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We explore simplified models of mixed dark matter (DM), defined here to be a

stable relic composed of a singlet and an electroweak charged state. Our setup de-

scribes a broad spectrum of thermal DM candidates that can naturally accommodate

the observed DM abundance but are subject to substantial constraints from current

and upcoming direct detection experiments. We identify “blind spots” at which the

DM-Higgs coupling is identically zero, thus nullifying direct detection constraints on

spin independent scattering. Furthermore, we characterize the fine-tuning in mix-

ing angles, i.e. well-tempering, required for thermal freeze-out to accommodate the

observed abundance. Present and projected limits from LUX and XENON1T force

many thermal relic models into blind spot tuning, well-tempering, or both. This

simplified model framework generalizes bino-Higgsino DM in the MSSM, singlino-

Higgsino DM in the NMSSM, and scalar DM candidates that appear in models of

extended Higgs sectors.
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I. INTRODUCTION

The gravitational evidence for dark matter (DM) is very strong, but its precise particle
properties remain elusive. Long ago, laboratory experiments excluded the simplest models
of weakly interacting massive particle (WIMP) DM which predicted DM-nucleon scattering
via spin independent Z boson exchange. Today, direct detection experiments, particularly
XENON100 [1, 2] and LUX [3], have become sensitive to the large class of theories that
predict spin independent (SI) DM-nucleon scattering mediated by the Higgs boson. Future
experiments such as XENON1T [4] and LZ [5] will have improved sensitivities and their
results will have even stronger implications. In light of the discovery of the Higgs boson
at the LHC [6, 7], present and future limits on Higgs-mediated scattering can be recast in
terms of the effective parameter space defined by the DM mass, Mχ, and its coupling to the
Higgs boson, chχχ.

What are the natural values for Mχ and chχχ? In the absence of additional theory input,
these parameters are arbitrary – there is simply no reason why DM should be accessible
through direct detection. For example, DM could be completely inert and thus impervious
to non-gravitational probes. While many theories offer a DM candidate as part of a new
physics framework, the only general impetus for couplings between DM and the Standard
Model (SM) is cosmological in nature: if DM is a thermal relic, then it is reasonable for it
be thermalized with the SM in the early universe. In minimal extensions of the SM, DM
couples via electroweak gauge interactions and/or via the Higgs portal. Going beyond this
setup requires more elaborate models that entail richer structures like dark force carriers
[8–15] or other mediators [16, 17]. Thus, an important question for present and upcoming
experiments is the status of thermal relic DM, broadly defined.

The literature provides a litany of well-motivated theories of DM, both within and outside
of broader new physics frameworks, though by far the most popular is neutralino DM in
supersymmetry (SUSY). While supersymmetric theories are a useful benchmark for models,
analyses of SUSY DM are often colored by theory biases and disparate connections to
unrelated experimental data. For instance, under specific model assumptions, issues of
naturalness are still taken as a hard constraint on the parameter space of SUSY DM models.
Another example is the discrepancy in g−2 of the muon [18–20], which prefers certain signs of
the µ parameter, influencing the perceived viability of SUSY DM. However, given the current
sensitivity of experiments, overarching theory assumptions like SUSY are not required to
pare down the parameter space – experiments will do so.

Instead it can be fruitful to take the approach of simplified models: effective theories
that describe a broad class of theories but are tailored to extract maximal information from
experimental results. Simplified models of DM have appeared in the literature in a number
of guises. In the case of minimal DM [21, 22], pure gauge representations were considered.
Others have studied simplified models of a singlet and colored particle, a.k.a. the effective
“bino-squark” system [23–25]. For thermal relics, it was found that many of these models
are bowing under the weight of present experimental constraints from direct detection and
the LHC. Recently, there has also been growing interest in effective operator descriptions of
DM [26–31]. Modulo the well-known limits of their validity [27, 29, 32–34], these effective
theories have been used to determine quite general bounds on DM from colliders.

In the present work, we consider simplified models of mixed DM, defined here as renormal-
izable theories of fermion or scalar DM comprised of a singlet and an additional electroweak
charged state. Generically, the singlet and charged states will mix after electroweak symme-
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try breaking. As a consequence, the DM possesses annihilation channels inherited from its
electroweak charged component, and thermal relic DM can be achieved with an appropriate
degree of mixing. In a sense, this simplified model is a generalization of the “well-tempered”
neutralino [35–37] found most commonly in focus point SUSY scenarios [38–41] to a more di-
verse set of DM charges and spins. By enumeration, there exist three renormalizable, gauge
invariant simplified models of mixed dark matter: fermion singlet-doublet (Model A), scalar
singlet-doublet (Model B), and scalar singlet-triplet (Model C). More complicated models
necessarily include additional degrees of freedom or higher dimension operators to induce
mixing. We evaluate the viability of models based upon current limits at LUX [3] and the
expected reach of XENON1T [4]. Our main conclusions are:

• In light of current LUX limits and the projected reach of XENON1T, we have de-
termined the viable parameter space of thermal relic DM in Fig. 9 (singlet-doublet
fermion), Fig. 15 (singlet-doublet scalar), and Fig. 19 (singlet-triplet scalar). We have
cast our results in terms of the parameter space of physical quantities: the DM mass,
Mχ, and the DM-Higgs coupling, chχχ.

• Model A: Singlet-Doublet Fermion. LUX stringently constrains this model except in
regions with relative signs among the DM-Higgs Yukawa couplings. Given the overall
Yukawa coupling strength y defined in Sec. II A, XENON1T will eliminate all of the
viable parameter space with y >∼ 0.1 except near blind spots with tuning more severe
than at least <∼ 10%. XENON1T will allow for regions with y <∼ 0.1, but they require
<∼ 10% tuning in order to accommodate the observed relic density.

• Model B: Singlet-Doublet Scalar. LUX places modest limits on this model but leaves
much of the parameter space still open. Given the overall DM-Higgs quartic coupling
strength λ defined in Sec. II B, XENON1T will eliminate essentially all of the param-
eter space for λ ≤ 0. For λ > 0, blind spots appear but a typical tuning of <∼ 10%
is still required to escape the projected reach of XENON1T. Within the limits of our
parameter scan, a similar tuning is required to obtain the observed relic abundance.

• Model C: Singlet-Triplet Scalar. LUX places relatively weak limits on the thermal relic
parameter space because triplets annihilate very efficiently in the early universe. Given
the overall DM-Higgs quartic coupling strength λ defined in Sec. II C, XENON1T will
strongly constrain models with λ ≤ 0, requiring a tuning of <∼ 1% to match the
observed DM abundance except for nearly pure triplet DM. For λ > 0, the coupling
is suppressed and there are regions with all fine-tunings alleviated to >∼ 10%.

In Sec. II we give a precise definition of Models A,B, and C, and discuss general aspects
of the thermal relic abundance and the DM-nucleon scattering cross-section. For the latter,
we derive analytic formulas indicating when the DM-Higgs coupling identically vanishes. In
Sec. III, Sec. IV, and Sec. V, we examine the parameter spaces of Models A,B, and C, both
in generality and for the case of thermal relic DM which saturates the observed abundance.
Current bounds from LUX and projected reach of XENON1T bounds are shown throughout.
Finally, in Sec. VI we present a discussion of our results and concluding thoughts.
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II. MODEL DEFINITIONS

In this section we explicitly define our simplified models. Throughout, we focus on the
case of a singlet mixed with a non-singlet, which is a natural generalization of many models
of theoretical interest. Of course, mixing among non-singlet states is also viable, but in
this case the preferred mass range for DM is typically in the multi-TeV range, with a lower
bound of several hundred GeV.

Furthermore, we restrict our discussion to models with renormalizable interactions. While
non-renormalizable interactions are of course allowed, they are competitive with renormal-
izable operators only when the cutoff is so low that the effective theory is invalid. Indeed,
mixing induced by higher dimension operators is highly suppressed by the electroweak sym-
metry breaking scale divided by the cutoff scale. Even in scenarios where such a theory is
valid and produces the appropriate relic density, a large degree of well-tempering is required
for even marginal mixing, disfavoring it for this study. Restricting to renormalizable models
limits us to three simplified models of mixed DM:

• Model A: Majorana fermion DM composed of a Majorana fermion singlet and Dirac
fermion doublet with hypercharge Y = 1/2.

• Model B: Real scalar DM composed of a real scalar singlet and complex scalar doublet
with hypercharge Y = 1/2.

• Model C: Real scalar DM composed of a real scalar singlet and real scalar triplet with
hypercharge Y = 0.

In principle, one can consider singlets which are Dirac fermions or complex scalars, but these
theories have more degrees of freedom and the analysis does not qualitatively change.

Throughout, we take Ωχ to be the relic abundance for the DM predicted by a thermal his-
tory. In all cases, the relic abundance and direct detection cross-section are calculated with
micrOMEGAs 2.4.5 [42–44] using model files generated using FeynRules 1.6.11 [45].
We are predominantly interested in the parameter space that saturates the DM abundance
observed by Planck [46],

ΩDMh
2 ' 0.1199± 0.0027. (1)

Obviously, the DM relic abundance will drastically vary if the cosmological history is non-
thermal, and in such cases there is no requirement that DM couples to the SM at all. Our
initial analysis for each model will highlight the location of the Ωχ = ΩDM line in parameter
space, along with regions of Ωχ < ΩDM and Ωχ > ΩDM. Our more detailed analysis will be
restricted to the Ωχ = ΩDM region, examining the behavior of other observables within the
thermal relic context.

In all of our models, the DM particle is either a real scalar or Majorana fermion. Con-
sequently, SI scattering through the Z boson is inelastic and can be ignored. On the other
hand, SI scattering through the Higgs boson is mediated via mixing between the singlet
and and non-singlet components, though it is suppressed at direct detection “blind spots”:
regions of parameter space at which the coupling of DM to the Higgs boson vanishes iden-
tically. As noted in [47], the existence of blind spots depend sensitively on relative signs
among the DM parameters. In the blind spot parameter space, the SI scattering DM-nucleon
cross-section is zero at tree-level. Radiative corrections are typically sub-dominant in the
parameter space except very close to the blind spot cancellation points. However, a proper
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evaluation of these higher order effects may become important for the status of DM if direct
detection experiments do not observe SI scattering. We also neglect radiative corrections
to the masses, which are important for the phenomenology of minimal DM [21] but are
sub-dominant when large mixing effects are introduced.

