at the temperaturg yields the equilibrium value
for the order parametet, of the HEX phase in the single

wave number approximation. The stability of this solu- -0.08 . (@
tion after a temperature jump tg{ can be analyzed by 0  0.004 0.008
performing a linear stability analysis. If| lies within B

the spinodal of the hexagonal phase, there is no linear in-
stability. Our calculated phase diagram shows that the
spinodal temperature of is within the bcc phase region,
thus temperature jumps to the disordered phase are al-
ready outside the metastable region. Therefore, there will
always be an initial driving force after the temperature 0.05 |
jump for A to decay. On the other hand, the behavior of B )
B in Eq. (6) is different depending on the net coefficient 0 0 100 200 300
of the linear term on the right-hand side. If the coefficient t (Arbitrary Units)
is negative, then any small perturbation®r= 0 will de-

cay exponentially. However, if the coefficient is positive, FIG. 3. Results from analyses using Egs. (5) and (6):
which occurs whem is negative (this ensures the epi- (a) Phase portrait oB vs A for a temperature jump slightly

. - . . into the disordered phase (from= 0.24 to 7 = 0.185). The
taxial relationship between the cylinders and the sphereg,orq initial B is due to the initial perturbation: (b) time

that grow out of them) and within a certain bracket andeyolution of the order parametessand B after a temperature
when the temperature jump is small, a perturbation fromjump into the bcc phase.

0.15 ' ' 1

0.1
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FIG. 4. Free energy contour plots in the order parameter spate(a) deeply in the disordered phase=t 0.16), (b) slightly in
the disordered phase & 0.185), and (c) in the bcc phase (= 0.19).

parametersA, B) on the free energy surface. The dy- We thank S.T. Milner, G.H. Fredrickson, and P.-G.
namics can then be understood by following the path ofle Gennes for helpful discussions. This research is sup-
the largest downhill gradient in the free energy landscapeported in part by donors of the Petroleum Research Fund,
Figure 4 shows contour plots of the free energy in the paadministered by the American Chemical Society, and
rameter spacd, B for the three situations we have stud- by the National Science Foundation (Grant No. ASC-
ied. Itis clear that for a jump from the hexagonal phase9217368).

deeply into the disordered phase, the steepest path is along

the B = 0 axis, with the global minimum at = 0 and

B = 0, indicating a direct melting of the cylinders without

the appearance of the droplets. On the other hand, for a xaythor to whom correspondence should be addressed.
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and the HEX phase in diblock copolymers has been es-  following the RPA approach of Leibler and making further
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tures during the melting of the HEX in shear-cessation 13, 1602 (1980); T. Ohta and K. Kawasakbid. 19,
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