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We study the role of amplifier saturation in eliminating feedback noise in self-sustained oscillators.
We extend previous works that use a saturated amplifier to quench fluctuations in the feedback
magnitude, while simultaneously tuning the oscillator to an operational point at which the resonator
nonlinearity cancels fluctuations in the feedback phase. We consider a generalized model which
features an amplitude-dependent amplifier gain function. This allows us to determine the total
oscillator phase noise in realistic configurations due to noise in both quadratures of the feedback,
and to show that it is not necessary to drive the resonator to large oscillation amplitudes in order

to eliminate noise in the phase of the feedback.

PACS numbers: 05.45.-a, 84.30.Ng, 85.85.4j.

I. INTRODUCTION

Some time ago, Greywall et al. demonstrated an inter-
esting noise quenching effect in the operation of a self-
oscillating system @, é], a discovery that has important
potential impact for the design of high frequency, low
noise electronic oscillators B, @] In addition to its prac-
tical consequences, the noise quenching phenomenon is of
fundamental interest because it appeared when the sys-
tem operated in the nonlinear regime, i.e. the quench-
ing apparently relies on the inherent nonlinearity of the
resonator. In fact, the authors drew a connection be-
tween the optimal operating point (from the perspective
of noise quenching) and a bifurcation point of the asso-
ciated “open loop” system, the so-called cusp point of
the driven damped Duffing oscillator. This connection
is counter-intuitive since, quite generally, one associates
bifurcation points with enhanced noise sensitivity. More
recently, Kenig et al. ﬂa, ] showed that this phenomenon
is not restricted to the specific Duffing-like system stud-
ied by Greywall et al., by reformulating the dynamical
problem in a more general setting.

The purpose of this paper is to explore the condi-
tions under which perfect phase noise quenching can be
achieved. We reconsider the system of Ref. [1] using a
generalized, more realistic amplifier feedback term, hav-
ing both a low amplitude linear gain regime and a large
amplitude saturated gain regime. We find, first, that
complete noise quenching only occurs when the system
is operated in the high amplitude, fully saturated regime,
which corresponds to the system studied in Ref. @] We
also show that substantial phase noise reduction can be
achieved away from this limit, even when the oscillator
operates at amplitudes far below the critical point for
bifurcations of the associated open loop system. Going
from a saturated to an unsaturated amplifier leads to two
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different effects. Firstly, since the drive on the resonator
is no longer constant as parameters such as the phase of
the feedback signal are changed, the closed loop oscillator
behavior is no longer simply related to the open loop res-
onator response curves, and the optimal operating points
are not given by the turning points of the resonator Duff-
ing curve. Secondly, noise from the amplifier is no longer
confined purely to the phase direction, since fluctuations
in the magnitude of the drive are no longer quenched by
the saturation.

II. MODEL EQUATIONS AND PHASE SPACE
VIEW

Greywall et al. considered a nonlinear resonator typi-
fied by a thin, electrically conducting beam of mass M
in a uniform magnetic field and driven by an alternating
feedback currentg, E] The beam dynamics are governed
by the equation |2]

MX + X + K1 X + K3 X° = F, (1)

where X is the beam’s displacement from equilibrium, p
is the damping coefficient, K7 and K3 are the linear and
nonlinear restoring force parameters, respectively, and F'
is the feedback force provided by a series amplifier /phase-
shifter /limiter combination. Here, the amplifier boosts
the signal to overcome dissipation, while the phase-shifter
introduces a readily accessible control parameter to tune
the system to the desired operating point. The func-
tional purpose of the limiter is not obvious, but as we’ll
see, it plays an important role in eliminating input noise
generated by the amplifier.

In the high-@Q limit, the system dynamics are well de-
scribed by a slowly varying complex amplitude A. By
appropriate scaling, the deterministic evolution of A is
described by

dA (1 3 ., H(A) A
ﬁ—<—§+1§|A|>A+T€ s (2)


http://arxiv.org/abs/1310.7524v1
mailto:eyalk@caltech.edu

3 ‘ S —
2 57 ""“ .\"'..U.I —,—’ - 4
' 4 o “,_
,', ”o’
2 AI! 2 ”’/ 7
']
! '1/
I 4,
e ,
L ,
! ’
1 2 —oG=1.01] |
[ N
S G=4
0 e -
R4 |
0.5 N P o
By
)
0 . . ) ‘ ‘