In the spirit of low energy Higgs theorems, we can straightforwardly compute the coupling
of DM to the Higgs via a Taylor expansion of the DM mass term with respect to the Higgs
vacuum expectation value (VEV), v. For Majorana fermion DM, we obtain

− L =
1

2
Mχ(v + h)χχ (2)

=
1

2
Mχ(v)χχ+

1

2

∂Mχ(v)

∂v
hχχ+O(h2) , (3)

where v = 246 GeV. Eq. (3) implies a dimensionless DM-Higgs boson coupling given by
chχχ = ∂Mχ(v)/∂v. For real scalar DM the same formula applies except with the replacement
Mχ(v)→M2

χ(v). In this case we define a dimensionful coupling ahχχ = ∂
[
M2

χ(v)
]
/∂v which

is proportional to the DM mass, though for ease of discussion we will sometimes use the
effective dimensionless coupling, chχχ = ahχχ/Mχ instead. As discussed in Ref. [47], the blind
spot is defined by chχχ = 0, computed by taking the ∂/∂v derivative of the characteristic
eigenvalue equation for the DM mass.

The DM-Higgs coupling maps straightforwardly onto limits from direct detection. The
spin independent DM-nucleon cross-section is mediated by Higgs exchange and scales as

σSI ∝ µ2

m4
h

× c2hχχ , (4)

where we use mh = 125.6 GeV throughout [6, 7]. Strictly speaking, both µ and chχχ vary
with Mχ. In our region of interest, though, we require Mχ

>∼ 100 GeV to avoid LEP
constraints on additional charged states which accompany the DM particle. Thus, µ is
approximately equal to the nucleon mass. Meanwhile, we can compare the σSI computed
from theory with the limits from LUX and XENON1T. These limits have complicated mass
dependence at low mass due to reduced efficiency in observing low energy events. However,
for Mχ

>∼ 100 GeV, the cross-section bounds σSI
LUX, σ

SI
X1T rise linearly with Mχ because the

event rates are proportional to the DM density, which falls with 1/Mχ. Throughout, we use
the lattice values for the quark content of the nucleon from [48].

We will be interested in models which evade present and projected limits from direct de-
tection while accommodating a thermal relic abundance consistent with observation. How-
ever, these theories may require tuning for either or both of these aspects. For direct
detection, the DM-Higgs coupling is of the schematic form chχχ = a + b, where a and b
depend on different sets of model parameters. We can characterize the degree of tuning
required for a blind spot cancellation by

ξBS =
|a+ b|
|a|+ |b|

. (5)

Blind spot tuning grows more severe as ξBS → 0. This effectively captures the tuning
inherent in chχχ → 0 when individual Higgs couplings remain non-zero. If a and b have the
same sign, no cancellation in chχχ is possible, and ξBS = 1.

Meanwhile, achieving the correct thermal relic abundance may require fine-tuning of
mixing angles, or “well-tempering”, since the DM must be the appropriate admixture of
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singlet and non-singlet state. Heuristically, well-tempering is correlated with the existence
of small mass splittings in the DM multiplet relative to the dimensionful input parameters.
Concretely, if the mass squared matrix is an N × N matrix M2, then the severity of well-
tempering is linked to the relative size of the traceless component of M2 (the mass splittings)
relative to the trace of M2 (the overall mass scale). Hence, we define a parameter that
describes the well-tempering in the mixing angle,

ξWT =

(
N Tr[M4]

Tr[M2]2
− 1

) 1
2

, (6)

which is related to the variance of the M2 matrix. Indeed, ξWT is precisely the fractional
standard deviation of the eigenvalues of M2. In the limit that the entire DM multiplet is
exactly degenerate, the mixing angle is very fine-tuned, M2 ∝ 1 and ξWT → 0.

A. Singlet-Doublet Fermion

In this section we define a simplified model for fermionic mixed DM comprised of a Majo-
rana singlet and Dirac doublet of SU(2)W×U(1)Y . Here we have introduced a Dirac doublet
in order to cancel anomalies and allow for a bare mass term. A priori, the Dirac doublet
can have arbitrary hypercharge, but to induce mixing via renormalizable interactions, we
demand that Y = ±1/2 so that either the left-handed or right-handed doublet component
can couple to the Higgs and the singlet. The field content of this simplified model is

Model A

Field Charges Spin

S (1, 0) 1/2

D1 (2,−1/2) 1/2

D2 (2, 1/2) 1/2

,

and the general renormalizable Lagrangian is

− LModel A =
1

2
MSS

2 +MDD1D2 + yD1SHD1 + yD2SH
†D2 +H.c. , (7)

where we have dropped the kinetic terms for simplicity. In our notation, D1 and D2 have
the same quantum numbers as H̃d and H̃u of the MSSM, respectively. We will sometimes
parametrize the Yukawa couplings in polar coordinates,

yD1 = y cos θ (8)

yD2 = y sin θ . (9)

Throughout, we work in a convention where MS and MD are positive but yD1 and yD2

have indefinite sign. Note, however, that using a parity transformation S → −S, we can
simultaneously flip the signs of yD1 and yD2 , so only their relative sign is physical. Likewise,
a parity transformation D1 → −D1 or D2 → −D2 flips the signs of MD and either yD1

or yD2 , respectively, so only a singlet sign among the three parameters is physical. After
electroweak symmetry breaking, S mixes with D1 and D2, and this mixing simultaneously
controls the thermal relic density of the DM as well as its coupling to the Higgs boson.
The lightest neutral state, χ, is stable DM, and is defined as a linear combination of the
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FIG. 1. Mass and mixing angle contours in singlet-doublet fermion DM for y = 0.3 and tan θ =

±2,±10. Shown are contours of the DM mass Mχ in GeV (red dot-dashed) and the DM-singlet

mixing angle squared N2
S (blue dotted).

interaction eigenstates, χ = NSS + ND1D1 + ND2D2, where N2
S + N2

D1
+ N2

D2
= 1. There

is also an electrically charged state in the spectrum which we denote by χ±. Two heavier
neutral states are also present, but they have little effect except when coannihilation controls
the thermal relic density.

Eq. (7) parametrizes a broad class of models which have been discussed in the literature.
Most prominently, it describes bino-Higgsino DM in the MSSM, with y = g′/

√
2 and θ = β.

It also describes singlino-Higgsino mixing in the NMSSM, where mixing is controlled by the
superpotential term W = λSHuHd, so y = λ and θ and β are offset by π/2. Singlet-doublet
Majorana DM has also been discussed in great detail in Ref. [49].
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FIG. 2. Mass and mixing angle contours in singlet-doublet fermion DM for y = 1.5 and tan θ =

±2,±10. Contours shown are the same as in Fig. 1.

Next, we present an analytic derivation of the relevant properties of χ. In the basis
(S,D1, D2), the neutral mass matrix is

M =

 MS
1√
2
yD1v

1√
2
yD2v

1√
2
yD1v 0 MD

1√
2
yD2v MD 0

 . (10)

The characteristic equation of the mass matrix is

0 =
(
M2

χ −M2
D

)
(MS −Mχ) +MDyD1yD2v

2 +
1

2
Mχ

(
y2D1

+ y2D2

)
v2

=
(
M2

χ −M2
D

)
(MS −Mχ) +

1

2
y2v2 (Mχ +MD sin 2θ) , (11)
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where we are interested in the smallest eigenvalue, Mχ. Since y labels the overall magnitude
of the Yukawa couplings, its sign is unphysical and the characteristic equation depends only
on y2. On the other hand, the sign of yD1/yD2 is physical, and is represented by the sign of
tan θ (or equivalently sin 2θ). The DM-Higgs coupling, chχχ = ∂Mχ(v)/∂v, can be computed
exactly by differentiating the characteristic equation in Eq. (11) with respect to ∂/∂v and
solving, yielding

chχχ = − y2v (Mχ +MD sin 2θ)

M2
D + 2MSMχ − 3M2

χ + y2v2/2
. (12)

We define “blind spot” for spin independent direct detection by all parameter points which
satisfy chχχ = 0, so

Mχ +MD sin 2θ = 0 , (13)

as discussed in [47]. Because MS and MD are positive definite, a blind spot can only occurs
when sin 2θ < 0.

In general, we will be interested in the amount of tuning required of thermal relic DM
permitted by current and future direct detection sensitivity. Using the general expressions
for the tuning measures in Eq. (5) and Eq. (6), we define

ξWT =

√
2 (M2

D −M2
S)

2
+ 1

2
y4v4 + 2y2v2 [M2

D + 2M2
S + 3MDMS sin 2θ]

2M2
D +M2

S + y2v2
(14)

ξBS =

∣∣∣∣ Mχ +MD sin 2θ

Mχ +MD| sin 2θ|

∣∣∣∣ , (15)

corresponding to the amount of tuning required for a properly well-tempered thermal relic,
and to the amount of tuning required to reside sufficiently close to a blind spot cancellation,
respectively.

Finally, let us consider the DM mass and mixing angles in the parameter space of singlet-
doublet DM. Figs. 1 and 2 show contours of Mχ and DM-singlet mixing angle squared, N2

S,
in the (MD,MS) plane for tan θ = ±2,±10 for y = 0.3 and y = 1.5, respectively. For y = 0.3,
Mχ is equal to the lower of MS or MD in most of the parameter space, only deviating near
MS ≈ MD. Significant mixing occurs when MS ≈ MD, and away from this region the DM
quickly approaches a pure singlet or pure doublet. For y = 1.5, Mχ is significantly offset
from both MS and MD throughout the plotted range for tan θ > 0, with a larger offset
around MS ≈ MD. A sizable region even exists with Mχ < 100 GeV for low values of MS

and/or MD. For tan θ < 0, however, the offset is more modest. As indicated, the degree of
mixing typically much greater for y = 1.5 than for y = 0.3.

B. Singlet-Doublet Scalar

Next, we define another simplified DM model with singlet-doublet mixing, only with
scalars rather than fermions. As in the case of fermionic DM, singlet-doublet mixing for
scalars requires that the doublet have hypercharge Y = 1/2. However, in this case a second
doublet is not required to either accommodate a bare doublet mass or cancel anomalies.
The field content is
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FIG. 3. Mass and mixing angle contours for singlet-doublet scalar DM for λ = 0 and A =

10, 100, 1000 GeV. Contours shown are the same as in Fig. 1.

Model B

Field Charges Spin

S (1, 0) 0

D (2, 1/2) 0

,

with a corresponding Lagrangian

− LModel B =
1

2
M2

SS
2 +M2

D |D|
2 +

1

2
λSS

2 |H|2 + λD |D|2 |H|2 + λ′D
∣∣HD†∣∣2

+
1

2
λ′′D

[(
HD†

)2
+ h.c.

]
+ A

[
SHD† + h.c.

]
. (16)

Here we drop kinetic terms, along with all interactions involving only S and D, which are
DM self-interactions which do not effect DM annihilation or direct detection. For simplicity,
we assume positive M2

S and M2
D, although strictly speaking this is not necessary because

the singlet and doublet acquire masses after electroweak symmetry breaking. Note that by
applying a parity transformation S → −S, we can flip the sign of A; consequently this sign
is unphysical.

