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1. Imtroductory—In an important paper published on the pages of
these PROCEEDINGS, W. Duane! makes a successful “attempt to formulate
a theory of the reflection of X-rays by crystals, based on quantum ideas
without reference to interference laws.” A. H. Compton,? enlarging upon
a hint contained in Duane’s paper, has recently pointed out that the lat-
ter’s hypothesis can be justified by the application of the general rules of
the theory of quanta to the translatory motions of a crystal lattice.

Both these authors are dealing with the case of parallel beams of inci-
dent and reflected light (Fraunhofer diffraction) and of infinite -lattices
giving absolutely sharp pencils of reflected rays of different order. The
purpose of the following lines is to study the problems with respect to
finite gratings and other diffracting systems, again with restriction to the
case of the Fraunhofer reflection.?

A finite grating, as the most extreme case of which we can regard the_
totality of only two reflecting points, can be regarded as a superposition
of infinite gratings according to Fourier’s theorem. Mathematically,
therefore, our problem is reduced to a Fourier analysis. On the other hand,
a finite grating produces a more or less continuous spectrum, and in the
quantum theory the intensity corresponding to any given angle of de-
flection of the rays by the grating must be expressed in terms of the prob-
ability of the light quanta undergoing such a deflection. These circum-
stances suggest the principle of correspondence as a suitable instrument for
carrying through our investigation.

2. The Duane-Compton Rules of Quantization—We state here the
Duane-Compton rules in a generalized form bringing out the invariancy
of the result for any choice of axes. Let us consider a three dimensional
infinite triclinic lattice with the spacings a;, as, a; in the respective direc-
tions of its chief axes. ‘The contention of Compton is that in a collision:
with a light quantum such a lattice can only pick up a linear momentum
the orthogonal projections of which p;, ps, p; on the directions qi, ¢s, g3
of the chief axes satisfy the fundamental conditions of the quantum theory

S pda =mh, S pdg = mh, S pudgs = nih 1)
n1, M, w3 are three integral numbers and # denotes Planck’s constant
of action. The periodicity of the lattice is given by its spacings ai, as, a3

-so that the first integral is to be extended from g, to ¢ + a,, and the others
correspondmgly We obtain, therefore,

Y= hnl/ab P2 = hnz/a»z, py = hng/a. ' (2)
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On the other hand the momentum of a light quantum of the frequency »
is given by hv/c = h/\, where ¢ is the velocity of light and X the wave-
length in vacuo corresponding to the frequency ». If the direction of
propagation of the light includes with its main axes angles the cosines of
which are, before its collision with the lattice, o, Bo, o, and after its re-
flection «a, B, v, each light quantum loses in the collision a momentum the
projections of which on our main axes are h(a — ag)/N, (8 — Bo)/\,
h(y—v0)/\.

The principle of conservation of momentum requires, therefore, the re-
lations A

a—ag = Mufa;,  B—PBs = Mn/a, y—vo = M/as @)
which are identical with those derived by von Laue from the theory of
interference. '

However, the choice of the main axes is arbitrary and we can remove
this arbitrariness only by proving that if the lattice acquires in a collision
a momentum in the direction of any straight line connecting two of its
points (following Bragg we shall call such a direction a “crystal avenue”),
this momentum must satisfy a condition analogous to (2)

p.a = nh 4)

where a is the smallest distance between two points in that line. Referred
to the main axes, a will be the d’agonal of a parallelepipedon with the edges
waay, MaeGs, Maas, if my, m,, m, are three integers prime to each other. It
'is easy to see that in terms of these edges

“a = ma; cos(ma) + mnay cos(aa) + mzaz cos(asa)
Applying conditions (2) we get ’
p cos (@ma) = Mu/a;, P cos (@a) = Mi/a;, p cos (aa) = Ams/as.

Multiplying the three equations by mua,, meas, msa;, respectively, and
adding them we receive

pa = (mmy + mang + meng)\

As my, ma, mz are prime to each other, the parenthesis, according to'a well
known theorem of theory of numbers, by a suitable choice of positive or
negative integral values for #;, #s, 13, can be made equal to any integer #.

We see, therefore, that relation (4) is contained in our conditions (2)
or, in other words, that the latter conditions may be imposed on the or-
thogonal projections of the momentum on any three crystal avenues.

3. Infinite Linear Grating.—Let us begin our considerations with the
single case of a one dimensional grating the elements of which are arranged
in a straight line. In this line (the distance in which from a fixed point
we denote by x) the material points with which the light quanta may col-
lide are distributed with a certain density p. We shall call p for short
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the “‘electronic demsity,” and the notion of a grating involves that this
electronic density is a periodic function of x with a period a called “the
spacing of the grating.”

