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Nonlinear dispersion in a coupled-resonator optical waveguide
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The propagation of an optical pulse in a coupled-resonator optical waveguide may be calculated nonperturba-
tively to all orders of dispersion, in the conventional tight-binding approximation, even though the dispersion

relationship is nonlinear.

Working in this framework, we discuss limits of the physical parameters and

approximations to the exact formulation that highlight the conditions under which pulse distortion can be
minimized. The results are fundamental to the design of coupled-resonator optical waveguides and are also

relevant to other applications of the tight-binding method.

OCIS codes: 060.5530, 350.5500, 260.2030.

A coupled resonator optical waveguide (CROW) can
be made in a wide range of materials, including pho-
tonic crystals, polystyrene microspheres, and optical
fibers.! The basic geometry is composed of a linear
array of structural elements, each capable of support-
ing resonant modes of the electromagnetic field, e.g.,
defect cavities in a photonic crystal, as shown in Fig. 1.
Although the individual resonances may depend on
Bragg reflection, waveguiding in such a composite
structure is fundamentally a consequence not of total
internal reflection or Bragg reflection from a periodic
structure but instead of the overlap between the
individual resonator modes. The analysis of the cw
waveguide modes in a CROW was introduced by Yariv
and co-workers?®; recent experiments have confirmed
the accuracy of the analytical framework.*-%

As photonic crystal waveguides, CROWs are espe-
cially attractive because the well-researched catalog of
the properties of defect states” contributes directly to
the analysis of pulse propagation,® and the roles of the
critical parameters on which the waveguiding charac-
teristics depend are readily apparent. In view of the
wide applicability of these waveguides in microscale
all-optical information processing devices,®® we discuss
the effects of higher-order dispersion and ways to mini-
mize the distortion in terms of the structural parame-
ters of the waveguide.

We assume that the structural elements comprising
the periodic waveguide, e.g., defect modes in a photonic
crystal or photonic wells in the description of super-
structure gratings in fibers, are identical and lie along
the z axis (with unit vector e,) separated by a distance
R. The waveguide mode ¢(r) at a particular propa-
gation constant k& is written as a linear combination of
the elemental modes i;(r):

#r(r) = > exp(—inkR) > ¢u(r — nRe,), (1)
n l

where the summation over n runs over the structural
elements and the summation over [ refers to the bound
states in each individual element. The dispersion re-
lationship around a central propagation constant kg is

wr+k = Q1 — Aa/2) + Qk cos(KR)
= wo + Aw cos(KR), (2)
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where () is the eigenfrequency of the (identical) individ-
ual resonators and both A« and « are overlap integrals
involving the individual resonator modes and the spa-
tial variation of the dielectric constant. We limit the
terms in the integrals to nearest-neighbor coupling, as
applicable to waveguides formed by coupling high-@
resonators. The parameter Aw is given in terms of
the spatial variation of the dielectric constant by

Aw = ) [ dPrleges(r — Re,)
- ewg(r - Rez)]dll(r) ' ‘l’l(r - Rez) s 3)

where €,.s is the dielectric constant of the individual
resonators and ey, is the dielectric constant of the
waveguide.! We assume that the integral does not
change appreciably in value for different [; i.e., no
degeneracy in the waveguide mode (eigen-) frequency;
further, we consider narrow-band pulses (of suffi-
ciently broad temporal extent) to restrict the range of
K within the first Brillouin zone, |K|R < .