Scalar dark matter theories have a long pedigree. Scalar singlet DM is often considered the
most minimal DM candidate, and has been studied extensively [50–53]. Current bounds on
scalar singlet models with the correct relic density require MS

>∼ 100 GeV except for a small
region of viable parameter space for 50 GeV <∼ MS

<∼ 65 GeV [54], but XENON1T reach
expected to cover MS

>∼ 10 TeV. Scalar doublet DM also has been studied extensively, most
often in the case of a two-Higgs doublet model where only one Higgs receives a VEV [55],
often called the “inert doublet model” [56]. Mixed singlet-doublet scalar models have also
bee considered previously [49, 57, 58], though most such studies have considered a sub-set
of the possible phenomenology motivated by grand unification.

Paralleling the fermion case, singlet-doublet mixing for scalars produces three real neutral
scalars and one charged scalar. Mixing among states is induced by the A term after elec-
troweak symmetry breaking. We can work in the basis of real neutral scalars, (S,DR, DI),
where DR and DI are the real and imaginary components of the neutral component of D.
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The mass squared matrix is

M2 =

M2
S + 1

2
v2λS Av 0

Av M2
D + 1

2
v2 (λD + λ′D + λ′′D) 0

0 0 M2
D + 1

2
v2 (λD + λ′D − λ′′D)

 . (17)

We assume the absence of CP violating couplings, so DI cannot mix with either DR or S.
Focusing on mixed DM, we choose a very tiny but negative value of λ′′D to ensure that the
doublet which mixes has a smaller mass term. With this restriction we define the lightest
mixed state as the DM particle χ = NSS +NDDR, where N2

S +N2
D = 1.

DM mixing is induced by the upper left 2 × 2 block of the full mixing matrix, whose
characteristic eigenvalue equation is

0 =
(
M2

χ − M̃2
S

)(
M2

χ − M̃2
D

)
− v2A2, (18)

where M̃2
S = M2

S + 1
2
v2λS and M̃2

D = M2
D + 1

2
v2 (λD + λ′D + λ′′D). The two eigenvalues of the

mass-squared matrix are

1

2

[
M̃2

S + M̃2
D ±

√(
M̃2

S − M̃2
D

)2
+ 4v2A2

]
, (19)

with the smaller eigenvalue corresponding to M2
χ. As shown earlier, the associated DM-Higgs

coupling is given by the derivative of M2
χ with respect to v,

ahχχ =
1

2
v (λS + λD + λ′D + λ′′D)−

2vA2 + 1
2
v
(
M̃2

S − M̃2
D

)
(λS − λD − λ′D − λ′′D)√(

M̃2
S − M̃2

D

)2
+ 4v2A2

. (20)

In our analysis we will make use of the simplifying limit λS = λD = λ and λ′D = λ′′D = 0. In
this limit, ahχχ simplifies to

ahχχ = λv − 2vA2√
(M2

S −M2
D)

2
+ 4v2A2

. (21)

In analogy with the case of fermion DM, we define the blind spot region by the condition
ahχχ = 0. However, in the scalar case it is complicated by the presence of Higgs couplings
to the pure states. For fermionic DM, mixing is induced by Yukawa terms, leading to a
correlation between mixing strength and the Higgs coupling. In the scalar case, however, for
any degree of mixing, the direct quartic couplings can be modified to create a blind spot.
The enhancement or suppression of ahχχ depends on the sign of λ. For positive λ, a blind
spot can occur, and interestingly, this is the sign preferred in general by considerations of
tree-level vacuum stability. In particular, if λ is too negative then the potential may contain
unbounded from below directions at large field values.

As in the case of singlet-doublet fermion DM, we can characterize the amount of tuning
required to accommodate a thermal relic abundance and evade direct detection. Again using
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FIG. 4. Mass and mixing angle contours for singlet-triplet scalar DM for λ = 0 and κ = 0.3, 3.

Contours shown are the same as in Fig. 1.

Eq. (5) and Eq. (6), we define (using only the 2× 2 mixing sub-matrix)

ξWT =

√
(M2

S −M2
D)

2
+ 4v2A2

(M2
S +M2

D + λv2)
(22)

ξBS =

∣∣∣∣λv√(M2
S −M2

D)
2

+ 4v2A2 − 2vA2

∣∣∣∣
|λv|

√
(M2

S −M2
D)

2
+ 4v2A2 + 2vA2

, (23)

to be the tuning measures for well-tempering and blind spot cancellations, respectively.
Last of all, we consider the DM mass and mixing angles in singlet-doublet scalar DM.

Fig. 3 shows contours of Mχ and N2
S in the (MD,MS) plane, with A = 10, 100, 1000 GeV

and λS = λD = λ′D = λ′′D = 0. For sufficiently small masses in the A = 100 GeV and
A = 1 TeV cases, one of the eigenstates becomes tachyonic and thus the region is excluded.
The well-mixed scenario occurs near MS ≈MD, with the degree of mixing dropping rapidly
except for the very large value of A = 1 TeV. Likewise, except for A = 1 TeV the mass
contours are restricted to Mχ ≈ MS or Mχ ≈ MD except for very close to the MS ≈ MD

line. Allowing for non-zero quartic DM-Higgs couplings does not qualitatively change the
mass and mixing contours, but simply shifts their positions.

C. Singlet-Triplet Scalar

Lastly, we consider scalar DM comprised of a mixed singlet and triplet. For the sake of
simplicity, we consider a real triplet, which necessarily carries zero hypercharge. The field
content of this model is
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Model C

Field Charges Spin

S (1, 0) 0

T (3, 0) 0

,

with a corresponding Lagrangian,

− LModel C =
1

2
M2

SS
2 +M2

T tr
(
T 2
)

+
1

2
λSS

2 |H|2 + λT tr
(
T 2
)
|H|2 + κSH†TH ,

where once again we have dropped kinetic terms and interactions involving only S and
T . After electroweak symmetry breaking, the singlet and triplet mix via the dimensionless
quartic interaction κ. Note that by applying the parity transformation, S → −S, we can
freely flip the sign of κ, so its sign is unphysical.

While models involving triplet scalar DM have not received the same level of attention
as those with singlet or doublet scalar DM, both pure triplet [21, 59] and mixed singlet-
triplet [60, 61]. However, as for mixed singlet-doublet scalar DM, previous studies have
primarily focused on a sub-set of parameter space motivated by grand unification.

The mass matrix for the singlet-triplet scalar case resembles the mixed sub-matrix for
the singlet-doublet scalar, with the substitution A→ −κv/4 in the (S, T ) basis,

M2 =

(
M2

S + 1
2
v2λS −1

4
κv2

−1
4
κv2 M2

T + 1
2
v2λT

)
. (24)

After diagonalization, the DM particle is χ = NSS + NTT , where N2
S + N2

T = 1. Likewise,
the mass-squared eigenvalues become

1

2

[
M̃2

S + M̃2
T ±

√(
M̃2

S − M̃2
T

)2
+

1

4
κ2v4

]
, (25)

where M̃2
S = M2

S + λSv
2/2 and M̃2

T = M2
T + λTv

2/2. However, due to the v-dependence of
the mixing term for the singlet-triplet case, the same substitution does not apply to ahχχ,
which has the form

ahχχ =
1

2
v (λS + λT )−

1
4
κ2v3 + 1

2
v
(
M̃2

S − M̃2
T

)
(λS − λT )√(

M̃2
S − M̃2

T

)2
+ 1

4
κ2v4

. (26)

The contribution to the Higgs coupling from the mixing term in the singlet-triplet case is
roughly twice as large relative to the singlet-doublet case for models with an equivalent mass
spectrum and mixing. For λS = λD = λ, this reduces to

ahχχ = λv −
1
4
κ2v3√

(M2
S −M2

T )
2

+ 1
4
κ2v4

. (27)

As in the singlet-doublet case, cancellations in the DM-Higgs coupling only occur if λ
is positive, with the same implication that vacuum stability favors positive values of λ and



15

thus cancellation. From Eq. (5) and Eq. (6), we define tuning measures for blind spot
cancellations and well-tempering,

ξWT =

√
(M2

T −M2
D)

2
+ 1

4
κ2v4

(M2
S +M2

T + λv2)
(28)

ξBS =

∣∣∣∣λv√(M2
S −M2

T )
2

+ 1
4
κ2v2 − 1

4
κ2v3

∣∣∣∣
|λv|

√
(M2

S −M2
T )

2
+ 1

4
κ2v2 + 1

4
κ2v3

. (29)

As before, we plot the DM mass, Mχ, and singlet mixing angle squared, N2
S, as a function

of the parameter space in Fig. 4. Qualitatively, our results are similar to the singlet-doublet
case. However, there is a major quantitative difference, which is that mixing effects are
minimal away from MS ≈ MD even at very large values of the coupling, κ = 3. As we will
see in Sec. V, this implies substantially different experimental constraints on singlet-doublet
versus singlet-triplet scalar DM.

III. MODEL A: SINGLET-DOUBLET FERMION DM

To begin, we will analyze the full four dimensional parameter space of singlet-doublet
fermion DM, (MS,MD, yD1 , yD2), imposing no constraints beyond the definition of the theory
in Sec. II A. We will display experimental constraints and regions consistent with Ωχ = ΩDM

as a function of the bare masses MS and MD, fixing (y, θ) to several characteristic values.
We will then focus on the subspace of thermal relic DM, fixing one of the model parameters
(MD, MS, or θ, depending on the plot) to accommodate Ωχ = ΩDM. Lastly, we will study
the thermal relic scenario further restricted to the parameter space residing exactly at the
present (and future) limits of direct detection experiments. In particular, for this analysis
we will fix y to σSI = σSI

LUX or σSI = σSI
X1T, corresponding to the space of models which are

“marginally excluded” by LUX or XENON1T, respectively.

A. Exclusion Plots (General)

First, we consider the unconstrained parameter space, focusing on the position of the
Ωχ = ΩDM line. A pure singlet Majorana fermion does not couple to the SM at the renor-
malizable level, so its thermal relic abundance is typically very large. Meanwhile, a pure
doublet has Ωχ = ΩDM for MD ' 1 TeV [62], with Ωχ > ΩDM for MD

>∼ 1 TeV and Ωχ < ΩDM

for MD
<∼ 1 TeV. Annihilation of the DM into gauge bosons occurs entirely through the

electroweak charged component of the DM. Hence, this contribution to the annihilation
cross-section is suppressed by the doublet mixing angles, ND1 and ND2 . In principle, anni-
hilation can also occur via Higgs exchange, and this will be enhanced at large y. However,
annihilation via the Higgs is a p-wave suppressed process for Majorana fermions, and thus
sub-dominant to gauge boson processes unless y is very large.

