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Synopsis

We study the motion of a colloidal particle as it is driven by an oscillating external force of

arbitrary amplitude and frequency through a colloidal dispersion. Large amplitude oscillatory

flows (LAOFs) are examined predominantly from a phenomenological perspective in

which experimental measurements inform constitutive models. Here, we investigate a LAOF

from a microstructural perspective by connecting motion of the probe particle to the material

response while making no assumptions a priori about how stress relaxes in the material. The

suspension exerts nonconservative, hydrodynamic forces on the probe, while distortions in

the particle configuration exert conservative forces: Brownian and interparticle forces, for

example. The relative importance of each of these contributions to particle motion evolves with

the degree of displacement from equilibrium. When the force on the probe is weak, the linear

microviscoelasticity of the suspension is probed [see, e.g., Khair and Brady, J. Rheol. 49,

1449–1481 (2005)]. When oscillation rate is slow, the steady microrheology is probed [see, e.g.,

Squires and Brady, Phys. Fluids 17, 073101 (2005); Khair and Brady, J. Fluid Mech. 557, 73–117

(2006)]. This article develops a micromechanical model that recovers these limiting cases and

then uses the same model to reveal the microrheology of colloidal dispersions deformed by a

probe driven with arbitrary force amplitude and frequency. A chief result of this work is the

discovery of a regime in which the resistance to motion of the probe particle is on average

weaker than the resistance the probe experiences when deformed by high frequency oscillation.

This hypoviscous effect arises when the reciprocating motion of the probe particle opens a
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channel free of other particles which is thus less resistive to probe motion. This effect is most

apparent under the conditions of strong forces, rapid oscillation, and large extent of

deformation. VC 2014 The Society of Rheology. [http://dx.doi.org/10.1122/1.4826939]

I. INTRODUCTION

Complex fluids play an important role in many aspects of daily life, from foodstuffs to

pharmaceutical materials, and from toothpaste to the mucus that allows our lungs to rein-

flate at the end of a breath. As a class of materials, complex fluids span a very broad

range of soft matter but share a common fundamental structure: A collection of micro-

scopic particles or domains—a microstructure—embedded in a macroscopic domain,

which relaxes over familiar and observable time scales. The presence and configuration

of this internal microstructure imparts to the material a rich spectrum of equilibrium and

nonequilibrium mechanical properties. Imposing a flow on such a material distorts the

equilibrium microstructure, which can give rise to profound changes in flow behavior—

including dramatic increases or decreases in viscosity and time-dependent behaviors such

as viscoelasticity. In traditional macroscale rheology, bulk material displacements are

induced via shearing or extensional flows. A constitutive relation between the rate of de-

formation and the stress may then be obtained. In theoretical approaches, the study of

steady-state rheology over a range of flow strengths connects macroscopic non-

Newtonian behavior with its underlying microstructural origins. For example, in colloidal

dispersions an increase in flow strength is accompanied by a decrease in the relative im-

portance of Brownian diffusion. For weak flows, this gives rise to shear thinning

[Batchelor (1976); Bergenholtz et al. (2002)]. As flow strength continues to increase,

hydrodynamic interactions dominate the microstructural deformation, resulting in the

onset of shear thickening [Brady and Bossis (1985); Barnes (1989); D’Haene et al.
(1993); Bender and Wagner (1995); Maranzano and Wagner (2002); Bergenholtz et al.
(2002); Wagner and Brady (2009)]. Recent experimental studies report direct observa-

tions of particle microstructure in real (rather than wave) space as well, along with com-

putation of the stress via a statistical mechanical theory, finding agreement [Gao et al.
(2010); Cheng et al. (2011)]. A thorough review of traditional rheology techniques may

be found in the work of Barnes et al. (1989). Transient flows also give insight into the

micromechanics of rate-dependent processes in steady-state flow behavior: Sudden removal

of external forcing demonstrates that the microstructure relaxes over multiple time scales,

each associated with distinct physical processes [Mackay and Kaffashi (1995); Watanabe

et al. (1996a, 1996b); Kaffashi et al. (1997); Foss (1999); Zia and Brady (2013)]. Such tem-

poral response reveals the underlying connection between structure and rheology.

Time-dependent behavior is a hallmark of non-Newtonian fluids. Such materials can

display both liquidlike (viscous) and solidlike (elastic) behaviors, depending on the rate

with which they are perturbed relative to the relaxation time scale(s) of the microstruc-

ture. Linear viscoelastic properties are typically studied by imposing a small-amplitude

oscillatory shearing motion on a bulk sample of material, cðtÞ ¼ c0sinðxtÞ, with ampli-

tude c0 and oscillation frequency x say, where _c � @c=@t [Pipkin (1986)]. In this

linear-response regime, the resultant shear stress r(t) is linear in the imposed strain and

strain rate, with coefficients that form the real and imaginary parts of a complex modulus.

The phase shift and amplitude change with respect to strain rate or strain are thus related

in a simple way to the storage (elastic modulus) and loss (viscous modulus) of energy in

the sheared material. The degree to which each of these mechanisms dominates is

encoded into the frequency dependence of the complex moduli. Viscoelastic behavior is

found even in systems as simple as a colloidal dispersion of hard spheres. In their
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simplicity, colloidal dispersions make an excellent model system for understanding the

microstructural origins of viscoelasticity [Lionberger and Russel (1994); Brady (1993b);

Foss (1999); Khair and Brady (2005)]. In theoretical approaches, the suspension stress

(and viscosity) can be separated into solvent and particle phase contributions, and the

particle-phase stress further resolved into hydrodynamic, interparticle-force, and entropic

contributions [Batchelor (1972); Brady (1993a, 1993b); Morris and Brady (1996)].

Oscillatory rheology thus provides insight into flow- and frequency-dependent mate-

rial behavior. Although many studies focus on small departures from equilibrium, materi-

als of interest are often driven far from equilibrium. For example, the mucus that lines

the lungs and airway provides optimal healthy function with both liquidlike and elastic

behavior. Strong flows, e.g., coughing, ideally produce viscous flow. But when the elastic

modulus dominates the behavior of airway mucus, serious (sometimes life-threatening)

pathology results, for example, in the case of cystic fibrosis [App et al. (1998); Banerjee

et al. (2001); Lai et al. (2009); W€ustneck et al. (2002)].

There is an ongoing effort to meld two experimental approaches—small amplitude oscil-

latory shear and steady shear—into one technique, so-called large amplitude oscillatory

shear, or LAOS [see, e.g., Dealy and Wissbrun (1990); Giacomin and Dealy (1993); Hyun

et al. (2002); Ewoldt et al. (2008)]. In such an approach, a rheometer imposes a steady oscil-

latory simple-shear of arbitrary amplitude and frequency, and the time-dependent shear

stress is measured. Here, the strain is denoted cðtÞ ¼ c0sinðxtÞ and the rate of strain is

denoted _cðtÞ ¼ _c0cosðxtÞ with _c0 ¼ xc, where c0 is the maximum strain amplitude. The

goal of the experiment is to extract nonlinear viscoelastic properties from the resultant stress

signal. A number of approaches to interpreting this stress response have been proposed

[Wilhelm (2002); Cho et al. (2005); Ewoldt et al. (2008); Rogers and Lettinga (2012)].

However, such interpretations provide only qualitative indications of nonlinear material

behavior or test-specific properties, e.g., shear thinning and thickening or strain softening

and hardening that may or may not translate to material behavior in other time-dependent

nonlinear deformations. While in linear-response the complex moduli can be transformed to

model any small-amplitude time-dependent flow, no such generic procedure appears possi-

ble in the nonlinear regime. An alternative is to fit constitutive models to LAOS data and

interpret material behavior through the model parameters [Wilhelm (2002); Gurnon and

Wagner (2012)], which has proven quite useful in understanding macroscopic behavior but

still leaves open the question of its connection to the underlying microstructure. Recent

advances in metrology enable direct measurement of the microstructure during LAOS

[Cheng et al. (2011); L�opez-Barr�on et al. (2012); Rogers et al. (2012)], thereby providing

direct microstructural interpretation of the nonlinear stress response.

A tangentially related aspect of the LAOS experiments is an ambiguity in the control

parameters, evident in the oscillatory signals noted above. Oscillatory shear is described

by just two parameters: The strain amplitude, c0, and the oscillation frequency, x.

However, in any shearing experiment, it is natural to consider the strain-rate amplitude,

_c0, as well. On one hand, the steady-shear experiment is replicated when the oscillation

frequency x is small relative to all other rate processes in the material. One thus has,

alongside the large strain inherent in the steady-shear regime, a strain rate of arbitrary

magnitude. On the other hand, elasticlike materials are highly sensitive to strain ampli-

tude but less sensitive to strain-rate amplitude (in the linearly elastic regime). Finally, fre-

quency sweeps are the preferred method for extracting time-dependent viscoelasticity of

a material. In its most powerful form, the LAOS experiment must live on a manifold of

strain amplitude c0, strain-rate amplitude _c0, and frequency x. Which is the best projec-

tion for a particular experiment? In the present study, we show that the equations govern-

ing the microstructural deformation provide unambiguous guidance.

3LARGE AMPLITUDE OSCILLATORY MICRORHEOLOGY
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As noted above, one limitation of past approaches is their limited ability to relate

microstructural deformation to macroscopic response. To overcome these limitations, we

take a micromechanical approach to form a direct connection between the microstructure

under arbitrary strain-rate amplitude and oscillation frequency, and the corresponding

stress response.

An additional limitation of such approaches is the macroscopic scale over which mate-

rial is probed in traditional macroscale shear and LAOS experiments. In such experiments,

a bulk shearing motion is imposed on a macroscopic sample of material and the spatially

averaged response of the material is thus probed. However, there is strong demand to inter-

rogate small-scale systems such as rare biological fluids or expensive pharmaceutical prep-

arations. Traditional rheology approaches require at least milliliters of fluid which, due to

expense or microscale variation, may exclude many important microscale systems.

An alternative is microrheology in which the motion of a colloidal probe suspended in

some viscoelastic material is used to infer its linear and nonlinear mechanical properties.

Microrheology has august origins—Einstein (1906) and Perrin (1909) used the diffusion

of colloidal particles in materials with known viscoelastic properties to measure

Avagadro’s number. With advances in microscopy and other techniques [see, e.g.,

Crocker and Grier (1996)], microrheology has become highly valued as a tool for inter-

rogation of complex fluids [Mason and Weitz (1995); MacKintosh and Schmidt (1999);

Habdas et al. (2004); Meyer et al. (2006); Squires and Brady (2005); Khair and Brady

(2006); Wilson et al. (2009)]. In passive microrheology, thermal fluctuations drive the

Brownian movement of colloidal particles. Their mean-squared displacement is tracked

over time and related to the viscoelastic moduli of the material in which they are embed-

ded through the generalized Stokes-Einstein-Sutherland equation. A wide range of mate-

rials have been studied via microrheology, including actin networks [Gisler and Weitz

(1999); Ziemann et al. (1994)], gelatin [Freundlich and Seifriz (1923)], DNA solutions

[Mason et al. (1997)], and colloidal dispersions [Crocker (1997); Crocker et al. (2000);

Levine and Lubensky (2000); Habdas et al. (2004)]. Microrheology has also been devel-

oped as a tool for high-throughput material screening [Breedveld and Pine (2003);

Schultz and Furst (2011)].

However, to probe the nonlinear response of a viscoelastic material, it must be driven

out of equilibrium through active forcing of the colloidal probes. For instance, optical

tweezers and magnetic fields can be used to force probes and produce large deformations

in the embedding material. There have been many investigations, both theoretical and ex-

perimental, of steady and transient active microrheology [Squires and Brady (2005);

Khair and Brady (2005, 2006); Meyer et al. (2006); Wilson et al. (2009); Zia and Brady

(2010, 2012, 2013)]. These demonstrate that active microrheology is capable of revealing

many of the same physical processes as result from macroscopic deformation.

In nonlinear microrheology, the motion of the probe distorts the surrounding micro-

structure. At steady state, the degree of this distortion is captured by the P�eclet number,

Pe ¼ Fexta=ð2kTÞ, where Fext is the strength of external forcing and 2kT/a is the entropic

restoring force of the bath due to the Brownian motion of the suspension. Here, kT is the

thermal energy and a is the radius of a bath particle. This is the microrheological equiva-

lent of the Weissenberg number used to characterize flows of viscoelastic materials. It is

a dimensionless rate of deformation. For an oscillating external force, the viscoelastic

response also depends a dimensionless frequency a ¼ xa2=D, where D ¼ kT=6pg a is

the Stokes-Einstein-Sutherland diffusivity. This is the micorheological equivalent of the

Deborah number used to characterize oscillatory flows of many viscoelastic materials.