FIG. 1. The amplifier profile for k = 2 and s = 3.

where T is the slow time, H represents the action of the
amplifier and A that of the phase shifter. The amplifier
is assumed to affect only the magnitude of A, with H
having the form

H(A) = g(14]) Q

4]
Refs. [1, [2] studied the case of a strictly saturated ampli-
fier, which corresponds to the case where g is a constant.
Here, we consider the more general Rapp Model ﬂ, ],
widely used in the engineering literature for solid state
power amplifiers, which includes a non-saturated regime:

GlA|

]

where G' and s are constants, and k is an integer which
controls the crossover between the low amplitude, linear
gain regime (¢ ~ G|A|) and the large amplitude, sat-
urated regime (¢ ~ s). In particular, we recover the
strict saturation case by taking the limit k¥ — co and/or
G — oo. Figure [l plots g(]A]) for some typical parame-
ters.

Although noise can enter the system in a variety of
ways, we want to focus on the noise quenching phe-
nomenon originally discussed in Refs. @, ], which specif-
ically relates to the amplifier noise. Amplifier noise will
in general have components in both the magnitude and
phase quadratures, which can be accounted for in the
amplitude equation by adding to the right-hand side of
Eq. @) the complex noise Ze'®e’® /2 with = = =g + iZ;
and ® the phase of the amplitude A. This yields the
noisy amplitude equation

dA 1 3, 1 A el a
— = —= - 1A A+ = Al — + =€ el
ra ( 2+z8| |) +2[g(| |)|A|+ e@le

9(14]) = (4)

For models of the amplifier noise we have investigated,
and for this definition of Z (with the phase factor involv-
ing A explicitly factored out), Zg and Z; are uncorre-
lated, and we will assume this is true in the remainder of
this paper. The relative magnitude of Zz and =; depend
on the properties of the noise source and the saturation
level of the amplifier.

Before turning to the calculations, it is worthwhile to
consider the essential dynamics in a qualitative way, as
captured by the phase space geometry of the system. Fig-
ure 2] shows the situation in the complex-A plane. In
the absence of noise, the system has an attracting orbit
with uniform angular velocity, represented by the circle
in Fig. 2 (a). In a rotating frame, this becomes a circle
of attracting fixed points. Depending on the initial con-
dition, the system trajectory ends up at one or another
of the equilibria. Suppose that the system has settled
down to the particular point zg, and consider the effect
of an isolated perturbation: the system is pushed off z,
and subsequently relaxes back to some point on the cir-
cle. Typically, the new fixed point is not xg, and this
corresponds to a net phase drift of the oscillator. A sin-
gle kick might advance the phase, or retard it; but there
is a special set of perturbations (labeled V; in Fig.[2 (b))
for which the system evolves back to xq, resulting in no
phase drift. These are perturbations along the eigenvec-
tor of the linear flow with negative eigenvalue.

Instead of an isolated perturbation, noise has the effect
of continually kicking the system trajectory. Ordinar-
ily, the individual noise kicks fluctuate in magnitude and
direction, though perhaps not isotropically: the oblong
shaded region in Fig. [ (¢) represents the distribution of
noise kicks. Over time, the corresponding accumulation
of phase shifts gives rise to phase diffusion. But sup-
pose the noise is confined to one dimension only (Fig.
(d)), and furthermore suppose that this direction coin-
cides with V, (Fig. @ (e)). Under these circumstances
there would be no phase diffusion. The quenched-noise
phenomenon identified by Greywall et al. corresponds to
this situation. Physically, we’ll show that it hinges on
the strict saturation property of the amplifier, in addi-
tion to tuning the system parameters. From a calcula-
tional point of view, the vector perpendicular to V; is of
particular importance. It plays a direct role in explicit
determination of V, on the one hand, and is central in
generating complete expressions for the system’s power
spectrum. We’ll denote it by V. Formally, V| is the
null left eigenvector of the Jacobian; physically, it is the
direction of maximum phase noise sensitivity.