In Fig. 5, we have plotted constraints in the (MD,MS) plane, fixing y = 0.3 and tan θ =
±2 (top) or ±10 (bottom). For MS

<∼ 1 TeV, significant well-tempering of the DM mixing
angles is required to produce Ωχ = ΩDM for all parameter combinations. This is the case
because yv �MS,D, requiring MS ≈MD for any significant level of mixing. For MS

>∼ 1 TeV
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FIG. 5. Direct detection prospects for y = 0.3 and tan θ = ±2,±10. Shown are contours of σSI

in zb (green, various styles) together with current bounds from LUX (blue shaded) and projected

reach at XENON1T (gold shaded). Away from the line consistent with the observed relic density

(teal dashed), we compute LUX and XENON1T bounds assuming that the DM relic density is

equal to the observed one due to a non-thermal cosmology.

the thermal relic line asymptotes to MD ' 1 TeV, the mass at which pure doublet DM is
a thermal relic with the correct abundance. The fact that Ωχ = ΩDM is not possible for
MD > 1 TeV implies that the Higgs coupling y = 0.3 affects the annihilation cross-section
primarily through mixing angles that control gauge boson processes. That is, processes
involving the Higgs boson directly do not strongly affect the DM annihilation cross-section.

In terms of direct detection, the value of σSI depends sensitively on the sign of tan θ.
For tan θ > 0 it lies in the range 0.01 zb <∼ σSI <∼ 10 zb throughout most of the region
shown, and exhibits no blind spot behavior. Conversely, for tan θ < 0, the maximum value
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of σSI is reduced, and a blind spot occurs where σSI vanishes (the minimum value shown is
0.001 zb). The position of the blind spot changes for different values of tan θ, and is located
at MS +MD sin 2θ ≈ 0, roughly consistent with the blind spot condition of Eq. (13).

For positive tan θ, the thermal line is constrained by LUX for MS
>∼ 1.1 TeV for tan θ = 2

and MS
>∼ 1 TeV for tan θ = 10. For negative tan θ, however, LUX provides no bound

for tan θ = −2 and bounds the thermal scenario only up to 900 GeV for tan θ = −10.
Meanwhile, for both values of tan θ, XENON1T constrains the thermal scenario well into
the nearly pure doublet region, as well as large swaths of non-thermal scenarios. Even after
XENON1T, large swaths of parameter space will still be allowed at small and negative tan θ,
and for tan θ = −2 a small portion of the thermal line with MS ∼ 200 GeV remains viable.
The relatively low values of σSI and weak exclusion for tan θ = −2 are due to a blind spot
near tan θ = −1 for doublet-like DM [47]. At large values of | tan θ| (corresponding to large
tan β in the MSSM), the sign of tan θ becomes unphysical [47], as shown by the relative
similarity of the contours for tan β = ±10 as opposed to tan θ = ±2 in Fig. 5.

There are two major implications of Fig. 5. First, the region consistent with a thermal
relic is already quite constrained by LUX for y = 0.3. XENON1T will further constrain
this region, excluding at least up to the point at which DM is nearly a pure doublet except
for a very finely tuned region of parameter space. Second, the sensitivity of limits depends
greatly on the sign of tan θ, due to blind spot cancellation points, and in small regions of
parameter space even relatively light masses of a few hundred GeV remain viable.

As shown in Fig. 6, the situation changes drastically when the Higgs-DM coupling is
increased to y = 1.5. There is a significant shift in the position of the thermal relic line,
primarily toward larger values of MD for a given value of MS. This behavior stems from the
increase in the size of the off-diagonal terms in the mass matrix, resulting in yv ∼MS,D for
a larger portion of the space scanned in the figures. As a result, well-tempering is no longer
required to produce significant mixing, and so MD must be increased significantly to suppress
DM annihilation mediated through the doublet component. Moreover, a significant portion
of the Ωχ = ΩDM line is located at MD > 1 TeV, implying that annihilation for large y is
substantially stronger than for a pure doublet. The dominant effect is enhanced annihilation
mediated by a Z-boson due to a modification of the χ − Z coupling, icZχχχγ

µγ5χZµ. For
mixed scenarios

cZχχ =
g

2 cos θW

(
N2
D1
−N2

D2

)
, (30)

where g is the weak gauge coupling and θW is the Weinberg angle. In the y → 0 limit,
the singlet and doublet partially decouple, resulting in ND1 = ND2 → 0 for MD > MS

or |ND1| = |ND2| → 1/
√

2 for MD < MS. In either case, cZχχ → 0, so long as the very
small splitting necessary to break the doublet into two Majorana states remains. However,
for larger values of y and tan θ 6= ±1, the degree of S − D1 mixing and S − D2 mixing is
different, resulting in |ND1| 6= |ND2| and thus cZχχ 6= 0. The size of cZχχ grows with the
degree of mixing, and thus with y, though it of course can never exceed g/2 cos θW . For large
y, enhanced Higgs-mediated annihilation also becomes important, though such processes
remain p-wave suppressed and are somewhat smaller than the Z-mediated diagrams.

While stronger annihilation channels shifts the Ωχ = ΩDM line to larger values of MD >
1 TeV over most of the range shown, for sufficiently large MS ∼ 3 − 4 TeV, the thermal
relic line asymptotes to the MD ≈ 1 TeV line corresponding to nearly-pure doublet DM.
In the right panels, tan θ < 0 and chχχ is suppressed, so Z-mediated processes dominate
annihilation. As a result, annihilation becomes markedly stronger approaching the MS ≈
MD line, and the Ωχ = ΩDM line moves to larger MD with increasing MS. The coupling
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FIG. 6. Direct detection prospects for y = 1.5 and tan θ = ±2,±10. Contours shown are the same

as in Fig. 5.

cZχχ is marginally smaller for tan θ = −2 than for tan θ = −10, but not sufficiently so to
produce significantly different results. For tan θ > 0, however, the Ωχ = ΩDM line shows
distinctly different behavior for tan θ = 2. Because Z-mediated processes vanish identically
in the limit of cZχχ → 0 for tan θ → ±1, this coupling is suppressed in the neighborhood of
tan θ ≈ 1. As a result, the Ωχ = ΩDM contour is located at a lower value of MD for tan θ = 2.
Higgs-mediated annihilation compensates somewhat at lower MS, and indeed the tan θ = 2
case has the largest Higgs coupling of the cases shown, but Higgs-mediated annihilation does
not exhibit the same degree of enhancement for MD ≈MS. As a result, the Ωχ = ΩDM line
is located at large MD for small MS and shifts to smaller values of MD as MS increases. The
tan θ = 10 case, however, is far enough from tan θ = 1 that the behavior seen in tan θ < 0
is recovered.
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Moreover, the availability of annihilation channels is important for low masses – in the
lower two panels of Fig. 6, the Ωχ = ΩDM line is nearly horizontal over a range of several
hundred GeV for MD in multiple plots for MS ∼ mt. The increase of MD for nearly fixed
MS in this region effectively reduces the mixing angle to compensate for an enhancement in
annihilation from the opening of the χχ → tt̄ annihilation channel. Likewise, the singlet-
doublet mixing terms are so large that Mχ → 0 for tan θ > 0 and MS,D of order a few
hundred GeV. For tan θ < 0 this does not occur due to the structure of the mass matrix. In
the upper left panel of Fig. 6, y = 1.5, tan θ = 2 and the Ωχ = ΩDM line is roughly parallel to
the low mass DM contours. This occurs because the relic abundance is strongly controlled
by the opening of annihilation channels when the DM mass crosses the bottom quark, W
boson, and top quark thresholds.

Regarding direct detection, for y = 1.5, the raw value of σSI is increased by more than
an order of magnitude relative to y = 0.3. LUX excludes the entire region shown for
tan θ > 0, except for a small region at low MS,D for which Mχ

<∼ mb is below the experimental
threshold. However, this low mass region retains a large Higgs coupling and will be excluded
by constraints on the invisible decay width of the Higgs [63]. Blind spot cancellations occur
for tan θ < 0, however, with large portions of the thermal relic line remaining viable given
LUX limits. XENON1T still has much greater reach for tan θ < 0, with the increased Higgs
coupling resulting in only the blind spot and an associated small portion of the thermal relic
line evading XENON1T sensitivity.

B. Exclusion Plots (Thermal Relic)

Next, we consider singlet-doublet fermion DM in a reduced parameter space. We focus
on thermal relic DM by restricting to regions that saturate the observed DM abundance,
defined by Ωχ = ΩDM. Concretely, we fix one of parameters (MS,MD, y, θ) to saturate the
thermal relic constraint.

Fig. 7 depicts constraints in the (y,MS) plane, fixing tan θ to various values and setting
MD so that Ωχ = ΩDM. As before, the sign of tan θ has a significant effect on DM properties.
For tan θ > 0 there are no blind spots, and for y <∼ 0.5, the cross-section σSI grows almost
monotonically with y and decreases with MS ∼Mχ. In this region, DM annihilation results
primarily from gauge interactions typical to nearly-pure doublet DM. For y >∼ 0.5, however,
Higgs-mediated and Z-mediated diagrams become important, with their relative contribu-
tions increasing with y. As a result, σSI actually decreases for increasing y for y >∼ 1, due
to a reduction in the mixing to limit the Higgs- and Z-mediated annihilation processes that
increase with y. A small region of larger σSI > 100 zb is also present for MS

<∼ 200 GeV in
the tan θ = 2 case, associated with large splitting which drives Mχ < mW and thus requires
a larger Higgs coupling to produce appropriate levels of annihilation. Fig. 7 also shows that
direct detection limits from LUX bound y <∼ 0.3 for MS

<∼ 1 TeV in the tan θ > 0 case,
while XENON1T reach covers all regions except for extremely small y for any MS

<∼ 1 TeV
for tan θ, and even up to MS = 2 TeV XENON1T limits y <∼ 0.3.

For tan θ < 0, both the general suppression in the chχχ and the existence of blind spots
significantly affect the results. The shape of the σSI contours for small y is similar to the
tan θ > 0 case, but the values are significantly reduced. For tan θ = −2 in particular this
suppression is sufficient that no LUX exclusion exists for y <∼ 0.5 even for small MS, and
only bounds MS

>∼ 1 TeV even for y = 2. Even with this suppression, however, XENON1T
still has strong constraining power down to small values of y for MS

<∼ 1 TeV. The position
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FIG. 7. Well-tempering and direct detection prospects for fixed Ωχ = ΩDM as a function of y and

MS. Shown are the well-tempering measure ξWT (red dashed) and direct detection cross-section

σSI in zb (green, various styles). Also shown are the regions currently excluded by LUX (blue

shaded) and the projected reach of XENON1T (gold shaded).

of blind spots which also avoid XENON1T projected bounds is set by MD, and they occur
primarily at larger values of y since such values are required to produce sufficient splitting
between MS and MD for the values of tan θ shown. These blind spots are more difficult to
accommodate at large tan θ, where they require a larger hierarchy between Mχ and MD.