In the present investigation, we study microstructural response to variations in both

the strength of forcing, Pe, and the rate of oscillation, a, each of arbitrary magnitude. As
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with LAOS, in oscillatory, active microrheology, there are only two independent parame-

ters to vary: Pe and a. However, the ratio of forcing strength to oscillation rate, Pe/a, is

important as well. This ratio is equivalent to the strain amplitude and we will refer to it

throughout the article as the extent of deformation.

To illustrate this phase space pictorially, Fig. 1 gives a map of the response as a function

of strength of forcing and rate of oscillation. The three regimes studied in this work are as

follows: Linear-response (Pe� 1 or a� 1 and Pe=a� 1); steady, nonlinear response

(Pe� 1 and a� 1); and the region of large-amplitude oscillatory forcing (Pe� 1; a� 1,

and Pe=a� 1). This last region is of particular interest because, as shall be shown, it

reveals a new regime of viscoelastic behavior which we call hypoviscous.
Additionally, we demonstrate through solution of the microrheology problem and physi-

cal arguments that the first harmonic of the oscillatory response (whether from microrheol-

ogy or macrorheology) is the only harmonic whose real and imaginary parts can be termed

viscous and elastic unambiguously. The first harmonic appears to generate over 95% of the

response “signal” as the oscillatory process approaches the low frequency limit, and its var-

iation with changes in deformation rate and oscillation rate are at least characteristic of

what is seen in the other harmonics. Since the first harmonic will always be the strongest

signal measured in a rheology experiment, we suggest that this may provide the most useful

characterization of materials. In particular, we feel the first harmonic is the only necessary

quantitative descriptor of the deformation process. Measurement of this quantity via a

sweep of frequency and amplitude in a LAOS experiment should provide sufficient data

for parameter estimation in a constitutive model. The quality of the constitutive model

should be tested directly by computing the higher harmonics that result from such an esti-

mate and then comparing them to those from the LAOS experiments.

FIG. 1. Probe response phase space. These are four distinct regimes for colloidal dispersions undergoing large am-

plitude oscillatory deformation via microrheology: The region of steady linear response for which Pe; a� 1, the

region of linear response for which Pe=a� 1, the region of steady, nonlinear response for which Pe� 1; a� 1

and the hypoviscous regime where Pe; a;Pe=a� 1.
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The remainder of this paper is organized as follows: In Sec. II, the model system for

oscillatory microrheology is introduced. Next, in Sec. III, the microstructural view of col-

loidal dispersions is described in detail and the time-dependent Smoluchowski equation

derived. To make analytical progress, an assumption of diluteness is made. This yields

the pair-Smoluchowski equation that governs microstructural dynamics. For large-

amplitude flows, an expansion of the microstructural deformation as a Fourier series

reveals a fundamental aspect of such flows: The corresponding microstructural harmonics

are linearly independent but not orthogonal. This leads to a coupling between harmonics

that in turn gives rise to a rich interplay between diffusion and advection in determining

the microstructure. Following Squires and Brady (2005), an interpretation of Stokes’

drag law is then made in Sec. IV to deduce the microvelocity increment—the change in

probe velocity due to its interactions with the microstructure. A careful examination of

the hydrodynamic, Brownian, and interparticle contributions to the total velocity is con-

ducted to reveal their individual connections to nonlinear viscoelastic behavior. The

study is concluded in Sec. VI with a discussion and future outlook.

II. MODEL COLLOIDAL DISPERSION

The model system comprises a dispersion of neutrally buoyant colloidal particles with

hydrodynamic radius ah immersed in a Newtonian solvent of viscosity g and density q. A

probe particle with the same radius is driven by an external force through the suspension.

The relative strength of inertial to viscous forces defines a Reynolds number,

Re ¼ qUah=g, where U is the characteristic probe velocity. Because the probe and bath

particles are small, Re� 1, inertia can be neglected and the fluid mechanics are governed

by Stokes’ equations. In the dilute limit, the number density of bath particles, nbath, is small.

We treat the particles as hard spheres with a hard-core radius a (see Fig. 2) such that the

interparticle potential V(r) as a function of the separation between the particles, r, is

FIG. 2. The suspension is modeled in the dilute limit by considering the interactions between two particles: A

probe particle driven by an external force Fext and a bath particle that is free of external forcing. Both particles

have the same hydrodynamic radius, ah, and interact via hard-sphere repulsion when the separation between

their centers is 2a.

6 SWAN, ZIA, AND BRADY

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

131.215.71.79 On: Thu, 30 Jan 2014 18:16:09



VðrÞ ¼ 1; r < 2a;
0; r > 2a:

�
(1)

One can envision two limits: One in which the hard-core radius is identical to the hydro-

dynamic radius, a¼ ah, and another in which the hard-core radius is much larger than the

hydrodynamic radius a� ah. The ratio of the two, k ¼ a=ah, has as its limiting cases

k¼ 1 and k!1, respectively. This interparticle potential derives from the excluded annu-

lus model first employed by Morris and Brady (1996). Squires and Brady (2005) studied

the steady behavior in the limit k ! 1, where hydrodynamic interactions are negligible.

Khair and Brady (2006) studied the steady microrheology of colloidal dispersions over a

continuous range of k. As in that work, the volume fraction is defined with respect to the

hard-sphere repulsion, / ¼ 4pa3nbath=3. In this study, we focus on the limit of k¼ 1

because it offers a complete microstructural model of a viscoelastic material.

As a probe particle is driven through a suspension by a steady external force, the bath

particles move in response—via hydrodynamic or hard-sphere interactions. The particles

cannot interpenetrate so there is a buildup of bath particles in front of the advancing probe

and a deficit trailing it. Figure 3 gives an illustration of the statistical distribution of bath

particles, or microstructure, around the probe at steady-state as the external force on the

probe is increased. In this depiction, there is a spherical region in which bath particle cen-

ters are excluded entropically. This is indicated in black. The concentration of bath particle

centers surrounding the probe is indicated by the colors: Red, suggesting higher concentra-

tion relative to equilibrium; blue, suggesting lower concentration relative to equilibrium;

and green, suggesting a concentration near equilibrium. Throughout this manuscript, we

discuss the probability of finding a bath particle a given distance from the probe relative to

that probability at equilibrium. This difference is the salient quantity for calculating rheo-

logical functions. The growing asymmetry of the microstructure with increasing applied

force is characteristic of the transition from a linear to a nonlinear rheological response.

FIG. 3. In a dilute colloidal dispersion, the motion of a probe particle distorts the statistical distribution of the

bath particles surrounding it. Here, the probe particle is moving to the right and there is a build-up of bath par-

ticles in front (red) and a deficit (dark blue) behind. The force driving the probe through the suspension increases

in each image from left to right. The top row shows the structure when hydrodynamic interactions are negligibly

weak, as from Squires and Brady (2005), while the bottom row includes hydrodynamic interactions, as from

Khair and Brady (2006).
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III. A MICROSTRUCTURAL VIEW OF LARGE AMPLITUDE OSCILLATION

In Secs. III A and III B, the equations governing the evolving distribution of particles

are presented, along with the appropriate boundary conditions. The development is kept

sufficiently general so as to easily extend to any flow of a dilute dispersion of hard

spheres. While the theory is developed and solved in the dilute limit, its applicability to

suspensions of any concentration is discussed in the Appendix. Most importantly,

because the structure of the solution is the same in the N-particle limit, we anticipate a

quantitative change, but not a qualitative change, in the flow curves relative to the dilute

limit calculation—at least within the liquid regime.

A. The pair Smoluchowski equation

In the dilute limit, the mechanics of a colloidal dispersion may be represented by the

interactions of just two particles with centers at x1 and x2 whose spatiotemporal statistical

distribution, P2ðx1; x2; tÞ, is governed by the pair Smoluchowski equation

_P2 þr1 � j1 þr2 � j2 ¼ 0; (2)

where j1 and j2 are the flux of particles 1 and 2 due to external, interparticle, and

Brownian forces and _P is the time rate-of-change of the particle distribution. In this case,

the particles interact via a hard-sphere repulsive potential and particle 1 is driven by an

external force Fext. The fluxes of particles 1 and 2 are then

j1 ¼ U1P2 ¼
1

kT
D11 � FextP2 � ðD11 � r1 þ D12 � r2ÞP2 (3)

and

j2 ¼ U2P2 ¼
1

kT
D21 � FextP2 � ðD21 � r1 þ D22 � r2ÞP2: (4)

Here, Dab is the diffusion tensor coupling the force on particle b to the motion of particle

a via hydrodynamic interactions. The diffusion tensors for a pair of particles are well

known [Batchelor (1976); Jeffrey and Onishi (1984); Kim and Karrila (1991)]. They

depend only on the interparticle spacing and are independent of the absolute position of

the particles, suggesting a coordinate transformation: r � x2 � x1; z � x1 such that

_P2 þrz � j1 þrr � ðj2 � j1Þ ¼ 0: (5)

Integrating over z while holding r fixed gives an equation for the conditional probability of

finding a bath particle a distance r from the probe, P1j1ðrjz; tÞ. The conditional probability

is linearly proportional to the pair distribution function, P1j1ðrjz; tÞ ¼ nbathgðr; tÞ, so that

the Smoluchowski equation becomes

_g þ 1

nbath

rr �
ð
ðj2 � j1Þ dz

� �
¼ 0: (6)

The relative diffusivity is given by Dr ¼ D22 þ D11 � D12 � D21. Since the particles are

equal in size, D11 � D21 ¼ Dr=2 and the relative flux is given by

1

nbath

ð
ðj2 � j1Þ dz ¼ 1

2kT
Dr � Fextg� Dr � rrg; (7)

8 SWAN, ZIA, AND BRADY
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and the pair Smoluchowski equation simplifies to

_g ¼ rr � Dr � �
1

2kT
Fextgþrrg

� �� �
: (8)

There is no long-range order: gðr; tÞ � 1, at infinite separation since the conditional prob-

ability of finding a bath particle a distance r from the probe at z should be nbath in the

dilute limit. The relative flux is zero at interparticle contact

r̂ � � 1

2kT
Dr � Fextg� Dr � rrg

� �
¼ 0 at r ¼ 2a: (9)

In this study, the external force on the probe particle is fixed in magnitude and oscil-

lates in time, Fext ¼ F̂
ext

cosðxtÞ. It is important to note that by beginning with the

Smoluchowski equation as a model for the particle distribution, we have assumed that

momentum relaxation of the particles is orders of magnitude faster than any other dynam-

ical process in the suspension. This is an excellent approximation for colloids at equilib-

rium. The introduction of a new rate process, oscillatory forcing with frequency x, into

the Smoluchowski equation is straightforward with the restriction that x is much smaller

than the momentum relaxation rate too. With the substitution Dr � F̂
ext
=ð2kTÞ ! U, the

pair Smoluchowski equation may then be expressed in a form that is valid for any relative

velocity field, U, depending only on r, for instance a shear flow

_g ¼ rr � ð�UcosðxtÞgþ Dr � rrgÞ; (10)

with gðr; tÞ ¼ 1 as r!1 and the no-flux condition at interparticle contact

r̂ � ð�UcosðxtÞgþ Dr � rrgÞ ¼ 0: (11)

To gain insight into the effects of the relative strengths of advective, diffusive, and oscillatory

motion, the next step is to simplify the Smoluchowski equations via dimensional analysis.

B. Coupling of structural modes

The structure of Smoluchowski equation (10) is equally applicable to other colloidal

flows, for instance, particles in simple shear. Only the form of the relative velocity, U,

changes. Likewise, and as illustrated in the Appendix, the following Fourier decomposi-

tion of the suspension microstructure is hardly limited to the dilute limit. Thus, in what

follows, we offer general view of how the microstructure in a suspension of hard-spheres

evolves when driven by an oscillation of arbitrary amplitude.