IIT. FLUCTUATION EVOLUTION EQUATIONS

Our starting point is the noisy amplitude equation (&).
For now we allow the spectral composition of Zr and =;
to be general, and assume only that the noise is weak
enough that the system dynamics remain close to the
deterministic limit cycle. Consider first the noise-free
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FIG. 2. Phase space of the complex amplitude A. (a) In a
rotating frame, the noise free orbit is circle of fixed points.
(b) Close up view showing local coordinate axes («, ¢) and
the vector V. along which perturbations relax back to the
original fixed point. (c¢) The hatched region represents the
two dimensional (typically anisotropic) noise distribution. (d)
In the strict saturation limit, the noise cloud collapses to one
dimension. (e) Parameter tuning can align the noise with Vi,
thus eliminating phase diffusion. (f) More generally, the noise
cloud stays two dimensional, and parameter tuning results in
partial reduction of phase diffusion.

dynamics (2 = 0). We substitute A = ae™®
divide out a common factor of e'®
and imaginary parts to give

into Eq. (@),
, and separate the real

da  a g(a) —

7 —§+TCOSA—fa(a)7 (6)
dd 3 ,  g(a)sinA

= 8a2 5 = fa(a).

We identify the amplitude ag of the periodic orbit by
setting fo(ap) = 0, which yields

=

ap = = |(Geos A)F — . (7)

Q| w

The correspondin%frequency Qg is given by Qo = fo(ao).

The vector V| is [6]
o 8fq>(a0)/8a
v (o)

Now consider the effect of noise. We set a = ag + «
and ® = Q¢T + ¢, with «a, ¢ small, and substitute into
the governing Eq. (B). We expand to first order in the
small quantities, divide out a common exponential factor
and separate real and imaginary parts as before, to get
(omitting the algebra) the evolution equations for the
perturbations

(8)

da a 1 ’ = i =
o7 = —5 + 5 {cos A(g'(ao)a +Zg) —sin AZr}, (9)
d 9 1
ao di = —aQtgagats {cos AZr +sinA(g'(ao)a +Er)} -

(10)
Finally, recast this into vector form

i a) af“a—gl“)() o +% cos A
dar \ ¢ ) W“é—g‘lo)o ¢ 2\ ap'sinA

+ %( ~sinA ) . (11)

ag - cos A

The relative strength of = and =; can depend on aspects
of the amplifier beyond those captured by its gain func-
tion for a periodic signal. However, as a simple model of
the effect of amplifier saturation on this ratio we imagine,
following Ref. E], a noise source at the amplifier input,
corresponding to the replacement (see Eq.(2]))

H(A) = H(A+E), (12)

where the complex noise £ = & + &7 with &g and &;
real, equal intensity, and statistically independent. Phys-
ically, adding noise to the complex amplitude A in this
way corresponds to considering noise passed through a
narrow-band filter around the oscillation frequency be-
fore entering the amplifier. This captures the effect the
amplifier has on noise in the frequency band near the
carrier, though it ignores the up- and down-conversion of
noise from the vicinity of other harmonics to the carrier
frequency that would occur for wide band noise. With
the replacement (I2)) the feedback function becomes

A+E i
A+ e’ 13
o4+ e ge (13)
Expanding to linear order in ¢ and defining £ = e *®¢,
the term
A+ ( £ )
_— 14>, 14
ATe s 0 )

represents noise in the phase of the feedback. The term
g(|A+¢]) ~ g(ag) + g'(ag)ér contains only fluctuations



in the magnitude of the feedback. This model therefore
gives

Er =¢'(a0)ér, Er=ag ' glao)ér, (15)
with € = &g + i&;. Note that &g, &; are again real, equal
intensity, and statistically independent noise terms. The

expressions (5] are consistent with the expected limits
of equal strengths of Zr and Z; for a linear amplifier.

IV. PHASE NOISE QUENCHING
Large Amplitude Limit

We're now in a position to understand the origin of the
noise quenching phenomenon. Equation () governs the
system’s response to noise. In the general case, because
the noise functions Zr and Z; are independent, and these
multiply vectors having different directions, the total in-
put noise fluctuates over all directions in the phase space
plane. But in the large amplitude limit, the amplifier is
saturated, and from Eq. (I8) Zg — 0 since ¢’ — 0 in
this limit, thus eliminating one noise term. The remain-
ing noise source fluctuates in magnitude but points along
a fixed direction in phase space, and by tuning the sys-
tem parameters one can arrange for this direction to be
perpendicular to V :

VL.<(LO_1COSA)_O7 (16)

which guarantees the elimination of phase diffusion. This
condition takes the explicit form (upon evaluating Eq. (&)
in the limit G — o0)

1= gsz cos® Asin A. (17)

This condition has solutions for A providing s >
(4/3)°/*. Note that this condition is identical to the
condition for having bi-stability in the open loop system
driven at the saturation value s ﬂQ] In general, except in
this limit of saturated amplifier output, the input noise
is not confined to a fixed direction, and no amount of
tuning can fully eliminate the phase diffusion.