The field describing a pulse E(r, ¢) is written as
a superposition of waveguide modes ¢ (r) within the
Brillouin zone, with the corresponding time-evolution
propagators:
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Fig. 1. Schematic of an infinitely long CROW with peri-
odicity R along the z direction, consisting of defect cavities
embedded in a two-dimensional photonic crystal.
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7/R dK
E(r, t) = exp(iwot)[ —
—/R 2

X expliAwt cos(KR)]|cry+k Pro+x (). (4)

The boundary conditions specify a pulse shape at the
z = 0 cross section of the waveguide and centered at
the optical frequency wy:

E(r,,z=0,t) = exp(iwgt)E(z = 0,t)G(r ), (5)

where G(r ) describes the transverse mode profile and
E(z =0, t) is the temporal envelope. The coefficients
cry+k in Eq. (4) are derived from the equality of Eq. (4)
evaluated at z = 0 and Eq. (5):

7/R
E(z=0,t)G(r,) = [ K

—a/R 2w

X exp[iAwt cos(KR)]ck,+k Pro+x(ri,z=0). (6)

The vectorial dependence of G(r, ) is obtained directly
from that of ¢r,+x(r., 2 = 0). We use the notation
G(r.) = |G(r )l

Equation (6) is readily inverted in the limit of a
linear dispersion relationship in place of Eq. (2) by use
of the properties of the Fourier transform. But in the
general case, we are faced with a more difficult prob-
lem: a Fredholm integral equation involving a non-
linear function of K in the exponent of the kernel. It
is easily verified that using the Taylor series expan-
sion of Eq. (2) does not lead to a tractable solution of
Eq. (6) and that the equation is not invertible.

A closed-form solution of Eq. (6) can be found by
expansion of the left-hand side of Eq. (6) in a Neu-
mann series of Bessel functions.!® In obtaining the
coefficients of this expansion, certain contour integrals
involving the Neumann polynomials are required, but
there also exists, under most applicable conditions,
a representation in terms of real integrals, which
are easier to evaluate numerically. In defining the

coefficients
1
oR Cko n=20
| n 5 [E0,t) — E(0,0)]J,(Awt) n=1

(7

there is one overall degree of freedom in ¢, represent-
ing a scale factor that is accounted for by Parseval’s re-
lationship.’® The propagation of a pulse is given by

Er,0) = + expliaont) Y budu(dot) Y ,G,)
n=0

m=0

X {exp[—i(im *n)+ koR]Z lr — (fm = n);Re,]}>
7

(8

where the coefficients b,, are defined as

9

We have used the symbol ()+ in Eq. (8) as a compact
notation for the sum over both choices of sign of = that
yield a nonnegative number for the expression inside
the brackets.

In the following, we focus on the longitudinal wave-
guiding characteristics and set G(r,) = 1 for simplic-
ity. We also drop the vectorial dependence of ¢(r) and
of E(r, t), since the two are the only vectorial functions
in Eq. (8) and are related in a straightforward manner.
The resulting field depends on only one spatial and one
temporal coordinate, reflecting the intrinsic physical
geometry of the waveguide.

We ask what temporal waveform would be measured
by an observer sitting at one of the resonators, i.e.,
E(z, t) as a function of ¢ with the spatial coordinate
z set to the location of one of the resonators (so that
z/R is an integer). In the practically important limit
of high-@ resonators, ¢;(z) is narrowly peaked around
z=0, |y;(z =%xR)| < |¢(z = 0)|, and we can simplify
the double summations over m and n in Eq. (8) by rep-
resenting this condition as a Kronecker delta function.
After some algebra, we may write an expression for
the envelope E(z, t) defined by the usual relationship,
|E(r, t)| = expli(wot — koz)]E(z, t), as the sum of two
terms:

z/R

> buduBw)Bur-n Y dilz = 0)

n=-—w l

)=

X % Y badn(At)Ba-zr Y ti(z=0)>  (10)
n=z/R !

where

_ Zbo n=20

b b, n#0 (1)

Note that Eq. (11) equates the magnitudes of 4 as a
consequence of the original definition, Eq. (9).