The Smoluchowski equation can be simplified through dimensional analysis by scal-

ing the separation between particles on the hard-core radius, a, the relative velocity on its

maximum amplitude, U, the relative diffusivity on its value at infinite separation, D, and

time on the diffusive time scale, a2=D. This gives rise to two dimensionless groups: The

P�eclet number, which characterizes the strength of the force deforming the material,

Pe ¼ Ua=D; and a ¼ xa2=D, a dimensionless frequency that characterizes the oscillation

rate relative the thermal relaxation time scale of the material. The values of U and D
applicable to microrheology are discussed in Sec. IV. To focus on departures from equi-

librium, we express the pair distribution function as gðr; tÞ ¼ 1þ Pef ðr; tÞ where f(r, t)
represents the deviation of g(r, t) from the equilibrium value of unity. When made

dimensionless in this way, the Smoluchowski equation is
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_f ¼ rr � ½�U cosðatÞð1þ Pef Þ þ Dr � rrf �; (12)

with f¼ 0 as r!1, and the no-flux condition at interparticle contact r¼ 2 is

r̂ � ½U cosðatÞð1þ Pef Þ � Dr � rrf � ¼ 0: (13)

In Eqs. (12) and (13), all quantities, including the velocity U and diffusivity Dr, have

been made dimensionless by the scalings noted above. Unless otherwise indicated, they

remain dimensionless throughout the rest of this study.

We propose a solution to Eqs. (12) and (13) as a Fourier series in harmonics of the

base frequency a

f ðr; tÞ ¼
X1

n¼�1
einatfnðrÞ: (14)

Substitution into the Smoluchowski equation leads to governing equations for the Fourier

coefficients, fnðrÞ,

inafn ¼ rr � �
1

2
Uðd1n þ d�1n þ Peðfnþ1 þ fn�1ÞÞ þ Dr � rrfn

� �
; (15)

where dij is the Kronecker delta function. The far-field boundary condition is fn¼ 0 as r
!1, and the no-flux condition at r¼ 2 is

r̂ � 1

2
Uðd1n þ d�1n þ Peðfnþ1 þ fn�1ÞÞ � Dr � rrfn

� �
¼ 0: (16)

Each temporal mode fn(r) is coupled to fnþ1(r) and fn�1ðrÞ by the oscillatory advection.

The coupling strength is set by the P�eclet number, an important consequence of large am-

plitude oscillatory flow. Higher harmonics of the microstructural deformation are inher-

ently connected. This plays a central role all of the themes explored in this work.

The doubly infinite series 14 can be simplified by recognizing that the microstructural

perturbation, f(r, t), is a real-valued function. The modes fn(r) and f�nðrÞ are related by

their complex conjugate, fnðrÞ ¼ f̂ �nðrÞ, where the hat symbol denotes the complex con-

jugate. In consequence, the microstructural perturbation can be determined by solving for

n	 0 alone.

To understand the scaling with respect to Pe of each harmonic, one may examine indi-

vidually governing equation (15) for n¼ 0, 1, 2

0 ¼ rr � �
Pe

2
Uðf1 þ f̂ 1Þ þ Dr � rrf0

� �
; (17a)

iaf1 ¼ rr � �
1

2
Uð1þ Peðf2 þ f0ÞÞ þ Dr � rrf1

� �
; (17b)

2iaf2 ¼ rr � �
Pe

2
Uðf3 þ f1Þ þ Dr � rrf2

� �
: (17c)

It is apparent that in the limit of weak forcing, Pe� 1, the Fourier coefficients scale as

f61 � Oð1Þ; f0; f62 � OðPeÞ; f63 � OðPe2Þ. By induction, we conclude that the leading
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order contribution to mode fn(r) scales as Pejjnj�1j. This important result holds regardless

of how the suspension is deformed when Pe� 1. In the limit of weak deformation, the

temporal modes decompose into a simple hierarchy of equations with each mode coupled

to a neighboring mode by a small factor, Pe. When the deformation is not weak, however,

the harmonics must be solved simultaneously instead.

IV. NONLINEAR MICROVISCOELASTICITY

One goal of rheology is to connect average flow properties of a complex fluid to the

deformation of its microstructure. Up to now, the microstructural model describes the

evolution of a dilute colloidal suspension subject to an arbitrary flow. In this section, we

address one specific flow that due to single-particle forcing and the resulting microrheol-

ogy. We begin with a brief review of the expressions for microviscosity following

Squires and Brady (2005) and Khair and Brady (2006). These expressions can then be

combined with the equations governing the microstructure presented in Sec. III to obtain

nonlinear viscoelastic properties of a colloidal dispersion.

There are two primary modes of probe motion in microrheology: One in which the

probe moves under a fixed imposed force and the other in which its velocity is con-

strained. In the former mode, the probe is driven through the suspension by a fixed

(and in this case oscillatory) force. The probe particle thus moves with its Stokes veloc-

ity, less a hindrance factor related to its interactions with the suspension. The Stokes

velocity gives the characteristic magnitude of probe motion, U ¼ Fext=ð6pgahÞ. Both

the probe particle and the bath particles can diffuse. Their relative diffusivity sets the

characteristic diffusive scale, D ¼ kT=ð3pgahÞ. Together the external force magnitude

and relative diffusivity set the relative strength and rate of microstructural deformation,

respectively, defining a P�eclet number Pe ¼ Fexta=ð2kTÞ and dimensionless frequency

a ¼ 3pgaha2x=ðkTÞ.
The relative velocity and diffusivity made dimensionless by these scalings are

U ¼ D � F̂ext
; D ¼ GðrÞr̂r̂ þ HðrÞðI� r̂r̂Þ; (18)

where G(r) and H(r) are scalar hydrodynamic functions characterizing the magnitude of

the relative diffusion along and normal to the line connecting the centers of the probe and

another particle in the suspension. That is, G(r) and H(r) are the orthogonal components

of the relative diffusion tensor, Dr, normalized by the characteristic diffusive scale,

kT=ð3pgahÞ [Batchelor and Green (1972); Kim and Karrila (1991); Khair and Brady

(2006)].

A. A review of active microrheology

The velocity U1 of a probe particle translating under a fixed-force, Fext, alone

through an otherwise quiescent solvent is given by Stokes’ drag law. The probe veloc-

ity, U1 ¼ UStokes ¼ Fext=ð6pgahÞ, is proportional to the applied force and inversely pro-

portional to its hydrodynamic radius ah and the solvent viscosity g. The probe velocity

is thus a measure of the solvent viscosity. When the probe is driven through a suspen-

sion of other particles, the microstructure slows the probe’s motion. Squires and Brady

(2005) interpreted this reduction in mean probe velocity, hU1i, as a drag due to the sol-

vent and bath particles, and defined an effective viscosity, geff, via analogy to Stokes’

drag law
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Fext ¼ 6pgeffahhU1i: (19)

The angle brackets h�i signify an ensemble average where the probable arrangements of

bath particles around the probe are given by the pair distribution function gðr; tÞ. The

effective viscosity is thus

geff

g
¼ Fext � Fext

6pgah

� �.
ðhU1i � FextÞ: (20)

The effective viscosity may be separated into the contributions due to the solvent and

that due to the particles

geff

g
¼ 1þ gmicro

g
; (21)

where the microviscosity gmicro=g characterizes drag due to the bath particles—above

and beyond the solvent drag. The average probe velocity hU1i is what one measures in

experiments to determine the viscosity of the suspension.

There are two microstructural contributions to the increased effective viscosity: The

rigidity of individual particles and the distribution of those particles relative to each

other. The first aspect, the nondeformability of the particles and the no-slip condition at

their surface, leads to distorted fluid streamlines and increasing viscous dissipation—a

hydrodynamic effect. However, the overall arrangement of particles is deformable as

well. This has interesting and deformation-rate-dependent consequences for the viscosity.

Rate-dependent viscosity is a hallmark of non-Newtonian behaviors such as shear thin-

ning and shear thickening. In the context of microrheology, to understand the origin of

this rate-dependent response, one must examine how hydrodynamic, interparticle, and

Brownian forces reduce the average probe velocity, hU1i. The contributions can be clas-

sified as either conservative or nonconservative, as follows.

Conservative forces—Brownian and interparticle, in the present case—slow the

probe’s motion. These two contributions, denoted hUBi and hUPi, respectively, are each

proportional to the deformed microstructure f ðr; tÞ and hence vanish at equilibrium. The

Brownian force can be understood in the following way: The motion of the probe

deforms the distribution of bath particles from equilibrium. This is a reduction in entropy

that is countered by a thermodynamic driving force to make uniform the bath particle dis-

tribution. This force opposes the external force on the probe, thus increasing viscous

resistance. Interparticle forces can arise from a variety of colloidal-scale interactions

(e.g., electrostatic, depletion, or dispersion forces). Just as the Brownian force acts to

drive the particles toward an entropic maximum, interparticle forces drive the microstruc-

ture toward the configuration of minimum potential energy. Departures from equilibrium

thus produce an analogous restoring force that resists probe motion. By definition, the

conservative forces sum to zero at equilibrium, and this balance of conservative forces is

characteristic of the Boltzmann distribution: gðrÞ � e�VðrÞ=kT . Note, we term the

Brownian forces “conservative” because from the perspective of the Smoluchowski equa-

tion they can be written as the gradient of a potential, for instance kT log gðrÞ. However,

conservative force between particles can enhance the rate of viscous dissipation in a

dispersion.

In contrast, hydrodynamic forces are nonconservative. The reduction in probe speed

due to hydrodynamic forces is proportional to the imposed force: hUHi ¼ hMi � Fext,

where M is a mobility matrix that depends only on the configuration of the particles. In
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the simplest case of a single particle alone in a solvent, M ¼ I=6pg a. Even in an equilib-

rium configuration, the particles interact hydrodynamically. For instance, a probe diffus-

ing passively in such a dispersion is hindered even over short time scales by the presence

of the other particles. The corresponding reduction in probe velocity is hUH
1i (the super-

script1 indicates that this corresponds to the high-frequency viscosity.)

The average probe velocity includes contributions due to hydrodynamic, interpar-

ticle, and Brownian interactions: hU1i ¼ UStokes þ hUHi þ hUPi þ hUBi. In the dilute

limit, there are corresponding hydrodynamic, interparticle, and Brownian contributions

to the microviscosity: gmicro ¼ gH þ gP þ gB [Squires and Brady (2005); Khair and

Brady (2006)]. Because the hydrodynamic velocity is linear in the imposed force, hUHi
vanishes instantly upon removal of the external force. In contradistinction, the

Brownian force decays to zero over a finite time after removal of the external force.

That is, the microstructural perturbation f ðr; tÞ relaxes gradually as the Brownian

motion of the particles homogenizes their distribution. The time scale for this relaxa-

tion is diffusive, 6pga3
h=kT. This gradual relaxation has been interpreted previously as a

release of free energy that was stored in the microstructure via work done by the probe

to distort the particle microstructure [e.g., Zia and Brady (2013) among others]. The

notion of entropic energy storage is an important one and plays a central role in the re-

mainder of the paper.

We saw in Sec. III that non-Newtonian microrheology is encoded in the deformed

microstructure f(r, t) [cf. Eq. (8) and Fig. 3] and inferred from the mean probe velocity

[cf. Eqs. (20) and (21)]. To examine the effects of only the deformed microstructure on

the velocity—above and beyond that due to the solvent, UStokes, and that due to the equi-

librium microstructure, UH
1—we define the microvelocity

hUmicroi � hU1i � UStokes � hUH
1i: (22)

In Eq. (22), we have removed the contributions to the probe’s velocity resulting from its

Stokes drag in the solvent, UStokes, and hydrodynamic interactions through an undeformed

microstructure, hUH
1i. Thus the microvelocity, hUmicroi, reveals how distortion of the

microstructure affects probe motion—in particular, the rates at which the suspension

stores and dissipates the work done on it.

Thus far, we have discussed the motion of a probe driven by a fixed external force

and the corresponding deformation of the microstructure through which it moves.

Alternatively, one could drive the probe at a fixed (oscillatory) velocity, U1.

Fixed-force experiments are typically carried out by driving the probe with magnetic

tweezers [Habdas et al. (2004)]. In fixed-velocity experiments, the probe can be held

in a stiff optical trap while the bath is moved past it at a fixed rate [Meyer et al.
(2006)].1 Interesting dynamical differences between the two modes arise. In the

fixed-force case, the probe velocity fluctuates as it moves through the bath. As a result,

the probe experiences a collision-induced diffusive spread of its trajectory [Zia and

Brady (2010)]. In the fixed-velocity case, however, the probe’s motion is prescribed

and so it cannot diffuse. In our recent work, we showed that hydrodynamic interactions

cause dissimilarities in the microstructural evolution and hence in the microviscosity

[Swan and Zia (2013)].