Unsaturated Regime

Away from the saturated limit, some level of phase dif-
fusion persists, but we can reduce it by parameter tuning.
The long time drift of the phase due to the noise terms
is given by solving [6]

¢=PRrEr+ P, (18)

where Pg, P; determine the effect on the phase of each
noise term appearing in Eq. ([l) and are given by the

component of the corresponding noise vector along V|

LcosA
_ . 2
Pr=V1 < %aal sin A > ’ (19)
—LginA
_ . 2
Pr=Vy <%aglcosA>'

The spectrum of the oscillator phase noise depends on
the spectral properties of the noise sources =g, =7, but
the dependence of the overall intensity of the noise on
the oscillator properties is determined by the quantities
Pr, Pr. Figure[3 (b) shows the situation for some typical
choices of the amplifier gain parameter G, with s = 3 and
k = 2. Plotted are the phase noise sensitivity coefficient
PZ% and P} vs. the phase shift parameter A. We see that
although the coefficient PI% remains positive, P? can be
set to zero by tuning A. This means that, even in the
unsaturated case, it is possible to eliminate the “direct”
contribution to phase diffusion.

The noise elimination condition P; = 0 can be written
in a useful and compact way, namely

Qo

L =0. (20)

This follows from a direct calculation (see Eq. (8))

8fs(ao)
a0 _ o0y da 900 _ (*5) ofutan) |, 0fa(an
dA Oa dA 0A (af%(ao)) BN A
Ofs
_ glao) (W) ) cosA|
=5 (%) sin A 4 a = g(ao)Pr. (21)

Evaluating d€y/dA for the explicit form of g(ap), and
the oscillation amplitude (@) yields

(s, o
pr = g(a0)< Tetk tan A(G cos A)* ((Geos A)¥ —1)

1
* 2cos2A)' (22)

Interestingly, for k& = 2 we get the same condition for
noise elimination as in the saturated regime. The condi-
tion is independent of the gain G, and so can be satisfied
even when the gain is chosen so that the drive level on
the resonator is well below that needed to drive it beyond
the Duffing critical amplitude, as we now show.

Small Amplitude Limit

Although Eq. ([22) gives the general result for Py for all
amplitudes of oscillations, it is instructive to investigate
the small amplitude limit more explicitly by evaluating
do/dA for small amplitudes. From Eq. (), the periodic
orbit amplitude ap and frequency Q¢ satisfy

ap = g(ap) cos A, (23)

2_1



e e e e e e e

=
o
N
T
- &
- ,\f
et
’ feun ' et L
td

phase sensitivity

|
N
T

—— feedback magnitude noise
—— feedback phase noise

[any
o

o e e e i i T

10° ‘ |
~0.5 0
ATt
(b)

0.5

FIG. 3. (Color online) (a) Response of an oscillator driven by
a non-saturated amplifier for s = 3 and k = 2. (b) The phase
noise sensitivity coefficients P2 (blue) and P} (green) for the
same amplifier gain values. Note the cancellation of amplifier
phase noise at small amplitudes for G = 1.01.

and
3 5

1
Qo = 30 + 3 tan A, (24)

so that

i 3da2 1,
o _ 3day 1 o a 2
dA  8dn 3% (25)

For small input amplitudes, we expect the amplifier gain
function to be given by a Taylor expansion

g9(ao) = Gag — Bag + -+, (26)

where only odd powers are present since ag — —ag cor-
responds simply to a 7w phase shift of the periodic input

signal. The coeflicient § gives the leading order nonlin-
earity of the amplifier gain HE] The oscillator amplitude
is small and then the amplitude is

ag ~ % (G —secA), (27)
so that
da? 1
A= _E sec A tan A. (28)
This gives
dQo B 3 1 2
P sec Atan A + 5 Sec A. (29)

There are values giving d2g/dA = 0 and so zero phase
noise sensitivity Pr at

sin A — %[3, (30)

which has solutions if 8 < 3/4. Translating to physical
quantities this means that the nonlinearity of the am-
plifier gain g(ag) must be such that the resonator am-
plitudes sufficient to change the gain by a significant
amount are comparable to the Duffing bifurcation ampli-
tude (ap ~ 1). However the resonator does not have to be
driven to this amplitude in the closed-loop oscillator to
achieve the zero-noise points, since Eq. (29) depends on
the value the gain curve curvature and feedback phase,
but not the level of the drive.