As functions of ¢, the first term on the right-hand
side of Eq. (10) represents a backward-propagating
pulse and the second term gives the forward-
propagating pulse. One way to see this is by us-
ing the fact that, for small ¢, J,() ~ t*, so as we
increase n, J,(t) rises from zero at larger t. As z
increases (and consequently so does the integer, z/R),
a larger value of n is required for maintaining the
same argument of 8 in the second term of Eq. (10).
Through its corresponding Bessel function, this term
will contribute significantly at larger ¢ than a term
involving a smaller n. Physically, this term describes
a point on the envelope reaching greater values of z at
later ¢, i.e., a forward-propagating pulse. A similar
argument shows that the first term in Eq. (10), with
the modified coefficients b,, describes a backward-
propagating pulse.

A pulse envelope as a function of ¢ is therefore
described by a contiguous set of Bessel functions:
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Fig. 2. Temporal evolution of a Gaussian envelope at spe-
cific distances inside a CROW, showing the effects of dis-
persive propagation. At greater depths, the peak of the
envelope arrives at a later time, and ripples in the trailing
edge indicate higher-order distortion.

The field at z is written as a superposition of
an appropriately translated set of these functions
{Jr(#), Jr+1(t),...}, multiplied by the coefficients
{Bo, B1,...}. Distortion accumulates with distance as
a consequence of the changing interrelations between
neighboring Bessel functions, e.g., the difference
between the set {Jy(t), Ji(t),...,J,(¢)} and the set
{J5(t), Jo(t),...,Jd5:p(t)y for a given {Bo, B1,...}.
Note that the Bessel functions are replaced with si-
nusoids in the limit of a linear dispersion relationship
in place of Eq. (2): These basis functions maintain
the same relationships between neighbors irrespective
of the origin of the set, which is why distortionless
propagation may be achieved in this limit.?

Figure 2 shows the temporal profiles of an input
Gaussian envelope as would be detected along such
a waveguide. The crest of the envelope travels with
a group velocity Az/At < AwR. The dispersion rela-
tionship is nonlinear, which precludes an exact group
velocity that is valid to all propagation distances, but
the error in assuming an equality is less than 0.5% for
much of the regime shown in Fig. 2. Higher-order dis-
persion develops an oscillatory structure at the trailing
edge of the pulse (see, for example, Agrawal, Fig. 3.7
of Ref. 11).

One additional simplification is illuminating and
may also considerably speed up numerical computa-
tions. The normalizations in the identity'?

n [ g =1 (12)
0 X

may be used in the definition of 8, in Eq. (7). For
slowly varying envelopes E(z = 0, ¢'), the asymptotic
limit of the Bessel function is a cosine that, when mul-
tiplied by a slowly varying function and integrated

over several periods, averages out to zero. We replace
n/t'J,(Awt’) with §(¢' — n/Aw) so that
Bn=1i"E(z=0,n/Aw), n=1; (13)
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i.e., different values of B represent temporal samples of
the input pulse envelope along the Awt axis. The infi-
nite summations in Eq. (10) may thereby be restricted
to a finite number, based on the temporal extent of the
pulse, without significant loss of accuracy.

This analytical formulation allows waveguides
to be designed to achieve the desired propagation
characteristics. In a waveguide of a given length, the
interresonator spacing, which determines the parame-
ters in Eq. (2), may be chosen to limit the distortion
and achieve a certain (effective) group velocity of prop-
agation. Waveguides constructed in electro-optically
tunable material will allow the waveguide modes to be
altered in real time, through «(r) in Eq. (1), and con-
sequently the eigenmode overlap integrals that appear
in Eq. (2). Similar effects may be achieved in micro-
electromechanical systems waveguides constructed
out of a patterned membrane with piezoelectric actua-
tors that cause a mechanical deformation; in this case,
the physical geometry of the resonators is altered
rather than the refractive-index difference between
the resonators and their surroundings. This alter-
ation leads to the development of microscale-tunable
all-optical delay lines and signal-processing devices,
such as interleavers and multiplexers. Our analysis
yields a closed-form result for arbitrary input pulse
shapes, and to all orders of dispersion, even though
the dispersion relationship is nonlinear.
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