If the grating is moving at a constant velocity in the direction x relatively
- to a resting point in this line, the density in that point will change as a
periodic function of the time and return toits original value after the grating
has moved through the distance a or a multiple of it. ‘That is the reason
why Compton regards the spacing a as the region over which the quantum
integral f"pdq = nh must be extended (cf. section 2), giving the relation

p = hn/a 4)

If the distribution of electronic density was a sinusoidal one represented
by the formula
p = Asin 2nx/a + §) 5)

the change of density in a fixed point, due to the motion of the grating,
would be a simple harmonic oscillation. By means of the Fourier theorem
any distribution of electronic density can be built up of sinusoidal terms,
in other words, any grating, infinite or finite, can be represented as a
superposition of infinite sinusoidal gratings of the type (5). This case
deserves, therefore, a particularly close study. The principle of corre-
spondence tells* us that to every harmonic term in the expression of p
there corresponds a quantum change of motion accompanied by a change
of momentum p given by our equation (4) if we substitute in it for #/a
the coefficient of 27x in the argument of the sine. ,

If, therefore, the Duane-Compton relation* tells us that a grating can
only pick up momentum in multiples of the quantity k/a, the principle
of correspondence permits us to go farther and to say that a sinusoidal
grating of the constitution (5) will experience only changes of momentum
in amounts =+ h/a and not in multiples of it.’

The general expression for p in an infinite grating is
-]

p = n A, sin(2rnx/a +38) ' ©(6)

2

To a term of this series with the coefficient #/a of the argument 27x
there corresponds a change of momentum given by the same value of the
coefficient of  in equation (4). In a lattice of such a constitution momen-
tum can be, therefore, picked up in a large variety of ways. Moreover,
the principle of correspondence gives us additional information with re-
spect to the relative frequency of the different possible changes of mo-
mentum: the probability of the grating’s picking up the momentum
nh/a is proportional to the square of the coefficient of the corresponding
term of our series, that is to AZ.
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As stated in section 2 the change of momentum experienced by a grating
in its collision with a light quantum determines the direction of emergence
of the light quantum according to the equation

a—ay = M/a. : 7y

The above statement on the probabilities of momenta means, therefore,
that the intensity of the spectrum of the #** order will be proportional to
Al .
In order to show that these conditions are in agreement with the in-
terference theory of gratings we have only to prove that a sinusoidal
grating produces the same effect from the point of view of the latter theory,
that is that a distribution of electronic density represented by the formula

p = A, sin 2mmx/a (8)

will give two absolutely sharp reflected beams at angles following from
(7) by putting # = =m with intensities proportional to A%. The proof
is easily given: An element dx of the grating gives a contribution to the
amplitude of light, emitted in a direction «, which is proportional to the
modulus of the expression

2 —a
pezv(a 0) dx ()
The total amplitude in that direction is, therefore
.21x o
S = C.A,,,f sin 2wm c—’:.ezr( ) (10)

We shall evaluate this expression first for a finite grating ta.kmg as limits
of integration =Na and then go over to N = ©,

iCA sin ('g —-—————a'-;‘a')) )Na sin (% + a;ao)Na

27 m  a—ap

l a A

We see that the amplitude is proportional to A, and that it has two
maxima in the two directions a—ay = = m\/a. Moreover, the maximum
amplitude is proportional to N, and when NN becomes infinite the intensity
in the maximum completely dominates so that the whole energy is thrown
into the directions of the maxima and the latter become absolutely sharp.
There is, therefore, a complete identity in the Fraunhofer diffraction pro-
duced by an infinite sinusoidal grating from the point of view of the classical
theory and from the point of view of the theory of light quanta sketched
above. As any linear diffracting system can"be built up by infinite
sinusoidal gratings this identity will hold for the totality of all phenomena
of Fraunhofer reflection. The considerations of the first half of this section
contain, therefore, the complete translation of the theory of Fraunhofer diffrac-

S =
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tion into the language of the guantum theory. The following section contams
only the application of these principles to one or two special cases.

- 4. The linear Point Lattice.—From the mathematical point of view the
sinusoidal grating treated in the preceding section is the simplest. How-
ever, such a grating cannot be realized physically, because in some points
its density becomes negative producing a reflection connected with a change
of phase by half a period. The grating that is considered as the funda-
mental one in most text books is the point grating: the graphical repre-
sentation of the electronic density p of such a grating as a function of x
being a succession of equidistant peaks, very narrow compared with the
spacing a. '

Infinite Point Lattice. —Analytically we can express the distribution
in this case by a Fourier series. Computed in the well known way, the
coefficients of all the terms of lower order turn out to be the same. If
C is the height of a peak and c its breadth we get for p the series (6) with
Ao = Cc/a, A, = 2Cc/a. This means that the spectra of different order
produced by such a grating are all of the same intensity, as the intensity of
the # order is proportional to AL It need not disturb us that the
above expresswns for A, do no longer hold for large numbers #, because
the corresponding terms have no physical significance: the corresponding
change of momentum, though theéoretically possible, will never take place
because the impinging light quantum does not possess enough momentum
to realize it.