1The idea of a fixed force or fixed velocity is an approximation, the accuracy of which is dictated by the

uniformity of the applied field or the stiffness of the optical trap. Such approximations can be made quite

accurate [Habdas et al. (2004); Meyer et al. (2006)].
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A fixed-velocity analogue for the effective viscosity can be made via Stokes’ drag

law, following the procedure given above for the fixed-force case: hFexti ¼ 6pgeffahU1.

As with Eq. (20), the effective viscosity in the fixed-velocity case is

geff

g
¼ ðhFexti � U1Þ=ð6pgahU1 � U1Þ: (23)

Here, the external force required to drive the particle with a fixed velocity may be decom-

posed into hydrodynamic, interparticle, and Brownian contributions: hFexti ¼ FStokes

þhFHi þ hFPi þ hFBi, where FStokes ¼ 6pgahU1. The microviscosity measured in the

fixed-velocity mode is thus

gmicro

g
¼ geff

g
� 1 ¼ ðhF

Hi þ hFPi þ hFBiÞ � U1

6pgahU1 � U1

: (24)

As with the fixed-force mode, there is a contribution to the external force on the probe

particle that depends only on the deformed suspension microstructure—the microforce

hFmicroi � hFexti � FStokes � hFH
1i; (25)

where hFH
1i is the additional force on the probe particle due to dragging of the solvent

through a suspension in its equilibrium configuration.

We have completed the analysis of large amplitude oscillatory microrheology in both

the fixed-force and the fixed-velocity limits and find no qualitative differences. However,

the fixed-force case is pedagogically and phenomenologically more straightforward than

the fixed-velocity case. For clarity, we focus on the former throughout the rest of this

study.

B. Probe velocity in response to fixed amplitude, oscillatory external force

In addition to Stokes drag, three suspension-mediated mechanisms hinder probe

motion: First, hydrodynamic interactions with the bath particles; second, resistance due

to gradients in bath particle concentration (entropic forces); and third, interparticle forces.

Their formulation has been given explicitly by Khair and Brady (2006) for a dilute sus-

pension with particles of equal size

6pgah

Fext
hDUHi ¼ 3/

4p
Pe cosðatÞF̂ext �

ð
r	2

½A11ðrÞr̂r̂ þ B11ðrÞðI� r̂r̂Þ � I� f ðr; tÞ dr; (26a)

6pgah

Fext
hUBi ¼ � 3/

8p

ð
r	2

WðrÞf ðr; tÞr̂ dr; (26b)

6pgah

Fext
hUPi ¼ � 3/

2p
Gð2Þ

ð
r¼2

f ðr; tÞr̂ dX; (26c)

where / ¼ 4pa3nbath=3 is the volume fraction of the bath particles based on the hard-

core radius. The scalar hydrodynamic functions, A11(r) and B11(r), are the orthogonal

components of the diffusion tensor D11 normalized by the Stokes-Einstein diffusivity,

kT=ð6pgaÞ. In the absence of hydrodynamic interactions, they take on the values

A11ðrÞ ¼ B11ðrÞ ¼ 1. With hydrodynamic interactions, these scale as 1þ Oðr�4Þ so that
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the hydrodynamic integral in Eq. (26a) is absolutely convergent. The function W(r) arises

from the gradient of the relative diffusion tensor and represents the Brownian drift driven

by variation in the statistical distribution of bath particles. It is defined as WðrÞ
¼ drGðrÞ þ ð2=rÞðGðrÞ � HðrÞÞ and is zero without hydrodynamic interactions.

In Eq. (26a), we have defined the hydrodynamic contribution to probe hindrance that

is due strictly to the deformed microstructure, hDUHi � hUHi � hUH
1i. Together the three

contributions to probe hindrance given by Eqs. (26a)–(26c) form the total microstructural

reduction in probe velocity [cf. Eq. (22)]

hUmicroi ¼ hDUHi þ hUBi þ hUPi: (27)

The hindrance due to the equilibrium structure in Eq. (22) is given by

hUH
1i ¼ �/ cosðatÞUH

1F̂
ext
; (28)

where UH
1 is defined in terms of the scalar hydrodynamic functions as

UH
1 ¼ �

ð1
2

ðA11ðrÞ þ 2B11ðrÞ � 3Þr2 dr; (29)

so that UH
1 ¼ 1:828 when k¼ 1 and is zero in the absence of hydrodynamic interactions.

The quantity UH
1 ¼ ð1� 6pgaDS

0=kTÞ=/ is the Oð/Þ decrement in the short-time self-

diffusivity for a colloidal particle in a hard-sphere dispersion. It is important to note that

the hindrance due to hydrodynamic interactions possesses a “phase factor” cosðatÞ lack-

ing in the other contributions [those being linear in f(r, t) alone]. Consequently, one

expects a different temporal character for the hydrodynamic response to large amplitude

oscillatory perturbation. This is made clear upon expressing each of these contributions

as a Fourier series. Recall that the goal is to connect the velocity with the structural

modes (Fourier coefficients) of f(r, t) [cf. Eq. (15) in Sec. III B)

6pgah

Fext
hXi ¼ �/

� X1
n¼�1

einatXn

�
; (30)

with X ¼ DUH;UB;UP. The harmonics are

DUH
n ¼ �

3

8p
Pe F̂

ext �
ð

r	2

½A11ðrÞr̂r̂ þ B11ðrÞðI� r̂r̂Þ � I�½fn�1ðrÞ þ fnþ1ðrÞ� dr;

(31a)

UB
n ¼

3

8p

ð
r	2

WðrÞfnðrÞr̂ dr; (31b)

UP
n ¼

3

2p
Gð2Þ

ð
r¼2

fnðrÞr̂ dX: (31c)

A key result of this analysis is that the slowing of the probe due to conservative forces—

as temporal modes UB
n and UP

n —is proportional to the microstructural mode fn(r). The

slowing of the probe due to hydrodynamic forces is different, however. The temporal

mode UH
n is linear in fn�1ðrÞ þ fnþ1ðrÞ instead. This will have a profound effect on how

the conservative and nonconservative forces change the probe velocity. In particular, the
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hydrodynamic forces will not contribute to measures of cycle averaged elasticity. They

are dissipative!

Equations (31a)–(31c) confirm the well-known result that hydrodynamic forces propa-

gated through the deformed microstructure play no role in linear-response [Russel et al.
(1989); Brady (1993b); Khair and Brady (2005)]. Linear-response derives exclusively

from the first harmonic. As shown in Sec. III B, when Pe� 1, the leading contribution to

the distorted microstructure, f61ðrÞ is O(1). Indeed, the first effects of the structure on UH
1

are linear in f0ðrÞ þ f2ðrÞ which scale as Pe and thus are quadratic in the P�eclet number.

Thus far, we have expressed each of the contributions to the probe velocity as a sum

of harmonics that correspond to temporal oscillations, each weighting the corresponding

microstructural mode fn(r). It remains now obtain the microstructural modes by solving

Smoluchowski equation (15).

C. Solution methodologies

The governing equations for the structural harmonics [Eqs. (15) and (16)] in spherical

polar coordinates (r, h) with the polar axis parallel to F̂
ext

are

1

2
Pe cos hGðrÞ@rðf1 þ f̂ 1Þ �

sin h
r

HðrÞ@hðf1 þ f̂ 1Þ
� �

þ Pe cos hWðrÞðf1 þ f̂ 1Þ ¼
1

r2
@r

�
r2GðrÞ@rf0

�
þ HðrÞ

r2 sin h
@hðsin h@hf0Þ; (32a)

with boundary condition at r¼ 2

1

2
cos hPe ðf1 þ f̂ 1Þ � @rf0 ¼ 0; (32b)

and for n	 1

inafnþ
1

2
Pe cosh½GðrÞ@rðfn�1þ fnþ1Þ þWðrÞðfn�1þ fnþ1Þ� �

sinh
r

HðrÞ@hðfn�1þ fnþ1Þ
� 	

¼ 1

r2
@r

�
r2GðrÞ@rfn

�
þ HðrÞ

r2sinh
@hðsinh@hfnÞ �

1

2
coshWðrÞd1n; (33a)

with boundary condition at r¼ 2

1

2
cos h½d1n þ Pe ðfn�1 þ fnþ1Þ� � @rfn ¼ 0: (33b)

Two approaches are taken here to solve the governing equations. First, an expansion in

Legendre polynomials yields important insight into the time-reversal and spatial symme-

try of the deformed microstructure. To explore a larger parameter space, a numerical so-

lution is more convenient. In both cases, the coupling between the harmonics is truncated

at 20 terms, achieved by enforcing the constraint: f21ðrÞ � 0. The accuracy of this trunca-

tion is tested explicitly in Sec. V A 3.

1. Legendre polynomial expansion

We solve for the microstructural functions using the Ansatz

16 SWAN, ZIA, AND BRADY

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

131.215.71.79 On: Thu, 30 Jan 2014 18:16:09



fn ¼
X1
j¼0

RðjÞn ðrÞPjðcos hÞ; (34)

where RðjÞn ðrÞ are the radial solutions to be determined, and PjðcoshÞ are the Legendre

polynomials of degree j. We then substitute this expansion into Eqs. (32a) and (32b) gov-

erning f0, and into Eqs. (33a) and (33b) for fn with n	 1. Capitalizing on the orthogonal-

ity of the Legendre polynomials results in a system of ordinary differential equations for

the unknown functions of r

GðrÞ €RðjÞ0 þ WðrÞ þ 2

r
HðrÞ

� �
_R
ðjÞ
0 �

jðjþ 1Þ
r2

HðrÞRðjÞ0

¼ 1

2
Pe

�
aj

�
_R
ðj�1Þ
1 þ _̂R

ðj�1Þ
1

�
þ bj

�
R
ðj�1Þ
1 þ R̂

ðj�1Þ
1

�

þcj

�
_R
ðjþ1Þ
1 þ _̂R

ðjþ1Þ
1

�
þ dj

�
R
ðj�1Þ
1 þ R̂

ðj�1Þ
1

��
; (35)

with boundary conditions

_R
ðjÞ
0 ¼

1

2
Pe

j

2j� 1

�
R
ðj�1Þ
1 þ R̂

ðj�1Þ
1

�
þ jþ 1

2jþ 3

�
R
ðjþ1Þ
1 þ R̂

ðjþ1Þ
1

�� �
; r ¼ 2 (36)

R
ðjÞ
0 ! 0 r !1; (37)

and for n> 1

GðrÞ €RðjÞn þ WðrÞ þ 2

r
HðrÞ

� �
_R
ðjÞ
n �

jðjþ 1Þ
r2

HðrÞ þ ina

� �
RðjÞn

¼ 1

2
Wd1ndj1 þ

1

2
Pe

�
aj

�
_R
ðj�1Þ
n�1 þ _R

ðj�1Þ
nþ1

�
þ bj

�
R
ðj�1Þ
n�1 þ R

ðj�1Þ
nþ1

�

þcj

�
_R
ðjþ1Þ
n�1 þ _R

ðjþ1Þ
nþ1

�
þ dj

�
R
ðjþ1Þ
n�1 þ R

ðjþ1Þ
nþ1

��
; (38)

with boundary conditions

_R
ðjÞ
n ¼

1

2
d1ndj1 þ

1

2
Pe

j

2j� 1

�
R
ðj�1Þ
n�1 þ R

ðj�1Þ
nþ1

�
þ jþ 1

2jþ 3

�
R
ðjþ1Þ
n�1 þ R

ðjþ1Þ
nþ1

�� �
; r ¼ 2

(39)

RðjÞn ! 0 r !1: (40)

In these equations, the Greek coefficients are defined as

aj ¼
j

2j� 1
GðrÞ; bj ¼

j

2j� 1
WðrÞ � j� 1

r
HðrÞ

� �
;

cj ¼
jþ 1

2jþ 3
GðrÞ; dj ¼

jþ 1

2jþ 3
WðrÞ þ jþ 2

r
HðrÞ

� �
:

(41)

This spectral decomposition reveals a number of interesting features of the perturbed

microstructure and its impact on probe motion. First, we note that the only inhomogeneity
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in Eqs. (35) and (38) arises from the terms proportional to d1ndj1
, which is the odd

Legendre mode of an odd Fourier mode. A closer look shows that the odd-odd, even-even
pairs are coupled through the right-hand side of each equation (e.g., terms like R

ðj�1Þ
n�1 or

R
ðjþ1Þ
nþ1 ). Physically, the forcing propagates through these structural modes. The odd-even

and even-odd modes form their own coupled structure, but it is homogeneous. Therefore,

we may conclude that R
ð2jþ1Þ
2n � R

ð2jÞ
2nþ1 � 0, reducing the computational burden by half.