These plots also depict the well-tempering parameter, ξWT, which characterizes the level
of degeneracy required among the mixed neutral states in order to yield the correct relic
abundance. The existing LUX bound still allows for thermal relics with moderate well-
tempering, ξWT ∼ 0.1, especially for tan θ < 0. It also places moderate limits on y <∼ 0.3 for
tan θ > 0, and allows larger values of y for tan θ < 0. However, XENON1T will strongly alter
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FIG. 8. Well-tempering and direct detection prospects for fixed Ωχ = ΩDM as a function of yD1

and yD2. Contours shown are the same as in Fig. 7.

the available parameter space of this simplified model. Projected limits from XENON1T
typically constrain ξWT

<∼ 0.1 throughout for Mχ
<∼ 1 TeV, with ξWT

<∼ 10−2 for 700 GeV <∼
Mχ

<∼ 1 TeV, which is a substantial degree of tuning . A notable exception is exactly on
blind spots, where there is no direct detection limit; however, residing on these cancellation
regions constitutes an additional tuning.

Fig. 8 depicts direct detection constraints in the thermal relic parameter space, only
shown in the (yD1 , yD2) plane at fixed MD, and fixing MS to satisfy the relic constraint. For
certain regions within this plane there are multiple solutions for Ωχ = ΩDM; in such cases
the solution with the largest value of Mχ is displayed1. Here tan θ = yD2/yD1 is positive
(negative) in the right (left) quadrant. As in Fig. 7, ξWT is small for small y and grows as
y becomes large. However, in contrast with Fig. 7 where MD was allowed to grow to offset
the increasing value of yv, in Fig. 8 MD < 1 TeV throughout. As such, some mixing is still
required to dilute the annihilation strength, so MS is never even approximately decoupled.
For tan θ > 0 (yD1 > 0) the large y region induces a significant mass splitting, and is thus
dominated by small values of Mχ

<∼ mt and correspondingly large σSI, closing annihilation
channels and reducing coannihilation to compensate for enhanced annihilation strength.
For tan θ < 0 (yD1 < 0) the induced mass splitting is significantly smaller, particularly for
tan θ ≈ −1, and so no such low mass solutions exist. This produces a region for which
Ωχ = ΩDM is unachievable by varying MS alone. The size of both the small mass and no
solution regions decreases with increasing MD.

At present, LUX strongly constrains this simplified model for yD1 > 0, only allowing a
small region at small y; however, once again a blind spot exists for yD1 < 0 which leaves
open large swaths of available parameter space. This blind spot extends to arbitrarily large
values of y (limited, of course, by perturbativity), though the trajectory varies with mass

1 Secondary solutions for tan θ > 0 tend to be at a lower mass and thus more strongly constrained by direct

detection; secondary solutions for tan θ < 0 have similar masses and σSI to the primary solutions.
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FIG. 9. Viable regions with Ωχ = ΩDM as a function of Mχ and chχχ. Regions are shown for

various values of MD and for the ranges 0 < θ < π/2 (left) and −π/2 < θ < 0 (right). Also

shown are upper limits on |chχχ| allowed by XENON100 (teal dashed), LUX (blue dot-dashed) and

projected upper limits from XENON1T (gold dashed).

at large y. However, after XENON1T, only models very close to this blind spot will still be
viable. Regarding well-tempering, for yD1 > 0, only a very small value of y will be allowed
after XENON1T, corresponding to a significant degree of well-tempering, ξWT

<∼ 0.03. For
yD1 < 0, well-tempering is still substantial, but is alleviated when residing precisely on the
blind spot.

Fig. 8 also contains a line corresponding to bino-Higgsino DM in the MSSM. In this
case, y = g′/

√
2, and θ = β is restricted to be in the range −π/4 to +π/4 required for a

perturbative top Yukawa coupling. Here, negative values of β correspond to a negative µ
parameter in the MSSM.

Lastly, Fig. 9 shows the theoretically available parameter space with Ωχ = ΩDM in terms
of more physical quantities: the DM mass, Mχ, and the DM-Higgs coupling, ∂Mχ/∂v = chχχ.
By definition, the blind spot is defined at the bottom of the plot where |chχχ| = 0. We can
substitute the model inputs MS and y for these more physical parameters using the relations

MS = Mχ −
1

2
chχχv

∆M2B

∆M2B + chχχv (∆M2 + 2MχB) /2
(31)

y2 = −chχχ
vB2

(
∆M2(MS −Mχ) +B

(
∆M2 + 2Mχ(MS −Mχ)

))
(32)

∆M2 = M2
D −M2

χ (33)

B = Mχ +MD sin 2θ . (34)

We have marginalized over all values of tan θ positive (left) and negative (right) to fix
Ωχ = ΩDM for various values of Mχ± = MD. In keeping with comparison to direct detection
the sign of chχχ is also left undetermined. This issue will be discussed further in Sec. III C.
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For tan θ > 0 both the upper and lower edges of the allowed range increase with Mχ. The
position of the upper edge depends strongly on MD, and increases more quickly for small MD,
while the position of the lower edge is almost independent of MD. This behavior is modified
as Mχ and MD become degenerate, with the upper edge peaking at Mχ ≈ MD − 100 GeV
and dropping steadily thereafter. The lower edge also drops below the general trend line
in the same mass range. Both effects are due to coannihilation, which requires a spectrum
with relatively suppressed Higgs couplings. The presence of a general lower bound on chχχ
is due to the lack of a blind spot for tan θ > 0. However, a small region with chχχ → 0 exists
for tan θ > 0 in the Mχ →MD limit as small cross-terms are required for mixing. Note that
the absence of this region in Fig. 9(a) is due to a binning artifact.

For tan θ < 0, the behavior of the upper edge is similar to that for tan θ > 0, though
found at somewhat different values of |chχχ|. There is no lower bound, however, due to
the possibility of blind spot cancellations for tan θ < 0. In terms of constraints, LUX
currently excludes most of the tan θ > 0 regions, including everything above the generic
lower limit, and excludes a large portion of the tan θ < 0 regions as well. XENON1T will
further exclude most of the parameter space of this simplified model, though for the cases
of extreme coannihilation and blind spots for tan θ < 0, XENON1T will not be able to
eliminate the model.

C. Exclusion Plots (Thermal Relic and Marginal Exclusion)

So far, we have reduced the dimensionality of the parameter space by imposing Ωχ = ΩDM.
However, we can further reduce the parameter space by fixing σSI, which is controlled by chχχ
coupling. In particular, we will now focus on the parameter space of thermal relic DM that
exactly saturates present LUX limits or projected XENON1T reach (in addition to fixing
Ωχ = ΩDM). This defines a space of marginally excluded, thermal relic DM models which
can accommodate the observed abundance today. This space of marginally excluded thermal
relics represents the class of models at the edge of direct detection limits. Thus, comparing
the space fixed to XENON1T projected constraints against that fixed to current LUX limits
unambiguously demonstrates the effect of improved direct detection sensitivity. This is aided
by the additional benefit of reducing the parameter space to only two dimensions; hence the
entire surviving parameter space can be described in a single plane. Moreover, because the
direct detection limits bound σSI from above, the values y shown can be identified as the
maximal DM-Higgs coupling allowed by a given experiment. The corresponding Mχ should
be interpreted as the minimal DM mass allowed by direct detection, at least for Mχ > 200
GeV, when experimental limits on the cross-section begin to scale linearly as ∝Mχ.

First we consider the parameter space of marginally excluded thermal relics in the
(MD,Mχ) plane for tan θ < 0. For every pair of (Mχ,MD), there are a maximum of four
viable solutions – each with chχχ either positive or negative and tan θ either positive or
negative. From Eq. (12),

chχχ ∝ − (Mχ +MD sin 2θ) , (35)

so it is negative definite for tan θ positive, leaving a maximum of three viable solutions.
Furthermore, from the discussion in Sec. III B it is clear that the viable region for tan θ > 0
occurs only for small values of y and significant well-tempering, and thus would occupy
only a small sliver along the Mχ = MD line in this plane; an explicit scan confirms this
assumption.
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FIG. 10. Tuning for models with fixed Ωχ and σSI as a function of MD and Mχ. Shown are

points which satisfy the relic density constraint and exactly saturate σSI limits from LUX (top) or

projected reach at XENON1T (bottom). Regions with significant tuning are shown for ξWT (red

shaded) and ξBS (green shaded). The white regions correspond to parameters with lesser tuning

than the shaded regions: ξWT, ξBS
>∼ 0.1 for the upper panels, and ξWT

>∼ 0.1 and 0.1 >∼ ξBS
>∼ 0.03

in the lower panels. The left panels correspond to chχχ > 0 and the right panels to chχχ < 0; in

both cases tan θ < 0.

The two remaining interesting cases are shown in Fig. 10 for tan θ < 0 and chχχ > 0
(left) or chχχ < 0 (right). For each point the required value of y is shown, along with
regions showing various degrees of well-tempering and blind spot tuning. Models marginally
excluded by LUX (top) have minimal tuning, with most regions subject to ξWT, ξBS

>∼ 0.1
(shown in white) for both positive and negative chχχ. For models within the marginal
sensitivity of XENON1T, however, ξBS < 0.1 throughout the entire plane for both signs of
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FIG. 11. Tuning for models with fixed Ωχ and σSI as a function of θ and Mχ. Contours and

regions shown are the same as in Fig. 10.

chχχ, and ξBS < 0.03 throughout most of the plane. While the parameter space remains
viable for DM, it is clear that some degree of fine-tuning is necessary for consistency with
XENON1T projected limits.

Fig. 11 show the parameter space of marginally excluded thermal relic DM in the (Mχ, θ)
plane, with MD set to fix Ωχ = ΩDM. As discussed above, no solution exists for chχχ > 0
and tan θ > 0. In principle, solutions exist throughout the plane for both signs of chχχ and
tan θ < 0. However, at sufficiently large values of y, the potential solutions for chχχ < 0
do not exist due to over-efficient annihilation, resulting in no solution near θ = −π/4. For
chχχ > 0 the results mirror those shown in Fig. 10 – there are significant regions with
ξWT, ξBS

>∼ 0.1 for LUX, while ξBS < 0.1 everywhere and ξBS < 0.03 throughout most of
the region for XENON1T. In contrast, for chχχ < 0 the dominant fine-tuning lies in well-
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tempering. For tan θ > 0, we find that ξBS = 1 by definition because no cancellations
are possible to eliminate the DM-Higgs coupling. However, to evade direct detection, we
still need tiny values of y, requiring coannihilation to produce Ωχ = ΩDM. This produces
ξWT < 0.1 for 400 GeV <∼ Mχ

<∼ 900 GeV for LUX, while for XENON1T, ξWT < 0.1
throughout nearly the entire region shown and ξWT < 0.01 for 750 GeV <∼Mχ

<∼ 900 GeV.