Finite Point Lattice.—In this case we have to use the Fourier integral
instead of the Fourier series. If we choose as origin (x = 0) the centre of
the gratmg, the expression for the electronic density will be

o(x) = f A (w) cos 2rwxdw : (11)

0

2 .
A = 2 [ o(6) cos2ras d (12
— 0
This grating appears, therefore, as a superposxtlon of an infinite number
of sinusoidal gratings with the respective spacings @’ = 1/w. According
to section 3 such a grating will produce a reflected ray in a direction given

by the relation
a—ag = Na' = wh\, (13)

while the relative intensity of this ray is given by the square of A(w).
This intensity is easily computed from (12): as p(B) is different from zero
only in the positions of the peaks 8 = ma, we get

+U
Alw) = 2 Ce cos 2mmwa =2 Ce sin N7aw.
T aZ -

a sin maw
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if we denote by N = 2U + 1 the total number of peaks in our grating.

To express the intensity produced by the grating as a function of the di-

rection we have only to substltute mto the square of A the expressmn of w

from equation (13)

: At = C’cz sin? Nwa(a—ao)/\,
n%a? “sin? ra(a—ag)/\

(14)

in complete agreement with the classical interference formula.
In the special case, when N = 2, we obtain from (14) the well known
distribution due to the interference of two d1poles

A? = 16 cos? ma(a—a)o/A. ' (15)

5. The Space Lattice.—The generalization for the three-dimensional
case does not involve any new ideas. If we denote the three crystal
avenues of a triclinic lattice chosen as main axes by x;, %2, %3, the distri-

_bution of electronic density in any lattice of this type and, in fact, in any
other system can be built up of terms of the type

. X .
Prmumims = A mymems SID (2‘"”1;1 + 8»:1) sin (21l’m22 + 5m:)

-sin (21rm3 . -I—S,,,,) (16)

therefore it is sufficient to discuss the distribution of density given by this
equation.

Applying the prmmple of correspondence in the same way as in  the
case of the linear grating, we conclude that such a lattice can pick up only
a momentum the orthogonal projections of which on the directions x;, %3, %5
are given by equations (2) with n; = =my, #e = =ms, 3 = =m;. Ac-
cording to the analysis of such a motion in section 2 this means that our
lattice can only acquire momentum directed in one of the four crystal
avenues with the oblique -components =ma;, =meas, *=msa; and in each
of these directions with only one definite velocity (both ways, positive and .
negative).

The direction of the light quantum after the collision, is given by equa.-
tions (3). As a, B, v are not independent, we see that a collision can only

occur if \ satisfies the von Laue-Bragg condition with absohite sharpness.
In this case the lattice will give us with equal probability elght dlﬂ'erent
directions of the reflected rays.

In order to prove the complete eqmvalence of the quantum theory with
the classical treatment for three dimensional distributions, we have only
to show that the interference theory leads to the same results in the case
of distribution (16). In the classical theory the mean. amplitude in a -
direction «, B, v is proportional to the modulus of the expression
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2 @ —~ a - o, - 70, ‘
fffpe”ln( Dl = B = W e an

Introducing for p the distribution (16) we see that expression (17) is the
product of three factors of the type given by formula (10) and discussed
in section 3. It follows from that discussion that the whole reflected
energy will be thrown into the same eight directions which were found
‘on the basis of the quantum theory. This proves in a general way the
complete identity of results in both treatments for any possible system,
and it is not necessary to enter into special examples.

6. Conclusion.—The above considerations are restricted to the case of
the Fraunhofer diffraction and neglect the small change of the wave-length
due to the Compton effect. Moreover they are dealing only with the
linear momentum without reference to the possible changes of angular
momentum and other quantic conditions of the system. The last restric-
tion seems natural as only the linear momentuni has a direct connection
with the direction of motion of the light quantum which is the only im-
portant element of our discussion. On the contrary the restriction to
Fraunhofer phenomena does not appear to be a necessary one and we hope
to extend our theory to more general cases. '

The situation in optics appears, therefore, to be thus:

1. ‘The photoelectric phenomenon and the Compton effect can be ex-
plained only by the action of light quanta.

2. The phenomena of Fraunhofer diffraction can be treated as well
on the basis of the wave theory of light as by a combination of the con-
cept of light quanta with Bohr’s principle of correspondence.

3. 'The phenomena of coherence resist all attempts of the quantum
theory.

However, it must be remembered that Bohr's principle of correspondence
contains the essential features of the wave theory in a form suitable for the
quantum theory. Our treatment, therefore, means rather a readjust-
ment than a complete abandoning of the wave theory.

1'W. Duane. Proc. Nat. Acad. Sci., Washington, 9, p. 159 (1923).

2 A. N. Compton., Ibid., 9, p. 359 (1923). :

3 Moreover we neglect the slight changes of the wave-length due to the Compton
effect. ‘

4 Strictly speaking the principle of correspondence must be applied to the totality
of the grating and the incident light wave, because without an exciting wave the uni-
form motion of a grating does not produce any radiation.

8 We have to include the sign minus because (5) can be written also p =
—4 sin (=27 x/a— 8}.