We can understand the phase noise elimination at the
special operating phases in terms of the cancellation be-
tween the two terms on the right hand side of Eq. (25]).
The second term %sec2 A comes from the frequency de-
pendence of the oscillator on the feedback phase, and
is present even for a linear resonator. The conventional
route to reducing the phase noise sensitivity is to make
the effect of this term small by increasing the @ of the res-
onator (this would be seen by writing Eq. (25) in terms of
unscaled variables). Instead, with a nonlinear resonator,
this term can be cancelled using the dependence of the
resonator frequency on the amplitude of oscillation, and
then the feedback phase dependence of this amplitude.
Note that da?/dA can be of order unity, sufficiently large
to cancel the second term, even for small a3: this is a re-
sult of the ap — 0 limit being the bifurcation point for
the onset of the limit cycle oscillations.

V. CLOSED LOOP PARAMETER SWEEPS

Two recent papers have presented experimental results
showing parameter scans of oscillators based on high-Q
resonators driven into their nonlinear regime ﬂﬂ, @] A
major interest of these works is to trace out the charac-
teristic driven resonator “Duffing” curve, showing multi-
ple solutions for the amplitude and phase of the driven



oscillations for a given driving frequency, over some fre-
quency range and for sufficiently large drive amplitudes.
In the closed loop configuration the phase shift A of the
feedback is the natural control parameter. In addition
to tuning A, these experiments simultaneously tune the
amplifier characteristics to maintain the drive level on
the resonator at a fixed value. Since the drive level is
fixed, the amplitude-frequency variation as A is tuned
follows the resonator response curve for that drive level.
An advantage of this method of measuring the resonator
response curve is that branches of the curve correspond-
ing to unstable solutions in the open loop configuration
are stabilized by the closed-loop feedback, so the whole
of the response curve can be measured. Mimicking this
protocol allows us to present our results on the phase
noise in a particularly graphic way. A first important
statement is the perhaps obvious one that the noise prop-
erties at particular parameter values cannot depend on
the nature of the parameter sweep that led to those val-
ues. In particular, although the experimentalist can mea-
sure Qo(A) (how the oscillator frequency depends on the
phase shift) in these constant drive sweeps, the derivative
of this curve d€2y/dA does not give the correct function
to evaluate the phase noise sensitivity coefficient P; in
1), since the derivative in this equation must be taken
at constant system parameters, and in the constant drive
sweep the system parameters characterizing the amplifier
are changed. This is unlike the case of the saturated am-
plifier, where the drive level on the resonator is indeed
fixed by the saturation.

In Fig. @ we plot the oscillator characteristics for two
fixed drive level A sweeps following a protocol analogous
to the one in Ref. ﬂﬁ] To implement this it is convenient
to write the amplifier gain function as

introducing the “shoulder amplitude” as = s/G giving,
roughly, the input amplitude at which the nonlinearity
of the amplifier becomes strong. Then the protocol of
Ref. [12] corresponds to tuning the gain G(A), whilst
holding as fixed, so that the feedback drive strength
d = g(a) remains fixed at a chosen value as the oscil-
lation amplitude ag changes with A. The phase noise
sensitivity is calculated from Eq. 22]) using s = Gas and
calculating G(A) from the solution for the oscillator am-
plitude at drive level d given by ag = dcos A, d = g(ayp).
Note that there are values of A yielding zero phase noise
sensitivity P = 0 in both cases, even though for the
smaller drive level d = 0.1 the resonator is driven far
below the onset of nonlinearity, so that ag(2g) follows
the linear resonator response curve. Also, these special
points are not associated with zeros in the slope of the
Qo(A) curves, as shown in (b) and (c).
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FIG. 4. Oscillation characteristics for constant feedback
sweeps for k = 2, as >~ 1.73, and two feedback drive levels
d = 0.1 (dashed) and d = 2 (solid): (a) oscillation amplitude
vs. oscillation frequency; (b) oscillation frequency wvs. phase
shift; (c) scaled phase noise sensitivity coefficient (P; - d)?
vs. phase shift.