But far more importantly, this structure underlies the time-reversal symmetry required in

low-Reynolds number flows. This will be discussed in more detail in Sec. IV C 2. Inserting

these expressions for the microstructure into the integrals defining the micro velocity com-

ponents obtains

DUH
n ¼ �

1

2
PeF̂

ext
ð

r	2

2

5
ðA11ðrÞ � B11ðrÞÞ

�
R
ð2Þ
n�1 þ R

ð2Þ
nþ1

�
þðA11ðrÞ þ 2B11ðrÞ � 3Þ

�



�

R
ð0Þ
n�1 þ R

ð0Þ
nþ1

�
�r2 dr;

UB
n ¼

1

2
F̂

ext
ð

r	2

WðrÞRð1Þn r2 dr;

UP
n ¼ 2Gð2ÞRð1Þn ð2ÞF̂

ext
:

We may thus conclude, without loss of generality and through appeal only to the suspen-

sion structure, that

UH
2n � UB

2n � UP
2n � 0:

That is, there are no even-numbered Fourier modes of the microvelocity increment. This

preserves the time reversal symmetry of the probe particle’s response. Conversely, any

mechanism that would break the symmetry of f0 would lead to nonzero, even numbered

Fourier modes of the displacement (e.g., if the external force applied to the probe has a

nonzero temporal mean).

We choose a large but finite number of Legendre modes (jmax) beyond which the series

in Eq. (34) is truncated and determine the R
ð2jÞ
2n and R

ð2jþ1Þ
2nþ1 for n� 20. These equations are

solved simultaneously using the MATLAB routine bvp4c which features adaptive grid refine-

ment and error control. The sources of error are then set by truncation chosen for the

Legendre polynomial and Fourier series. For Pe � 10 and a¼ 0, one needs fewer than 60

Legendre polynomials to recover the well-known steady-state solutions to within 0.001%.

Similarly, for Pe¼ 0 and a> 0, the linear response is recovered exactly utilizing only two

harmonics and the first two Legendre polynomials. We thus anticipate that solution of these

equations is practicable for all values of a and Pe � 10 with jmax¼ 60. In favor of compu-

tational efficiency, fewer may be chosen and the truncation level tested for convergence.

2. Finite-difference solution

For larger P�eclet numbers (Pe > 10), the structural harmonics [Eqs. (15) and (16)] are

solved using a finite difference approximation with an orthogonal grid in spherical polar

coordinates. The grid points are distributed uniformly in both h and the (scaled) radial

coordinate y ¼ exp½�maxðPe; 1Þðr � 2Þ�. As noted in Sec. IV C 1, odd/even harmonics of

the microstructural perturbation depend only on odd/even Legendre polynomials of cosh.

The odd and even harmonics must satisfy the pair of conditions @hfn ¼ 0 (n odd)

and fn¼ 0 (n even) at h¼ 0 and fn¼ 0 (n odd) and @hfn ¼ 0 (n even) at h¼p/2.

The axisymmetric governing equations are thus solved only on the quarter-plane, y � [0, 1)
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and h 2 ½0; p=2� rather than over the full half plane, reducing the computational burden by

half as noted above. Upon discretization, a point in the computational domain is labeled

ðyi; hjÞ; the nth harmonic of the microstructural perturbation at that point is labeled f ði;jÞn .

Here, the indices (i, j) span (0, 0) to (M, N) so that the uniform discretization is given in

terms of ðDy;DhÞ ¼ ð1=N; p=2MÞ for which ðyi; hjÞ ¼ ðiDy; jDhÞ. The forcing terms pro-

portional to �WðrÞcoshðdn1 þ d�1nÞ are similarly discretized.

Applying a second-order central differencing stencil in y and h to the partial differen-

tial equations (35)–(38) yields

Aði;jÞn f ði�1;jÞ
n þ Bði;jÞn f ði;j�1Þ

n þ Cði;jÞn f ði;jÞn þ Dði;jÞn f ði;jþ1Þ
n þ Eði;jÞn f ðiþ1;jÞ

n

þaði;jÞn

�
f
ði�1;jÞ
n�1 � f

ðiþ1;jÞ
n�1 þ f

ði�1;jÞ
nþ1 � f

ðiþ1;jÞ
nþ1

�
þ bði;jÞn

�
f
ði;j�1Þ
n�1 � f

ði;jþ1Þ
n�1 þ f

ði;j�1Þ
nþ1 � f

ði;jþ1Þ
nþ1

�
þcði;jÞn

�
f
ði;jÞ
n�1 þ f

ði;jÞ
nþ1

�
¼ bði;jÞn ; (42)

where the (i, j, n)th coefficients take on the particular values below given y¼ yi,

r ¼ 2� logðyiÞ=maxðPe; 1Þ, and h¼ hj

Aði;jÞn ¼ GðrÞ dy

dr

� �2
1

Dy2

� �
� d2y

dr2
þ 2

r

dy

dr

� �
1

2Dy

� �" #
� 1

r2

dGðrÞ
dr

dy

dr

� �
1

2Dy

� �
;

Bði;jÞn ¼ HðrÞ
r2

1

Dh2

� �
� cot h

1

2Dh

� �" #
;

Cði;jÞn ¼ �GðrÞ dy

dr

� �2
2

Dy2

� �
� HðrÞ

r2

2

Dh2

� �
� ina;

Dði;jÞn ¼ HðrÞ
r2

1

Dh2

� �
þ cot h

1

2Dh

� �" #
;

Eði;jÞn ¼ GðrÞ dy

dr

� �2
1

Dy2

� �
þ d2y

dr2
þ 2

r

dy

dr

� �
1

2Dy

� �" #
þ 1

r2

dGðrÞ
dr

dy

dr

� �
1

2Dy

� �
;

aði;jÞn ¼ Pe

2
cos hGðrÞ dy

dr

1

2Dy

� �
;

bði;jÞn ¼ � Pe

2
sin h

HðrÞ
r

1

2Dh

� �
;

cði;jÞn ¼ � Pe

2
cos hWðrÞ;

bði;jÞn ¼ 1

2
cos hWðrÞðd1n þ d�1nÞ:

The resulting hierarchy of discretized equations is arranged compactly as A � f ¼ b,

where A is a matrix with 15 bands containing the coefficients of the finite difference

components, f is the vector of the solution at all points in the domain, and b is the vector

of forcing at each point in the domain. The boundary conditions define the matrix entries

at contact and at infinite separation. The linear system is solved for f utilizing sparse

direct solvers in MATLAB. A discretized domain of 600 grid points in the radial dimension

and 300 grid points in the angular dimension with 20 harmonics achieves a relative error

of less than 10�6 for the steady microviscosity (a¼ 0 with Pe � 100) as compared to a

high accuracy solution of the steady state equations.
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V. RESULTS

The solutions of the governing equations presented thus far describe the interactions

between a probe driven by a fixed-amplitude oscillatory force in a colloidal dispersion.

The role of hydrodynamic forces has been kept quite general by utilizing the excluded

annulus model described in Sec. II. The strength of hydrodynamic interactions can vary

from negligible (k ! 1) to strong (k ! 1). We focus our discussion here on the latter

limit in which hydrodynamic interactions are strongest. In this limit, a pair of particles

cannot touch so that there is no hard-sphere force and hUPi ¼ 0. Results in the former,

freely draining limit will be presented elsewhere.

A. Asymptotic limits

We begin with a focus on asymptotic behavior in large-amplitude oscillatory micro-

rheology. Three regimes are of particular interest: The linear-response regime (Pe� 1);

the high-frequency limit (a� 1); and the steady-state response (a� 1). Each of these

three asymptotic limits is shown pictorially in Fig. 4 as a region of the overall phase

space explored (strong to weak forcing/fast to slow oscillation).

1. Weak forcing (Pe � 1), linear response

In the linear-response regime (region 1 in Fig. 4), the force driving deformation of the

microstructure is much weaker than the thermal forces on the bath particles, Fext � kT=a
or Pe� 1. Here, the leading order contributions to the Fourier decomposition of the

microstructure, fn(r) with n 6¼ 61, are asymptotically small. The modes f61ðrÞ are order

unity however. The microstructural deformation oscillates sinusoidally with the same fre-

quency as the driving force. The Brownian element of the microvelocity makes the great-

est contribution to probe-speed reduction in this limit. The hydrodynamic contribution to

the microvelocity is at least linear in the P�eclet number and hence is inconsequential in

FIG. 4. Three asymptotic limits of forcing strength (Pe) and oscillation rate (a) with numbers indicating rele-

vant domains: (1) Linear response, Pe� 1; (2) linear response, a� 1 and Pe=a� 1; (3) steady, nonlinear

response, a� 1. The three limits are studied in Sec. V A 1–V A 3, respectively.
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this limit. Thus, we focus the discussion in the remainder of this section on n¼61. To

do so, we follow the approach of Khair and Brady (2005) in their analysis of linear

viscoelasticity.

The linear-response limit, Pe� 1, has the solution f61ðrÞ ¼ U61ðrÞF̂
ext � r̂. Insertion

of this expression into Eq. (17b) while neglecting terms smaller than O(1) yields

6iaU61 ¼ �
1

2
WðrÞ þ 1

r2

d

dr

�
r2GðrÞ d

dr
U61

�
� 2

r2
HðrÞU61; (43)

with U61 ! 0 as r!1 and dU61=dr ¼ 1=2 at r¼ 2. The Brownian contribution to the

microvelocity is related to the real and imaginary parts of U61ðrÞ as

6pgah

Fext
hUBi ¼ �/

"�ð1
2

WðrÞRfU1ðrÞgr2 dr
�

cosðatÞ (44)

�
�ð1

2

WðrÞ IfU1ðrÞgr2 dr
�

sinðatÞ
#

F̂
ext
; (45)

where we recognize that the real part is in phase and the imaginary part is out of phase

with the external force. This inspires us to write the total microvelocity more generally as

6pgah

Fext
hUmicroi ¼ v0ðaÞcosðatÞ � v00ðaÞsinðatÞ; (46)

where v0ðaÞ and �v00ðaÞ are the real and imaginary parts of the susceptibility v(a) relating

the microvelocity to the fixed oscillatory force.

The normalized susceptibilities are plotted in Fig. 5. As is typical of viscoelastic

media, the out-of-phase component of the susceptibility, v00, grows linearly in a from

FIG. 5. Linear susceptibility, v, relating the averaged probe velocity to the imposed external force, as a function

of oscillation frequency, a. Both real (v0) and imaginary (v00) parts are shown, each normalized by the value of

v0 at a¼ 0.
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zero at low frequency, reaches a peak at a frequency near the characteristic relaxation rate

of the material, and then decays again as a�1 at high frequencies. In contrast, the in-phase

component v0ðaÞ decays as a�2 at high frequencies. This demonstrates that at high frequen-

cies, the microdisplacement of the probe particle (the integral in time of the microvelocity)

is in-phase with the imposed force and the suspension exhibits elasticlike response.

2. Rapid oscillation (a� 1), linear response

In the high-frequency limit, a� 1 (region 2 of Fig. 4), the time scale over which os-

cillation occurs is much shorter than that for thermal relaxation. Over most of the do-

main, diffusion is relatively slow and the microstructural perturbation is set by the

oscillatory force alone. The natural next step is to discard the diffusive terms in Eqs.