IV. MODEL B: SINGLET-DOUBLET SCALAR DM

Next, we will analyze the case of singlet-doublet scalar DM. This simplified model has
qualitative similarities to the fermionic version discussed in Sec. III. However, there is an
important physical difference: while a pure fermion singlet is inert, a pure scalar singlet
can have renormalizable interactions to the SM through the Higgs boson. In particular,
for scalar DM the quartic couplings between the DM and the Higgs can have a substantial
effect on the thermal relic abundance and direct detection constraints. The addition of
a quartic Higgs coupling to the singlet produces a line in the Mχ vs. σSI plane consistent
with the thermal relic density for pure singlet [54] DM, while a quartic Higgs coupling to the
doublet shift the value of MD which gives Ωχ = ΩDM independent of MS for pure doublet [64]
DM. However, we are specifically interested in the case of mixed DM, whereby the dominant
annihilation channels relevant to freeze-out derive from mixing of the singlet and non-singlet
states. Thus, we will focus on the parameter space where the cubic term A [SHD∗ + h.c.]
is large enough to induce significant mixing.

From the practical standpoint of analyzing constraints, scalar DM models tend to have
more parameters than fermionic DM – in the case of singlet-doublet DM, the scalar model
has seven while the fermionic has only four. The large number of parameters renders a com-
prehensive parameter scan like that used for fermions in Sec. III impractical. Fortunately,
four of the free parameters for scalar DM are quartic couplings of the Higgs directly to the
singlet or doublet states, and thus do not induce singlet-doublet mixing. We will therefore
focus on the case of λS = λD = λ′D = λ′′D = 0 as the “minimal case” for mixed singlet-doublet
scalar DM. As we move away from this simplifying limit, mixing becomes less important for
the relic abundance and direct detection constraints, and the DM properties approach that
of a pure singlet or doublet.

In principle, there are three distinct Higgs couplings to the doublet component of DM.
However, only one combination of these enters into the couplings of the neutral mixed
doublet state. Thus, many combinations of the three couplings will result in the same
dynamics for the DM state alone. On the other hand, these different combinations will
result in modified dynamics for processes involving DM and another doublet state, which
here is limited to coannihilation for nearly pure doublet states. While these effects may be
important in certain regions of parameter space, they are not the primary focus here.

The dominant effect of including Higgs couplings to pure states is a modification of ahχχ
and the coupling associated with the χχhh operator. If re-expressed in terms of the singlet-
doublet mixing angles, ahχχ becomes [49]

ahχχ = v
(
λSN

2
S + [λD + λ′D + λ′′D]N2

D

)
− 2ANSND . (36)

As shown in Fig. 3, for the majority of the parameter space either N2
S � 1 or N2

D � 1, so
either the singlet or doublet Higgs coupling contribution to ahχχ and the associated χχhh
operator will be sub-dominant. Using this feature, we further simplify the parameter space
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by taking

λS = λD = λ (37)

λ′D = λ′′D = 0 (38)

This simplified parameter space carries most of the qualitative features of the full theory,
diverging primarily for MS ≈MD.

A. Exclusion Plots (General)

To begin, we analyze the unconstrained parameter space of scalar singlet-doublet DM.
In Fig. 12 we restrict to the case λ = 0, fixing A = 10, 100, 1000 GeV from left to right. For
A = 10 GeV, the associated cubic coupling is too weak to produce significant splitting or
contribute to the relic density directly, thus requiring large mixing for MS

<∼ 500−550 GeV.
For MS

>∼ 600 GeV, DM with Ωχ = ΩDM becomes a nearly pure doublet with MD ≈
550 GeV [21, 64]. In this case direct detection prospects are minimal, with XENON1T
sensitivity only for MS,D

<∼ 200 GeV.
For A = 100 GeV, the position of the Ωχ = ΩDM line changes substantially for MS

<∼
800 GeV, shifting to larger values of MD as large as ≈ 750 GeV. However, it eventually
asymptotes to pure doublet behavior for larger MS. This shift is qualitatively similar to
the enhanced Higgs-mediated annihilation for fermions in the case of large couplings, but
the quantitative results diverge substantially. As discussed in Sec. III, while Majorana
fermion DM can annihilate through the Higgs, this process appears at p-wave and only
becomes important for large couplings. For scalars, however, annihilation via the Higgs
is s-wave and interferes strongly with t-channel annihilation diagrams involving the other
charged and neutral scalars. Qualitatively, the relative strength of Higgs annihilation can
be seen in the direct detection coverage – the sensitivity of LUX and XENON1T shown in
Fig. 12(b) is much weaker for equivalent Mχ than the full-plane coverage present for fermions
in Figs. 5(a) and 5(c), but despite this achieving Ωχ = ΩDM requires less well-tempering, at
least for MS

<∼ 800 GeV.
The relevance of annihilation through the Higgs is even more pronounced for A = 1 TeV.

In this case, Ωχ = ΩDM cannot be achieved for small DM masses due to Higgs-mediated
annihilation. The Ωχ = ΩDM line occurs at MS

>∼ 1.2 TeV, corresponding to DM masses
well above the value of ∼ 550 GeV required for a pure doublet thermal relic. The Ωχ = ΩDM

line occurs at somewhat smaller DM mass for MD < MS than for MD > MS due to the more
efficient annihilation from the typical doublet annihilation processes, but in both cases the
relatively small mixing angle still produces large direct detection cross-sections. As a result,
a portion of the Ωχ = ΩDM line remains outside of LUX bounds despite the relatively large
values of σSI, though it can be probed at XENON1T.

The situation changes drastically if there are quartic couplings between the Higgs and
the singlet and doublet components of the DM, shown in Fig. 13 for λ = ±0.25. The
most distinctive feature is the possibility of Ωχ = ΩDM for pure singlet DM, occurring at
MS ≈ 800 GeV for a small mixing term A = 10 GeV. Furthermore, a Higgs coupling to the
doublet also shifts the mass of the Ωχ = ΩDM for pure doublet DM to MD ≈ 650 GeV. For
A� λv the Higgs couplings to pure states dominates, and the sign of λ is irrelevant except
for MS ≈MD. Direct detection sensitivity is strong even for the modest value of λ = ±0.25,
with LUX sensitivity reaching MS or MD of just under 400 GeV, and XENON1T sensitivity
reaching out to MS,MD

<∼ 1.5 TeV, covering the entire Ωχ = ΩDM line.
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FIG. 12. Direct detection prospects for λ = 0 and A = 10, 100, 1000 GeV. Contours shown are

the same as in Fig. 5.

The sign of λ becomes important for A ∼ λv. As can be seen from Eq. (21), the contribu-
tion of A 6= 0 to the DM-Higgs coupling is always negative, leading to an enhancement of the
couplings for λ < 0 and a suppression for λ > 0. The corresponding blind spot cancellation
regions are located near but slightly offset above and below the MS = MD line in Fig. 13(b)
for λ = 0.25, with no corresponding behavior present in Fig. 13(e) for λ = −0.25. For
λ = 0.25, A = 100 GeV, certain points in the blind spot region are actually consistent with
Ωχ = ΩDM, while for λ = −0.25, A = 100 GeV the entire Ωχ = ΩDM contour is within the
sensitivity range of XENON1T. A small region also exists for λ = 0.25, A = 100 GeV with
Ωχ = ΩDM for MS,MD

<∼ 200 GeV, resulting from the cancellation in the Higgs coupling;
by varying values of A for appropriate suppression this low mass contour can be shifted
anywhere with MS < MD.

For A = 1 TeV� λv, the mixing term dominates for both signs of λ, so no blind spot is
present; however, σSI is enhanced for λ = −0.25 relative to λ = 0.25 throughout the plane
and constraints are stronger, as shown in Figs. 13(c) and 13(f). As in Fig. 12(c), when
A = 1 TeV, the Higgs coupling is so large that the majority of parameter space is already
excluded by LUX. The relative sign of λ also has a significant effect on the location of the
Ωχ = ΩDM line, with the enhanced coupling for λ = −0.25 pushing the contour to larger
mass, while the suppressed coupling for λ = 0.25 shifts the line to lower mass. As for λ = 0,
the portions of the Ωχ = ΩDM lines in the region shown are not excluded by LUX, but are
within XENON1T sensitivity for λ = ±0.25.

B. Exclusion Plots (Thermal Relic)

Next, we consider the singlet-doublet scalar model for Ωχ = ΩDM. In keeping with our
interest in mixed DM, we fix to various values of λ, leaving only three variables in the re-
maining parameter space, (MS,MD, A). Within this sub-space, for fixed (MS, A) or (MD, A)
a varying number of solutions exist for Ωχ = ΩDM,as evidenced by Figs. 12 and 13. In partic-
ular, for λ 6= 0 sufficiently large, a solution always exists for which Ωχ = ΩDM is independent
of MD and MS, respectively, above a certain critical value. This limits the usefulness of an
analog to Fig. 7 or Fig. 8 where either MS or MD is used to fix the relic density.

As such, we consider the (MD,MS) plane in Fig. 14 with λ = 0,±0.25 and A fixed to
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FIG. 13. Direct detection prospects for λ = 0 and A = 10, 100, 1000 GeV. Contours shown are

the same as in Fig. 5.

produce Ωχ = ΩDM. For λ = 0, no solution is present for MD < MS and MD
<∼ 550 GeV, as a

nearly pure doublet is under-dense in this region. The same effect is present for λ = ±0.25 for
MD

<∼ 650 GeV. Throughout the rest of the plane in Fig. 14(a), direct detection sensitivity
to the Ωχ = ΩDM scenario is strong, with the best sensitivity present for MS ≈ MD and
dropping off as the masses become less degenerate. In fact, direct detection sensitivity
grows at large DM mass because the mixing required for the thermal relic abundance requires
(vA)2 ∼ M4

χ at large mass, resulting in chχχ ∼ Mχ/v. The DM-nucleon cross-section thus

scales as σSI ∝ c2hχχ ∝ (Mχ/v)2, which grows faster than the direct detection limits weaken:

σSI
LUX, σ

SI
X1T ∝ Mχ. For λ = 0, the blind spot is present for MS > MD and MD near the “no

solution” region.