VI. TOTAL OSCILLATOR PHASE NOISE AND
POWER SPECTRUM

We have presented results for the phase noise elimina-
tion due to the component of amplifier noise in the phase
quadrature =y, but, as described above, for an unsat-
urated amplifier there will usually in addition be noise
in the magnitude quadrature = which cannot be elimi-
nated by any choice of A (see Fig.Bl). Thus the ability to
reduce the total noise depends on the relative strength of
these two components. Returning to the specific model
which led to Eq. ([[H), the stochastic evolution of the
phase Eq. (I8) becomes

¢ = Prép + Préy, (32)

with Pr = g(ag)Pr/ag, and Pr = ¢'(ag)Pg, the phase
sensitivities scaled by the relative noise intensities de-
rived from the amplifier-noise model. For g, &; uncor-
related and equal intensity the total phase sensitivity to
the noise is given by

PeQHZPIQ%+pIQa (33)

which is plotted in Fig. We have chosen the value
k = 2 and a saturation level s = 3, which means that
for the largest amplifier output the resonator is driven
at a strength about twice the Duffing critical value. The
plot shows the effective noise sensitivity coefficient for
four gain values G. For G = 1.01 there is only a small
range of A giving sustained oscillations and the ampli-
tude of oscillations always remains small (cf. Fig. Bla)):
in this case the noise in the magnitude quadrature of
the amplifier output is comparable to the noise in the
phase quadrature, so that little effect of the eliminating
the phase component is seen. For G = 2 the oscillation
amplitude rises to about 2.5, sufficient to probe the non-
linear region of the amplifier characteristics (see Fig. [I),
and there is some appearance of noise quenching around
A = 0. Already for a gain level G = 4 there is significant
noise quenching, and for G = 8 the noise curve is close
to the value for a saturated amplifier.

To connect these results with the noise spectrum of the
oscillator we need to make assumptions on the properties
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FIG. 5. The total sensitivity to both quadratures of amplifier
noise, as given by the expression (B6), for s = 3 and k = 2. As
the gain level grows the phase noise approaches the saturated
amplifier behavior having two zero phase noise points ﬂa]

of the noise sources. For stationary, uncorrelated noise
sources (&;(T)&;(T")) = R;(T —T")d;j, the growth of the
phase variance V(1) = ([¢(7 + T) — ¢(T)]?) with time is
given by [6, [13]

vir) - 2l / s {L(?{/ 2)]2dﬂ, (34)

with S; the Fourier transform of the noise correlation
function S;(Q) = F[R;(T)]. The conventionally quoted
phase noise in dBc/Hz at offset frequency w,, is then
approximated by [6, [13]

L(wm,) = 101logy, (]—' [e_v(t“’”/Q)mD . (35)

For weak noise, the exponent can expanded to first order,
and the phase noise for a given frequency offset is

L(wm,) = 101log;q (PCQH) + C(wm), (36)

where the additive term C' depends on the offset fre-
quency, as well as the oscillator frequency and the noise

strengths. Thus Fig. [ directly shows how the oscilla-
tor noise at some chosen offset frequency depends on the
feedback phase and amplifier parameters, up to an overall
additive constant (on the log scale).

VII. SUMMARY AND CONCLUSIONS

In this paper we have investigated the conditions for
complete elimination of phase noise in self-sustained os-
cillators due to fluctuations in the feedback drive. We
have shown that the possibility for phase noise elimina-
tion lies in the ideal limit of a saturated amplifier, where
fluctuations in the feedback magnitude are quenched. In
this limit the oscillator response curve reproduces the
open loop resonator response curve, and the remaining
fluctuations in the phase of the feedback can be elimi-
nated by tuning the oscillator to the turning points of the
resonator Duffing curve. Away from this limit, amplifier
noise consists of fluctuations in both the magnitude and
the phase of the feedback, a situation which can be rep-
resented in phase space by surrounding the operational
point with a random noise ellipse that can not be elimi-
nated. By considering an amplitude dependant feedback
function with a noisy input, we obtain the total phase
noise of the oscillator, and recover complete noise elimi-
nation at the large amplitude limit.

We show that the possibility for elimination of fluctua-
tions in the feedback phase does not rely on the large am-
plitude restriction, and in the small amplitude limit this
ability depends on the nonlinearity of the amplifier rather
than the oscillation amplitude at the operational point.
We demonstrate complete elimination of fluctuations in
the feedback phase for a feedback level much lower than
the critical level for nonlinear Duffing response. This ef-
fect has a large impact in situations where fluctuations
in the phase of the feedback dominate.
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