(32a) and (32b). This produces a leading order scaling of the Fourier modes of the micro-

structural perturbation with respect to Pe and a: f61ðrÞ ¼ Oða�1Þ; f0ðrÞ ¼ OðPe=a2Þ, and

fnðrÞ � OðPefn�1ðrÞ=aÞ for n> 1. The largest of these functions, termed outer solutions,

is given by

f61ðrÞ ¼ 6
i

2a
WðrÞcos h; (47)

when Pe� a. However, as one might anticipate, this solution no longer satisfies the no-

flux condition at interparticle contact. The higher harmonics fail to satisfy this condition

as well. There is a boundary layer near interparticle contact, where diffusion balances the

oscillatory force and acts to preserve the no-flux condition. The domain is separated into

two regions: An outer region where the oscillation dominates and Eq. (47) is valid and a

region inside the boundary layer where diffusion is significant.

When the no-slip surfaces of two spherical particles approach contact, the hydrody-

namic force hindering further relative motion diverges as 1/(r� 2). Because of this diver-

gence, the thickness of the boundary layer scales as 1/a. “Stretching” the radial coordinate

inside the boundary layer so that y¼ a(r� 2) is O(1) within it is sufficient to preserve a dif-

fusive term inside the governing equations. In this region, the leading order contributions

for f1ðrÞ are

G1@
2
y f1 �

1

2a
cos hW0 ¼ if1; (48)

with @yf1 ¼ cosh=ð2aÞ at y¼ 0. Here, W0¼W(2)¼ 1.598 and G1 ¼ G0ð2Þ ¼ 2. Clearly,

f1 is Oða�1Þ in the boundary layer and must match the Oða�1Þ outer solution as y !1
[Khair and Brady (2005)]. Therefore, over this region

f1ðrÞ ¼
i

2a
W0 cos h�

ffiffiffiffiffiffiffiffi
2G1

p
W0ð1� iÞ
4a

cos he�
ffiffiffiffiffiffiffiffi
2=G1

p
ð1þiÞy=2: (49)

The leading order contributions to the higher microstructural perturbations (n> 1) within

the boundary layer satisfy the equation

infn þ
1

2

Pe

a

� �
cos hðG1@yfn�1 þW0fn�1Þ �

1

2
sin hH0@hfn�1

� �
¼ G1@

2
y fn; (50)

with @yfn ¼ ðPe=aÞcoshfn�1=2 at y¼ 0 and matching to the outer solution as y!1. The

quantity H0¼H(2)¼ 0.402. Therefore, in the boundary layer fn � Pen�1=an for n> 1.
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Again, f1(r) is the biggest contributor so long as a� Pe. Recall, however, that when the

hydrodynamic and hard-sphere radii are equal, the Brownian contribution to the microve-

locity depends on a volume integral of the microstructural perturbation over the range

r> 2. Since the boundary layer is a�1 thin, the volume integral over the boundary layer is

at least Oða�1Þ. In consequence, the effect on probe speed due to the perturbation f1(r) in

the boundary layer scales as a�2. In contrast, the same integral over the outer solution for

f1(r) makes an Oða�1Þ contribution.

The key point here is that f1(r) makes the biggest contribution to the microstructural

perturbation when a� Pe, matching the small-force-amplitude solutions of Khair and

Brady (2005). That is, when a� Pe, the motion of the probe particle, and the corre-

sponding distortion of the microstructure, sits squarely in the linear-response regime.

This is made more obvious if one recognizes the ratio of the two parameters as the extent
of deformation, defined by C ¼ Pe=a. Thus, C� 1 is an alternative definition of linear

response to Pe� 1. Both are valid. In Fig. 4, all of regions 1 and 2 are thus the

linear-response regime, allowing a great collapse of the parameter space.

3. Slow oscillation (a� 1), steady response

The low-frequency limit (a� 1, region 3 in Fig. 4) is a particularly interesting one.

As oscillation becomes vanishingly slow, it is natural to view the deformation as a time-

invariant steady state. Indeed, the solution of the Smoluchowski equation is unique for a

truly steady (a � 0) external force (or velocity)

0 ¼ rr � ½�Uð1þ Pef Þ þ Dr � rrf �; (51)

with f¼ 0 as r!1, and the no-flux condition at interparticle contact r¼ 2 is

r̂ � ½Uð1þ Pef Þ � Dr � rrf � ¼ 0: (52)

In the truly steady case, there is no temporal variation. However, there is a different limit

in which the rate of oscillation is much slower than any other relaxation process in the

dispersion. This suggests that the scaling of time on diffusion is inappropriate. Making

time dimensionless on the oscillation rate, x, captures the physics relevant to slow oscil-

lation. Applying this scaling to the pair-Smoluchowski equation, one obtains the follow-

ing dimensionless form:

a _f ¼ rr � ½�U cos t̂ð1þ Pef Þ þ Dr � rrf �; (53)

with f¼ 0 as r!1 and the no-flux condition at interparticle contact r¼ 2 is

r̂ � ½U cos t̂ð1þ Pef Þ � Dr � rrf � ¼ 0; (54)

where t̂ ¼ xt. If we now allow a to approach zero, a _f on the left-hand side vanishes but

the oscillatory nature of the motion is retained in the advective term on the right-hand

side of the equation. This yields a “pseudosteady” limit. At any time t̂, the microstruc-

tural perturbation f ðr; t̂Þ is essentially independent of its past and future. But since the co-

sine varies between 1 and �1, the external force on the probe is constrained to [�Pe, Pe].

The variation occurs so slowly, however, that from moment to moment, the microstruc-

ture instantaneously assumes a new, pseudosteady state corresponding to each new value

of Pe cos t̂. Thus for a given force amplitude Pe, the solution for f ðr; t̂Þ is equivalent to

the steady microstructural perturbation f ðr; Pe cos t̂Þ. That is, the structure continuously
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and smoothly varies from one steady state to the next, and progression in time simply dic-

tates changes in effective Pe.

Obviously then, the velocity of the probe particle must be pseudosteady as well. This

provides a perfect opportunity to test our Fourier series expansion of the Smoluchowski

equation against the well-known steady-state solution already described by Khair and

Brady (2006). Here, we write the Fourier series for the microstructural perturbation and

microvelocity as

f ðr; t̂Þ ¼
X1

n¼�1
eint̂ fnðrÞ (55)

and

6pgah

Fext
hUmicroi ¼ �/

X1
n¼�1

eint̂ðDUH
n þ UB

n þ UP
n Þ: (56)

The definitions of DUH
n ; UB

n , and UP
n remain the same as in Eqs. (31a)–(31c). We solve

for the fn(r) exactly as described in Sec. IV C with a¼ 0 while truncating the series with

n 2 ½�20; 20�.
In Fig. 6, we plot the reduction in probe speed due to the microstructural deformation,

�hUmicroi � F̂extð3pga2
hÞ=ð/kTÞ. It has been normalized by the velocity scale set by the

relative diffusion of bath and probe particles, kT=ð3pga2
hÞ, and the bath particle volume

fraction, /. We have chosen values for the pseudosteady strength of the external force,

Pecost̂, to be the same for all values of Pe. Thus, if we have accurately calculated the

FIG. 6. The pseudosteady microvelocity, normalized by the diffusive velocity scale, kT=ð3pga2
hÞ, and the parti-

cle volume fraction, /, as a function of the pseudosteady P�eclet number Pe cos t̂. The steady microvelocity nor-

malized on this same scale and plotted as a function of the steady P�eclet number, Pe, is indicated by the dashed

line [Khair and Brady (2006)]. For a given maximum force amplitude, Pe, the pseudosteady microvelocity must

recover the same value (i.e., the steady value) for all jPe cos t̂j < Pe. This appears to be the case for all the val-

ues tested.
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pseudosteady response, the reduction in probe speed at these points should be identical

for all values of Pe. As can be seen in Fig. 6, the data points are indistinguishable for

Pe cos t̂ > 20 and nearly so everywhere else. A deviation of less than 10% can be found

for Pe cos t̂ < 1 with Pe > 20, a predictable outcome of the truncation of the Fourier se-

ries at 20 terms. The Fourier mode n¼ 20, for instance, allows the perturbed microstruc-

ture or the microvelocity to vary as cosð20t̂Þ or sinð20t̂Þ and to resolve temporal features

on the dimensional time scale that is approximately x�1=20. The small deviation in the

pseudosteady microvelocity from the steady result for Pe > 20 with Pe cos t̂ < 1 is the

indistinguishability of temporal features on such a short time-scale. More Fourier modes

would produce an even more accurate result, but as is plainly evident, the first twenty

harmonics are sufficient for Pe � 100.

We conclude by noting another interesting quality of the pseudosteady oscillation

described by the low-frequency limit. In this regime, the Fourier modes of the microve-

locity are all real. The first four odd harmonics are plotted in Fig. 7, where they are

normalized by the value of the first mode when Pe¼ 0. The inset shows the first har-

monic, and harmonics 3, 5, and 7 are given in the main plot. This reveals that the first

harmonic encompasses more than 95% of the total signal in hUmicroi at steady state.

The third harmonic accounts for less than 5%, and the fifth and seventh harmonics to-

gether comprise less than 2%. The plot clearly shows that the first harmonic alone

recovers force (shear) thinning and force (shear) thickening, two hallmark behaviors of

hydrodynamically interacting colloidal dispersions. The sign of the ratio of modes

n¼ 1 and n¼ 3 may indicate the intracycle shear-thinning and shear-thickening

described by Ewoldt et al. (2008). However, the signature of steady-state processes and

indeed the bulk of the viscous dissipation are almost entirely recovered in the first har-

monic alone. Although this disparity in the values of the Fourier modes of the microve-

locity allows one to understand the behavior via n¼ 1 mode only, the solution of the
governing equations for fn still requires determination of many coupled microstructural
modes simultaneously.

FIG. 7. Fourier modes of hUmicroi plotted as a function of the P�eclet number when a¼ 0. Each mode is normal-

ized by the value of the first harmonic when Pe¼ 0. Main plot: Third, fifth, and seventh harmonics. Inset: First

harmonic. The first harmonic comprises more than 95% of the total signal.
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B. Arbitrary force amplitude and oscillation rate

To study the entire range of forcing strength and oscillation rate depicted in Fig. 4, a

numerical solution of the time dependent pair-Smoluchowski equation is required

(cf. Sec. IV C 2). The oscillatory process is studied over a frequency range a 2 ½0; 100�
and a range of forces Pe 2 ½0; 100�. A parametric plot of input (external force) versus

response (microvelocity) under a range of conditions is revealing. The time-dependent

microvelocity of the probe (opposite the direction of the external force), �hUmicroi � F̂ext
,

is plotted versus the magnitude of the time-dependent external force, FextcosðxtÞ. These

so-called Lissajous-Bowditch (L-B) curves are particularly helpful in understanding qual-

itative trends across a large parameter space. We begin with a brief review of the qualita-

tive features of L-B curves and their application to microrheology.

1. Interpretation of a Lissajous-Bowditch curve (L-B): Microrheology

Figure 8 gives an illustration of several L-B curves. In this parametric plot, a straight-

line indicates a Newtonian microstructural response: The reduction in probe speed is

exactly in-phase with the external force. In contrast, an ellipse with principle axes aligned

horizontally and vertically indicates that the deformed microstructure acts as a Hookean

solid: The slowing of the probe particle due to the microstructural deformation is 90�

out-of-phase with the external force. If the deformed microstructure behaves like a linear

viscoelastic fluid, then the L-B curve is a tilted ellipse: The principle axes are no longer

aligned horizontally and vertically. Finally, nonlinear viscoelasticity manifests as a

Lissajous-Bowditch curve that is neither a line nor an ellipse. Placing all of the curves

that result from an extensive parameter sweep in Pe and a on the same plot would quickly

become difficult to read. However, one clever presentation of many related L-B curves is

the Pipkin diagram.

FIG. 8. Examples of Lissajous curves described by the microvelocity. The dotted line reflects how a microstruc-

ture acting as a Newtonian fluid would reduce the speed of the probe particle. The microvelocity is linear in and

in phase with the oscillatory force. The dashed ellipse reflects how a microstructure acting as a Hookean solid

would reduce the speed of the probe particle. The microvelocity is linear in and 90� out of phase with the oscil-

latory force. The tilted ellipse is representative of a microstructure that acts as a linear viscoelastic fluid, while

the nonelliptical curve is indicative of a nonlinear response.
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2. A Pipkin diagram for microrheology

A collection of Lissajous-Bowditch curves, termed a Pipkin diagram, is one means of

comparing the time-dependent viscoelasticity exhibited under different flow conditions.