For λ 6= 0 the interplay of mixing and non-mixing Higgs couplings modifies the location
of the “no solution” and blind spot regions. For λ = −0.25, no solution exists for MS

<∼
800 GeV except for MS ≈MD, as the Higgs-mediated annihilation cross-section is too large
in this region. However, despite an enhanced Higgs coupling, the LUX exclusion is marginally
weaker for λ = −0.25 – the direct coupling alone is insufficient to saturate the LUX bound
for MS 6≈ MD, but it does reduce the required degree of mixing necessary to produce
Ωχ = ΩDM. However, the entire viable region for λ = −0.25 falls within project XENON1T
sensitivity. For λ = 0.25, the LUX exclusion is correspondingly stronger than for λ = 0;
however, the blind spot is shifted away from the “no solution” region to MD ≈ 725 GeV
and MS

>∼ 750 GeV. A region with multiple solutions for Ωχ = ΩDM also exists for small
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FIG. 14. Well-tempering and direct detection prospects for fixed Ωχ = ΩDM as a function of MD

and MS. Contours shown are the same as in Fig. 7, with the addition of a region corresponding

to ξBS < 0.1 (pink shaded) in Fig. 14(b).

MS and λ = 0.25, resulting from the interplay of Higgs coupling cancellation with varying
A. In this region XENON1T constrains most solutions, but a set exists for which the singlet
and doublet states are highly mixed but ahχχ vanishes due to a cancellation between the
contributions, producing a blind spot.

The blind spot tuning measure, ξBS, only has meaningful implications for the λ > 0
parameter space. As defined in Eq. (23), ξBS = 1 identically for λ ≤ 0, with partial
cancellation in the top term possible only for λ > 0. This gives ξBS

<∼ 0.1 throughout the
region allowed by XENON1T in the λ > 0 plane. The region has a widths of 50 GeV,
which näıvely is somewhat thinner than 10% turning would indicate; however, the size of
a fine-tuned region should be compared to the characteristic mass, making a 10% tuning
reasonable for Mχ ≈ 700 GeV.

The experimentally viable region for singlet-doublet scalar DM is depicted in Fig. 15 in
the plane of physical variables, (Mχ, chχχ). To produce this figure we have replaced the
model parameters (MS, A) with (Mχ, chχχ), and set MD to a value in order to accommodate
Ωχ = ΩDM. As noted before, this produces multiple solutions at most points in each region,
particularly for |chχχ| >∼ 0.1. For |chχχ| >∼ 0.1 we find that Ωχ < ΩDM both for MD ≈ Mχ

due to coannihilation and for MD → ∞ due to pure Higgs coupling. However, Ωχ > ΩDM

for an intermediate range of MD due to destructive interference between pure gauge and
Higgs-mediated annihilation diagrams, producing at least two solutions for Ωχ = ΩDM.

According to Eq. (21), chχχ ≤ 0 for λ = 0. For Mχ
<∼ 550 GeV, arbitrarily small values of

chχχ are viable, since a sufficiently small splitting |MD−MS| can always be chosen to produce
the correct degree of mixing through pure gauge diagrams. For Mχ

>∼ 550 GeV, some degree
of Higgs-mediated annihilation is required to produce Ωχ = ΩDM, and the region boundaries
are set by the relative size of Higgs-mediated versus pure gauge annihilation diagrams. The
upper boundary along chχχ ≈ 0.8 for Mχ

>∼ 550 GeV has the relic density set entirely by
Higgs-mediated diagrams, with gauge diagrams suppressed by MD � Mχ. In this case
A2/M2

D ∼Mχ/v, so the underlying Higgs coupling must increase dramatically with Mχ and
will eventually become non-perturbative. For larger values of |chχχ| the degree of mixing
is increased, with the lower boundary set by near-maximal mixing. The largest values of
chχχ are achieved when significant interference is present between pure gauge and Higgs-
mediated diagrams, resulting in BR (χχ→ W+W−, ZZ) → 0 and BR (χχ→ tt̄) → 1. The
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FIG. 15. Viable regions with Ωχ = ΩDM as a function of Mχ and chχχ. Regions are shown for

λ = 0 (red shaded), λ = 0.25 (green shaded) and λ = −0.25 (gray shaded) with MD fixed to

produce the correct relic density. Also shown are upper limits on |chχχ| from XENON100 (teal

dashed), LUX (blue dot-dashed), and projected upper limits from XENON1T (gold dashed).

nearly pure doublet case for Mχ
>∼ 550 GeV is found at intermediate points with MS �Mχ

and Higgs-mediated diagrams compensating for insufficient pure gauge annihilation.

For λ 6= 0, the viable region is modified significantly at low mass but remains similar in
shape at high mass. This is a result of the scaling of the terms in Eq. (21), with the unmixed
coupling term λv becoming sub-dominant for increasing Mχ, while the term proportional to
A2 remains constant or increases with increasing Mχ. For λ = 0.25, positive chχχ is possible
for Mχ

<∼ 700 GeV, and significantly larger values of |chχχ| are viable for Mχ
<∼ 200 GeV due

to interference effects in annihilation to gauge bosons for masses insufficiently large to allow
for annihilation to tt̄. For large Mχ, however, the upper boundary asymptotes to chχχ ≈ 0.8
as in the λ = 0 case, while the lower boundary is offset to more negative chχχ by a small
value. For λ = −0.25, no solution is present for Mχ

<∼ 600 GeV – both contributions to
chχχ are negative, and the resulting value always produces Ωχ < ΩDM. While relatively large
values of |chχχ| were feasible at low mass for λ = 0.25, in such cases A and |MD−MS| could
be relatively large due to cancellation between the contributions, resulting in a suppression
of coannihilation contributions, while for λ = −0.25 the contributions are always additive.
For large Mχ the upper boundary of the λ = −0.25 region also asymptotes to chχχ ≈ 0.8,
while the lower boundary is offset to less negative chχχ by an amount somewhat larger than
the offset for λ = 0.25.

As previously shown in Fig. 14, the constraints from direct detection experiments become
stronger for larger masses in Fig. 15. As noted in Sec. II B, direct detection limits place a
constraint on the quantity c2hχχ/Mχ, while the region with a viable thermal relic abundance
is bounded by constant chχχ and constant chχχ/Mχ. The blind spot for small Mχ remains
constrained to low Mχ, though larger values of Mχ would become viable for increased λ.
A significant region of parameter space remains unconstrained by LUX limits, particularly
at large mass, but XENON1T projected sensitivity covers all viable regions except for the
low mass blind spot. If XENON1T yields null results, then theories with negative λ will be
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strongly constrained.

V. MODEL C: SINGLET-TRIPLET SCALAR DM

Finally, we examine the experimental limits on mixed singlet-triplet scalar DM. The
phenomenology of the singlet-triplet scalar model is similar to that of the singlet-doublet
scalar model – the relic density is set primarily by DM-gauge interactions and Higgs-mediated
diagrams. Moreover, these contributions can interference substantially in a way that strongly
affects the final relic density determination. However, several features significantly alter the
detailed phenomenology. First, the cubic DM-gauge interaction vanishes because of the
SU(2)L symmetry. The leading DM-gauge interaction is quartic, and has a coupling which
is effectively four times stronger than in the singlet-doublet scalar case simply due to group
theory factors. Thus, the model can accommodate Ωχ = ΩDM primarily through gauge
interactions with sufficient well-tempering up to larger values of Mχ. Secondly, for a given
mixing angle, the trilinear DM-Higgs coupling is larger by a factor of 2 for singlet-triplet DM
as compared to singlet-doublet DM. This modifies the relative strength of contributions to
annihilation and scattering. More significantly, however, is the DM-Higgs quartic interaction
induced by the κ mixing term. While a similar interaction is induced at tree level by the
mixing term in the singlet-doublet scalar case, the contribution from the direct coupling for
the singlet-triplet is larger for a spectrum with similar mass splittings.

Singlet-triplet scalar DM involves the same basic processes as singlet-doublet scalar DM,
so in the following analysis we focus primarily on the differences between these theories.
Once again either N2

S � 1 or N2
T � 1 for most of the parameter space, so the region where

λS and λT both play an important role in the dynamics is limited to MS ≈ MT ; thus for
simplicity we set

λS = λT = λ (39)

In the singlet-triplet case this is a somewhat better approximation, as the absence of addi-
tional quartic couplings reduces the range of possible divergent results for MT 6≈MS.

A. Exclusion Plots (General)

To analyze the unconstrained singlet-triplet DM parameter space, we fix λ = 0 to elimi-
nate the effects of the Higgs-DM quartic couplings. In the case of singlet-triplet DM, mixing
is controlled by the dimensionless coefficient κ, which we set to κ = 0.3, 3 in Fig. 16. The
top two panels of Fig. 16 depict the thermal relic abundance and direct detection sensitivity
in the (MT ,MS) plane. For the case of κ = 0.3 in Fig. 16(a), MS and MT must be very
degenerate to accommodate a thermal relic consistent with observations, and σSI is small
throughout the plane. For MS 6≈ MT , LUX only constrains MS,MT

<∼ 200 GeV, and even
XENON1T only has sensitivity for MS,MT

<∼ 400 GeV. In Fig. 16(b), the relatively large
value of κ = 3 shifts the Ωχ = ΩDM line substantially, primarily due to an increase in the an-
nihilation process χχ→ hh with κ. This depletes the DM abundance and implies that very
large DM masses – upwards of multi-TeV – may be necessary to accommodate the observed
DM relic abundance. While the both LUX and XENON1T strongly constrain the plane,
with generic sensitivity to MS,MT

<∼ 800 GeV and MS,MT
<∼ 1.5 TeV respectively, the shift
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FIG. 16. Direct detection prospects for λ = 0 and κ = 0.3, 3. Contours shown are the same as in

Fig. 5.

in the Ωχ = ΩDM line places some regions with a viable thermal relic beyond XENON1T
reach.

The lower panels of Fig. 16 show the same information as the top panels, only plotted
in the (MT −MS,MS) plane so as to focus on the diagonal region in which the singlet and
triplet are well mixed. Sensitivity at direct detection experiments to the MS ≈MT region is
significantly improved relative to other parts of the plane. For κ = 0.3 LUX bounds remain
weak, but the projected limits from XENON1T for κ = 0.3 are covering the Ωχ = ΩDM

contour up to MS
<∼ 500 GeV and bound MS ≈ MT

<∼ 900 GeV. While experimental
sensitivity improves for κ = 3, with reach for MS ≈ MT > 3 TeV, even in this case the
Ωχ = ΩDM contour is only within XENON1T reach for MS

<∼ 1.5 TeV.