We plot such a Pipkin diagram in Fig. 9, where the force and velocity axes have been

normalized by their maximum value so that all the L-B curves associated with different

force amplitudes and oscillation rates fill the space equally. For weak forces (Pe� 1),

the L-B curves take on elliptical shapes for all frequencies. In fact, they appear independ-

ent of the strength of forcing for Pe < 1. This is the regime of linear viscoelasticity

demarcated by Pe� 1 or Pe=a� 1. Likewise, for slow oscillation (a� 1), the L-B

curves contain practically no projected area. Thus, the response is viscous in nature.

However, for stronger forcing, the deformed microstructure yields a non-Newtonian

(thinning and then thickening) response—where downward concavity indicates thinning

and upward concavity indicates thickening. This is the regime of steady nonlinear flow.

There is a remaining region to consider where the external force is strong, Pe > 1, the os-

cillation is quick, a> 1, and the extent of deformation is not small, Pe/a
 1.

This regime lies in the bottom half of Fig. 9 near the diagonal. We refer to the

response in this region as hypoviscous because the L-B curve is inverted, slanting from

upper-left to lower-right. Such a slope indicates a negative increment to the viscosity due

to the deformed microstructure. The microstructural conformations that lead to such a

response are described in Sec. V C.

In Fig. 10, we plot the same Pipkin diagram, but first decompose the Lissajous-

Bowditch curves into their hydrodynamic and Brownian contributions. Again, each

FIG. 9. Pipkin diagram: Lissajous curves for a range of forcing strengths (Pe) and oscillation speeds (a). Each

Lissajous curve (viscous projection) shows �hUmicroi � F̂ext
versus FextcosðatÞ and is normalized to fill its sub-

box in the Pipkin diagram horizontally and vertically. The color behind each curves corresponds to the scale at

the bottom of the figure and represents the slope of the line that connects the points of maximum and minimum

force on the curve. We denote this g0L � g01 following the notation of Ewoldt et al. (2008). This viscosity differ-

ence is normalized by the solvent viscosity and the particle volume fraction.
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response is scaled to fill the space equally. By comparison of curve shapes with Fig. 9, it is

simple to determine which response is dominant. One qualitative difference between the

hydrodynamic and Brownian contributions that stands out in such a diagram is the fact that

the hydrodynamic response must pass through the origin. The hydrodynamic contribution

to the microvelocity is at least linear in the time varying external force. Thus, when the no

external force is applied, the hydrodynamic contribution is exactly zero. This is a signature

of the purely dissipative nature of hydrodynamic forces. Over the course of a complete

cycle, the hydrodynamic forces cannot lead to energy storage. The same is not true of the

Brownian contributions, however. This important result shows that whenever a Lissajous-

Bowditch curve in Fig. 9 does not pass through the origin, the Brownian response is given
explicitly by the value of the curve there. This is much the same as with cessation experi-

ments performed in a macroscopic rheometer [Watanabe et al. (1996a, 1996b)]. While it

can be quite difficult to extract the Brownian microstructural response by direct imaging of

particles, in this approach one need only make observations of the Lissajous-Bowditch

curves. Although the curves here are drawn from microrheology, this must also be true of

macrorheology. Because the hydrodynamic stress result from macroscopic shear of a col-

loidal dispersion must be at least linear in the rate of strain, the points of zero shear rate on

the Lissajous-Bowditch curve reflect nonhydrodynamic stresses only.

Given the intimate connection between energy dissipation and viscosity, it is natural

to ask how much of the work done on the probe particle is dissipated per cycle

Q ¼ a
2p

ð2p
a

0

hU1i � Fext dt ¼ QStokesð1� UH
1/Þ � Qmicro; (57)

where QStokes ¼ ðFextÞ2=ð6pgahÞ is the amount of energy dissipated per cycle in the ab-

sence of any bath particles, and

FIG. 10. Pipkin diagram (hydrodynamic and Brownian contributions shown separately): Lissajous curves from

Fig. 9 have been separated here into hydrodynamic and Brownian contributions (black and grey (red online),

respectively) to �hUmicroi � F̂ext
versus FextcosðatÞ and are normalized to fill their respective boxes horizontally

and vertically.
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Qmicro ¼ � a
2p

ð2p
a

0

hUmicroi � Fext dt (58)

is the change in the amount of energy dissipated per cycle by the deformed microstruc-

ture. Note that the hUmicroi and Fext are antiparallel in steady microrheology so that

Qmicro is positive. However, in fixed-force microrheology, the rate at which work done

on the probe particle is dissipated is smaller than the Stokes result, QStokes, precisely

because the bath particles slow the probe down, hence seemingly superfluous but actually

purposeful minus signs in Eqs. (57) and (58).

Because F
ext oscillates as a sinusoid with frequency a, Qmicro is proportional to the

real part of the first harmonic of hUmicroi. Coming back to the connection between viscos-

ity, velocity, and energy dissipation, we recognize in the ratio Qmicro=QStokes the real part

of a complex viscosity. Let us define the increment to the complex viscosity, Dg*, as the

energy dissipated by (real) and stored in (imaginary) the deformed microstructure over a

given cycle, Dg� ¼ Dg0� � iDg00� .
Thus, the viscosity increment Dg0�=g ¼ Qmicro=QStokes describes how the cycle-

averaged rate of energy dissipation is changed by the microstructural deformation. An

alternative and more graphical method for quantifying the time dependent response

was described by Ewoldt et al. (2008). Using their approach, one connects with a

line the points of maximum and minimum force on each L-B curve (which occur at

t¼ 0 and t ¼ p=a). The slope of this line characterizes a viscosity increment denoted

Dg0L—see, for instance, the dotted line in Fig. 8 for a Newtonian fluid. One can easily

show that Dg0L is proportional to a sum over the real part of all the harmonic coefficients

of hUmicroi. Thus, in the linear response limit, Dg0� � Dg0L. But under nonlinear

conditions, the two may differ. In the limit that a ! 0, Dg0L is equivalent to the steady

microviscosity increment described by Squires and Brady (2005) and Khair and

Brady (2006). As shown by Khair and Brady (2005), when a¼ 0 and Pe¼ 0,

Dg0� ¼ DgL ¼ 0:262g/.

Both viscosity increments are plotted in Fig. 11. At low frequencies, the steady state

response (a¼ 0) dominates. Thus, the microstructural deformation produces an effect

analogous to shear thinning and then thickening with increasing P�eclet number. As the

frequency increases and near Pe¼ 0, the viscosity increments become smaller exactly

like the linear response solution. However, the viscosity increments still exhibit the

same thinning followed by thickening with increasing P�eclet number. The thinning is

so pronounced that the viscosity increment actually becomes negative in one region.

The total rate of energy dissipation is not negative, however. Recall that we have

defined the microvelocity as the difference between the probe’s average velocity and its

high-frequency response. Thus, the total viscous dissipation per cycle due to the parti-

cle phase will be positive so long as Dg0� > �UH
1/ ¼ �1:828/. We term this state

hypoviscous because, unexpectedly, less of the work done on the probe is dissipated by

the deformed microstructure than by the microstructure where it undeformed (or equiv-

alently, when deformed by an asymptotically high frequency oscillatory force). This

seemingly puzzling result is easily understood if one recognizes that when the probe

forcing is both strong and fast, it generates a wake depleted of bath particles which

does not have time to relax and fill in before the probe returns to pass through it

again—see the video provided in the supplementary material which reflects the condi-

tions Pe¼ 30, a¼ 3.

There are an analogous set of elastic quantifiers of the Lissajous-Bowditch curves as

well. Just as the viscous part of the complex viscosity Dg0� is proportional to the real part

of the first harmonic coefficient of hUmicroi, one may define
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Dg00� ¼
a

2p
6pga

Fext

� �ð2p
a

0

hUmicroi � F̂ext
sinðatÞ dt; (59)

which extracts the imaginary part of the first harmonic coefficient of the microvelocity. This

corresponds to the amount of elastic energy storage. In the linear response limit (Pe! 0),

Dg* is the complex viscosity increment described by Khair and Brady (2005). Likewise,

elasticity can be interpreted graphically. Plotting �hUmicroi � F̂ext
versus FextsinðatÞ as a

new L-B curve (not shown here), one can measure the slope of the line passing through the

points of maximum and minimum impulse [proportional to FextsinðatÞ] at t ¼ p=ð2aÞ
and t ¼ 3p=ð2aÞ. This slope describes an elastic coefficient Dg00L, whose viscous counterpart

is Dg0L. The quantity Dg00L is given by a sum over the imaginary parts of the harmonic

coefficients of �hUmicroi � Fext weighted by (�1)n, where n is the mode number. Thus,

FIG. 11. The viscous part of the complex viscosity increments Dg0� and Dg0L plotted as a function of Pe and a.

The increments are identical in the linear-response limit but differ for Pe > 1. Because Dg0L comprises a sum

over all harmonics of hUmicroi (of which the first harmonic is the largest), differences between Dg0L and Dg0� arise

from the higher (n> 1) response harmonics.
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DgL ¼ Dg0L � iDg00L is another complex viscosity. Again, in the linear response limit,

Dg� ¼ DgL, but these two diverge as the deformation becomes nonlinear. The quantity

aDg00L is analogous to the elastic modulus GL described by Ewoldt et al. (2008).

The rate of deformation is a less relevant parameter with regard to elastic properties.

Therefore, in Fig. 12, we plot the imaginary parts of the complex viscosities as a function

of a for various values of Pe instead. From this we see that the elasticity grows and then

decays with increasing frequency and for all Pe. The maximum in the elastic contribution

shifts to higher frequency with increasing Peclet number. This suggests that the onset

of the elastic plateau is delayed by the strength of the forcing. When we plot the fre-

quency for which there is a peak in Dg00� or Dg00L as a function of Pe, we find that it scales

as a � Pe1=2 with Pe� 1. We have not developed microstructural theory to predict this

power law. However, the fact that the peak frequency is sublinear in the Peclet number is

consistent with our prediction from Sec. V A 2 that the linear response, or equivalently

the elastic plateau, dominates the probe motion when Pe=a� 1.

C. Large-amplitude oscillations (a;Pe;Pe=a� 1): The hypoviscous regime

So for, we have explored several regimes of the (Pe, a) phase space via asymptotic

and numerical analysis: Linear response, Pe� 1; high frequency response

FIG. 12. The elastic part of the complex viscosity increment Dg00� and Dg00L as a function of Pe and a. The incre-

ments are identical in the linear-response limit but differ for Pe > 1. Because Dg0L comprises a sum over all har-

monics of hUmicroi (of which the first harmonic is the largest), differences between Dg0L and Dg0� arise from the

higher (n> 1) response harmonics. Linear-response behavior is recovered in the limit Pe=a� 1. In contrast to

Fig. 11, Dg00� and Dg00L are plotted against a for various values of Pe.
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a� 1; Pe=a� 1; and steady response, a� 1. There remains a single area of the phase

space for which the forcing is strong, Pe� 1, the oscillation is rapid, a� 1, and the

extent of deformation is large, Pe=a� 1. Unlike the previous regimes, this one cannot

be mapped directly onto well-known responses. This is the domain of large amplitude os-

cillatory forcing.

This regime reveals a unique viscoelastic state of the suspension. The hypoviscous

state is characterized by a rate of viscous dissipation that is less than the corresponding

rate in an undeformed suspension (dictated by the high frequency viscosity) per oscilla-

tory cycle. A side-by-side examination of both the microstructural deformation and the

microvelocity reveals the underlying cause of this behavior. The interplay between forc-

ing strength and oscillation rate, and the large extent of deformation, C¼ Pe/a, is central

to the physics producing the hypoviscous state.

Each of the two Lissajous-Bowditch curves plotted in Fig. 13 corresponds the micro-

velocity of a colloidal probe with C¼ 10. However, Fig. 13(a) corresponds to Pe¼ 3,

a¼ 0.3 while Fig. 13(b) corresponds to Pe¼ 30, a¼ 3. While the extent of deformation

in both cases is large, Pe/a¼ 10, they reside in quite different positions of the phase map

(cf. Fig. 4). Figure 13(a) is closer to the linear response regime, while Fig. 13(b) is nearer

the hypoviscous regime. The L-B curves show qualitatively very different behavior; to

gain insight into the microstructural origins of these differences, a series of snapshots in

time of the microstructure surrounding the probe accompanies each figure. The number

in each snapshot matches the corresponding point on the L-B curve.