The cases of λ = ±0.25 are shown in Fig. 17, which is otherwise identical to the upper
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FIG. 17. Direct detection prospects for λ 6= 0 and κ = 0.3, 3. Contours shown are the same as in

Fig. 5.

panels of Fig. 16. As can be seen from Eq. (27), a blind spot cancellation can occur if λ is
positive, in which case there will be destructive interference against Higgs exchange arising
from the κ induced mixing. This blind spot is visible in Fig. 16(b) for points near (but not
directly on) the MS ≈ MT line. Similarly to the behavior in Fig. 13(b) for singlet-doublet
scalars, the DM-Higgs coupling is controlled by mixing induced by κ near MS ≈MT . Away
from this line, the DM-Higgs coupling is controlled by the direct quartic DM-Higgs couplings
proportional to λ. Partial cancellation is also present in Fig. 16(a), though κ = 0.3 is too
small to produce a true blind spot for λ = 0.25. For λ = −0.25 the direct detection cross-
sections is increased relative to λ = 0, with a corresponding LUX constraint of MS,MT

>∼
1 TeV for even moderate mixing. Meanwhile, XENON1T will exclude MS,MT

<∼ 1.6 TeV,
with even greater sensitivity for MS ≈MT .
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FIG. 18. Well-tempering and direct detection prospects for fixed Ωχ = ΩDM as a function of MT

and MS. Contours shown are the same as in Fig. 7.

B. Exclusion Plots (Thermal Relic)

For the singlet-triplet scalar model, we set Ωχ = ΩDM by varying κ in the (MT ,MS) plane
in order to produce the observed relic density. Fig. 18 depicts the viable parameter space of
thermal relic singlet-triplet DM subject to current constraints from LUX and projected reach
from XENON1T. For λ = 0, there is no viable thermal relic forMT < MS andMT

<∼ 1.9 TeV,
since Ωχ < ΩDM for all such models. For MT > MS and 1.9 TeV <∼MT < MS, Ωχ = ΩDM can
be achieved throughout for sufficiently large κ, withMT ≈ 1.9 TeV,MS �MS corresponding
to pure triplet DM with the correct thermal relic density [21, 64]. Moreover, σSI varies by
just over an order of magnitude over most of the viable range shown. This occurs because
the dominant annihilation channel, χχ→ hh, scales with mixing terms in the same way as
the direct detection cross-section when κ is sufficiently large. Hence, the direct detection
and relic abundance are correlated. For MS ≈ MT annihilation is enhanced for identical
values of κ reducing σSI at large masses by roughly an order of magnitude. Because an
equivalent value of ahχχ implies stronger annihilation than in the singlet-doublet scalar case,
the current LUX bounds only constrain a few points at small mass. However, because σSI is
only weakly dependent on DM mass, XENON1T projected bounds constrain the majority of
the parameter space shown. The only blind spot occurs along the edge of the “no solution”
region for MT ≈ 1.9 TeV, where the DM is nearly pure triplet.

Unlike for the singlet-doublet scalar case, for λ = 0.25 in Fig. 18(b) the “no solution”
region extends into the low mass MS < MT region. For MS

<∼ 400 GeV, the direct singlet-
Higgs quartic coupling results in Ωχ < ΩDM, and increasing κ sufficiently to cancel the direct
coupling contributions induces sufficient annihilation in other channels that χ is remains
under-abundant, resulting in no viable solution for any value of κ. The allowed region still
extends to lower MS than the Ωχ = ΩDM contour in Fig. 17(a), however, and a blind spot
occurs at MS ≈ 650 GeV consistent with this cancellation. This blind spot extends to
large masses below and roughly parallel to the MS = MT line. A second blind spot lies
above this line and extends to large MS for MT ≈ 2 TeV. The blind spot region is larger
here in comparison to the singlet-doublet scalar case because the value of ahχχ required to
accommodate the observed relic density is significantly smaller. In the singlet-doublet case,
gauge interactions are insufficient to set Ωχ = ΩDM for any mixing angle for Mχ

>∼ 550 GeV,
and the induced DM-Higgs quartic coupling is relatively small. For singlet-triplet scalar
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shown are the same as in Fig. 15.

DM, however, gauge interactions are strong throughout the entire range shown, and the
DM-Higgs quartic coupling is sufficiently large that small values of chχχ are viable and even
preferred. LUX has no constraining power for λ = 0.25, and XENON1T sensitivity has only
moderate coverage of the parameter space.

For λ = −0.25 in Fig. 18(c), the “no solution” region covers MS
<∼ 850 GeV for MS < MT .

No blind spot regions exist for λ = −0.25, but the relative strength of the gauge and
four point interactions produces regions with small σSI along the upper portion of the “no
solution” boundary and along the high mass MS ≈ MT line. LUX has no constraining
power in the plane, and the regions with small σSI avoid even XENON1T reach despite the
lack of true blind spot behavior. For both λ = 0 and λ = −0.25 well-tempering of at least
ξWT

<∼ 0.1 is required to avoid XENON1T projected bounds except for nearly pure triple
DM, although most of the viable regions have well-tempering ξWT

<∼ 0.01.

As in the singlet-doublet scalar case, for λ ≤ 0 the blind spot fine-tuning is trivial, ξBS = 1,
and ξBS is only physically meaningful when λ > 0. For λ > 0, however, the degree of fine-
tuning needed to produce cancellation is significantly smaller than in the singlet-doublet
scalar case. The pink region in Fig. 18(b) has tuning of ξBS

<∼ 0.1 and covers approximately
half of the area left viable after XENON1T. However, the remaining unshaded area avoids
XENON1T sensitivity with minimal tuning, ξBS

>∼ 0.1. The lower portion of this allowed
area also has minimal tuning from well-tempering, ξWT > 0.1. Hence, for λ > 0, singlet-
triplet DM can accommodate viable thermal relic DM with minimal tuning.

The viable parameter space of singlet-triplet DM is depicted in the physical (Mχ, chχχ)
plane in Fig. 19. For λ = 0, the behavior is similar to the singlet-doublet case, except the
region is “stretched” horizontally and “squeezed” vertically – chχχ can be close to zero up to
Mχ

<∼ 1.9 TeV, and the increase of |chχχ| along the lower boundary is more gradual. A small
region extending to chχχ ≈ −0.14 is allowed for very low mass, where Mχ is below the Higgs
production threshold and thus κ can be significantly larger. For λ = 0.25, most of the viable
region is restricted to Mχ

>∼ 500 GeV, while for λ = −0.25, Mχ
>∼ 700 GeV is required. For

Mχ
>∼ 500 GeV the behavior for λ = ±0.25 is similar to the singlet-doublet scalar case. For
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all of the choices λ = 0,±0.25, there are parameter regions which are beyond the projected
reach of XENON1T. In contrast to the singlet-doublet scalar case, the sensitivity of direct
detection experiments weakens as Mχ increases.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Simplified models are a powerful tool for studying the generic behavior of WIMP DM.
Theories in which DM couples to the SM via the Higgs are of particular interest because
Higgs-mediated DM-nucleon scattering is just now being probed by the current generation
of direct detection experiments. In this paper we have constructed and analyzed simplified
models of mixed DM describing a stable particle composed of a mixture of a singlet and an
electroweak doublet or triplet. In these models DM undergoes thermal freeze-out through
electroweak interactions to accommodate the observed DM relic abundance. Mixing between
the singlet and non-singlet states is induced via DM-Higgs couplings, and is in general
correlated with signals in direct detection.

We have determined the viable parameter space of these models subject to current LUX
limits and the projected reach of XENON1T. Present experimental constraints from LUX
place stringent limits on mixed DM models, with a DM mass of at least a few hundred GeV
in most cases. The projected reach of XENON1T is significantly stronger, extending to
masses of at least 1 TeV, and in many cases larger. Using simplified models of mixed DM,
we have identified direct detection blind spots, which are parameter regions at which σSI

vanishes identically, nullifying experimental limits on spin independent DM-nucleon scatter-
ing. Finally, we have quantified the degree of fine-tuning required for mixing angles (ξWT)
and for blind spot cancellations (ξBS) required for thermal relic DM which is experimentally
viable. Our results for each of our simplified models are summarized in the discussion below.

First, we studied singlet-doublet Majorana fermion DM, which is a generalization of mixed
bino-Higgsino DM in the MSSM or singlino-Higgsino DM in the NMSSM. In these models the
observed thermal relic density can be produced forMχ < MD

<∼ 1 TeV through mixing with a
small Higgs coupling, but requires a significant degree of well-tempering. It is also possible to
achieve Ωχ = ΩDM with large Higgs couplings, particularly with MD

>∼ 1 TeV, but avoiding
direct detection constraints in such cases requires blind spot cancellations. While most of
the parameter space that avoids the LUX bound requires little tuning, ξWT, ξBS > 0.1, after
XENON1T nearly all models either exhibit a significant degree of blind spot tuning, ξBS <
0.1, or must have mixing angles which are sensitively well-tempered to produce Ωχ = ΩDM

through coannihilation with small Higgs couplings with ξWT < 0.1. Thus, XENON1T
strongly constrains the parameter space of singlet-doublet DM.

The constraints placed by direct detection on singlet-doublet scalar models are also
substantial. In such models Ωχ = ΩDM can be achieved at any mass through mixing for
Mχ < MD

<∼ 550 GeV with small DM-Higgs couplings, requiring significant well-tempering
as in the fermionic case. For Mχ

>∼ 550 GeV, however, annihilation through Higgs-mediated
processes is required to accommodate Ωχ = ΩDM. Hence, these models require larger Higgs
couplings and are subject to stronger direct detection bounds. Current limits from LUX
place strong bounds up to large Mχ and XENON1T constrains almost the entire parameter
space studied. In the examined parameter space, the few allowed regions needed significant
coannihilation, with fine-tuning of ξBS < 0.1 to remain viable. However, a more compre-
hensive study of the full seven-dimensional parameter space might yield regions of lesser
fine-tuning consistent with XENON1T.
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The behavior of singlet-triplet scalar DM is qualitatively similar to that of singlet-doublet
DM. However, both gauge boson and Higgs mediated annihilation processes are quan-
titatively stronger. The correct relic density can be achieved through mixing alone for
Mχ < MT

<∼ 1.9 TeV though such processes, though the well-mixed region still requires
significant well-tempering. Moreover, both the trilinear hχχ and quartic hhχχ interactions
are stronger than in the singlet-doublet scalar case, enhancing annihilation even for smaller
mixing angles and thus weakening direct detection bounds. LUX has little constraining
power on the singlet-triplet parameter space. XENON1T constraints are strong for vanish-
ing or negative quartic couplings, allowing for minimal well-tempering only for nearly pure
triplet models with 1.9 TeV <∼ Mχ

<∼ 2.1 TeV. For positive quartic couplings, however,
a significant region where DM is dominantly singlet and has minimal tuning of any sort,
ξWT, ξBS > 0.1, remains viable.

The present work has focused exclusively on experimental constraints from spin indepen-
dent direct detection. However, many complementary probes exist. For example, even at
cancellation points with vanishing DM-Higgs coupling, there will generically be Z-mediated
spin dependent DM-nucleon scattering. Future direct detection probes [65–67] and both cur-
rent and future constraints from neutrino telescopes [68–70] will place significant constraints
on many of these models. Moreover, these models will also be constrained by astrophysical
probes such as FERMI [71] and HESS [72]. We leave these analyses for future work.
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