In case (a), we follow the L-B curve around counterclockwise from the point of maxi-

mum force (labeled 1) to the point of minimum force (labeled 5). There are pictures with

corresponding labels for the microstructural deformation in which a positive external

force drives the probe to the right. The arrows on the diagram indicate the direction and

relative intensity of the microvelocity. Notably, the applied force and the microvelocity

are antiparallel through much of the oscillatory cycle, indicating that there is little elastic-

ity in the response. Moving from label 1 to label 3, the force on the probe particle is

decreasing slowly with respect the microstructural relaxation rate (a< 1), and in response

the microstructural deformation decreases in intensity. However, because a is finite, the

suspension retains some memory of its deformation when the external force is zero (label

3). This, of course, is the source of elasticity in the suspension. Now, from labels 3 to 5,

the external force on the probe particle grows more negative and the microstructural de-

formation grows more intense in response. The microstructural deformations labeled 1

and 5 are mirror images of each other, as they must be when symmetrically oscillating.

This half of an oscillatory cycle is reversed when following the lower half of the L-B

curve. Connecting points labeled 1 and 5 with a line we see that Dg0L is positive.

For case (b), we begin again at label 1 and follow the L-B curve around counterclock-

wise. Label 1 corresponds to the maximum positive external force on the probe particle,

yet unlike case (a), the microvelocity is parallel rather than antiparallel to the external

force here. This puzzle is resolved by continuing to move around the L-B curve. At label

2, the external force is still driving the probe particle to move to the right though it has

decreased in magnitude. Note, the rate of oscillation of the external force is faster than

the microstructural relaxation (a> 1). Thus, the suspension does not relax quickly rela-

tive to the probe’s motion, and the microstructural deformation grows more intense as

further bath particles are caught in the boundary layer on the probe’s leading edge.

Likewise, the probe particle has created a substantial bath-particle-free wake which

relaxes slow relative to the oscillation rate. At label 3, there is no longer an external force

driving the probe particle, but microstructural deformation is still quite strong—espe-

cially when compared with case (a). When the force reverses direction, the probe particle
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FIG. 13. Lissajous-Bowditch curves for large amplitude oscillatory microrheology under two conditions: (a)

Pe¼ 3, a¼ 0.3 and (b) Pe¼ 30, a¼ 3. A panel of five contour plots of the microstructure surrounding the probe

accompanies each figure. Each contour plot gives a snapshot in time of the oscillating structure, indicated by a

number in the snapshot which matches the corresponding time in the Lissajous-Bowditch curve. The slope of

the dashed line connecting points 1 and 5 indicate the sign of Dg0L. Videos corresponding to (a) and (b) are pro-

vided in the supplementary material.
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is driven into its own wake which has a low concentration of bath particles. At label 4,

the deformed microstructure depicts explicitly the probe particle passing through the

wake as the microstructure is depleted on the leading and trailing edges. Arriving at label

5 which is the mirror image of label 1, we see now that the external force and microve-

locity are parallel because the probe particle has not finished moving through the wake.

The probe must continue traveling to the left until it reaches the boundary of the wake

and begins accumulating bath particles on its leading edge. Connecting points labeled 1

and 5 with a line we see that Dg0L is negative.

Recall that the reduction in probe speed due to hindrance of the bath is divided into

two contributions: The first is a purely hydrodynamic contribution arising from flow of

solvent between the bath particles given their equilibrium configuration, �UH
1/; the sec-

ond arises due to hydrodynamic and conservative interactions propagated through the

deformed microstructure. Thus if the deformed microstructure near the probe is depleted

of bath particles [i.e., f ðr; tÞ < 0, for r
 2], the local deformation should actually enable

the probe to move faster, rather than hindering its motion. This is indeed what is

observed. It is import to note, however, that the hypoviscous effect is always accompa-

nied by the condition �Umicro � F̂ext
< UH

1/; that is, the particle phase as a whole hinders

probe motion.

The hypoviscous effect is one that may be unique to large amplitude oscillatory defor-

mations since it reflects memory of the nonlinear microstructural deformation. A similar

effect was observed in the eighties during the study of large amplitude oscillatory shear

of non-Brownian suspensions where the thermal relaxation of the particles is vanishingly

slow. The analogous dimensionless groups diverge: Pe!1 and a!1; however, their

ratio is set by the extent of deformation—the strain amplitude. In their study of shear-

induced structure in non-Brownian suspensions, Gadala-Maria and Acrivos (1980)

conducted flow-reversal experiments on suspensions of hard spheres. When a “fresh” sus-

pension undergoes shear, there is a transient regime in which the viscosity climbs to its

steady-state value. However, they found that upon stopping the flow (dropping the stress

to zero) and then restarting it, the viscosity jumped instantaneously to its steady-state

value with no transient period. However, upon restarting the flow in the opposite direc-

tion, the viscosity decreased and then gradually recovered its steady value. No wait pe-

riod between flow cessation and reversal changed these results. From these observations,

they concluded in part that the flow deforms the arrangement of particles, and that this

structure would “remember” the deformation for an indefinite period of time. Without

thermal motion of the particles, the low-Reynolds-number hydrodynamic interactions are

perfectly reversible. Thus, the equilibrium structure is nearly always recovered at zero

strain. The thermal motion in a Brownian suspension stymies this reversibility and leads

to memory of the deformation history. The hypoviscous effect appears robust and stems

from the break in symmetry between relaxation of compressed and extended regions of

the material microstructure.

D. Interpretation of large amplitude oscillatory deformation experiments

Many approaches have been proposed for inferring material properties and flow

behavior from large-amplitude oscillatory deformation. Some arguments put forth

include geometric interpretations of Lissajous-Bowditch curves or physical interpreta-

tions based on constitutive models. However, these suffer from the fact that in the nonlin-

ear regime, such interpretations are not deformation-agnostic. Unlike linear response, the

details of the deformation and deformation history are inextricably coupled. That is,

there is likely no simple transformation connecting the shear stress under one nonlinear
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time-dependent flow to that arising in another. From such a perspective, a suite of large-

amplitude oscillatory experiments sweeping through a range of amplitude and frequency

are difficult to connect by a common material modulus.

An alternative is to accept the limitations of the large amplitude oscillation experiment

and ask what physical information can be unambiguously extracted. One such measure is

the amount of energy a material dissipates in response to deformation. The rate of energy

dissipation in a material with shear stress r(t) and strain rate tensor _cðtÞ is

_Q ¼ rðtÞ_cðtÞ: (60)

The average rate of work done on the material that is dissipated as heat in the time inter-

val [t0, t0þ T] is

�_Q ¼ 1

T

ðt0þT

t0

rðtÞ_cðtÞ dt: (61)

In a large amplitude oscillatory shear experiment, the rate of strain is _cðtÞ ¼ _c0 cosðxtÞ
and the shear stress can be written as rðtÞ ¼ _c0

P
n expðinxtÞAn where the indices of the

summation are odd and run between 61. If the length of the interval is a single strain

cycle, T¼ 2p/x, then the average rate of work dissipated as heat is

�_Q ¼ _c2RfA1g: (62)

The simplest possible measurement made from a LAOS experiment also provides the

most physical characterization. The real part of the first harmonic of the shear stress

reflects the average rate of energy dissipation per cycle. Thus, this part of the coefficient

may be termed “viscous” or “dissipative” unambiguously. Naturally, RfA1g has units of

viscosity. If the interval over which the average rate of energy dissipation is measured is

half a cycle so that T ¼ p=x; �_Q is the same as over the full cycle. This reflects the odd

symmetry of the shear stress with respect to the rate of strain. The average rate of energy

dissipated over any interval that is an integer fraction, m, of the period, T ¼ 2p=ðmxÞ, is

�_Qmðt0Þ ¼ _c2R A1f g þ mx
2p

_c2

2

X
n2even 6¼0

einxt0ðAn�1 þ Anþ1Þ
e2pin=m � 1

inx
(63)

and depends on when during the cycle the measurement of dissipation is made. Thus,

both the real and imaginary parts of the higher order harmonics can be thought of as con-

tributing to the viscous dissipation during portions of the oscillation and cannot be

uniquely tied to elastic processes, for instance.

In a similar sense, the elastic energy stored in a deformed material can be defined in

terms of the product of shear stress and strain,

E ¼ rðtÞcðtÞ; (64)

where cðtÞ ¼ c0sinðxtÞ. As with the average dissipation, an average amount of energy

stored per cycle is

�E ¼ x
2p

ðt0þ2p=x

t0

rðtÞcðtÞ dt ¼ � _c2
0

x
I A1f g: (65)

35LARGE AMPLITUDE OSCILLATORY MICRORHEOLOGY

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

131.215.71.79 On: Thu, 30 Jan 2014 18:16:09



Therefore, the imaginary part of the first harmonic of the stress in response to a large am-

plitude oscillatory deformation can be uniquely identified with the cycle averaged

amount of elastic storage. This may be termed unambiguously conservative or “elastic.”

A similar construction for the average amount of elastic energy stored over some frac-

tional portion of a cycle will indicate that the higher order harmonics are fundamentally

viscoelastic and cannot be used to describe viscous dissipation or elastic storage uniquely

during any finite portion of the oscillation.

We have used a microrheological analog to these measures to show that the most

interesting features arising from a large amplitude oscillatory deformation are apparent in

the first harmonics of the response. It seems likely that the first harmonic is the only nec-

essary quantitative descriptor of the deformation process and that this in conjunction with

a sweep of frequency and amplitude should be sufficient for parameter estimation in a

constitutive model. Given that the higher harmonics can be orders of magnitude smaller

than first harmonic, this also seems a sound method for practical application of large am-

plitude oscillatory deformation data.

E. A brief note on scaling results for higher concentrations

We have been careful throughout to examine the time varying velocity of the probe in

a fashion that removes the deformation independent, high frequency response. The

growth of this deformation independent part with increasing concentration is known to

coincide with the short-time self-diffusivity of a colloidal particle in a suspension [Khair

and Brady (2005)]. Thus, this contribution can be handled trivially. The deformation de-

pendent part of the response has been shown to scale in concentration with the difference

between the long- and short-time self-diffusivities: DS
1ð/Þ � DS

0ð/Þ. Thus, a scaled-up

prediction of the probe velocity would be

U1 ¼
DS

0ð/Þ
kT

cosðxtÞFext � DS
1ð/Þ � DS

0ð/Þ
0:27/

hUmicroi; (66)

where hUmicroi refers to the dilute limit microvelocity increment derived in this article,

and �0:27/ is DS
1ð/Þ � DS

0ð/Þ expressed to the same order in / as the dilute theory.

One additional complication associated with scaling up is the change in particle relax-

ation kinetics in more concentrated dispersions. Thus to compare the dilute theory to

experiments, it is necessary to establish an equivalent dimensionless force, P�eclet num-

ber, and dimensionless oscillation frequency, a. In past work, it was determined that the

slower short-time self-diffusion of particles in concentrated suspensions accounts for this

effect [Khair and Brady (2006)]. Thus, we can replace the magnitude of the diffusivity,

D, in our earlier attempts to render to the Smoluchowski equation dimensionless with the

relative short-time self-diffusivity between probe and bath particles: 2DS
0ð/Þ. We define

the P�eclet number in concentrated dispersions as Pe ¼ Fext=ð12pgDS
0ð/ÞÞ. Similarly, we

prescribe a ¼ xa2
h=ð2DS

0ð/ÞÞ. This will allow for a proper basis of comparison between

the dilute theory and experiments.

VI. CONCLUSION

A microstructural perspective on large amplitude oscillatory deformation is useful for

understanding the relative importance of different forces, conservative and nonconserva-

tive, in determining a material’s unsteady and nonlinear flow properties. We have studied

a colloidal dispersion deformed by a probe particle driven with an oscillatory force of
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arbitrary magnitude and frequency. This is the microrheological analogue to the LAOS

experiment. The response of the suspension to this deformation falls into four regimes

which are characterized by the relative magnitudes of the force amplitude, represented by

Pe ¼ Fexta=ð2kTÞ, and the oscillation rate, represented by a ¼ 6pgaha2x=kT. An addi-

tional relevant parameter is given by the ratio of these two quantities, Pe/a, the extent of

deformation which is analogous to the strain amplitude in a LAOS experiment.

When Pe� 1, the force on the probe particle is weak and the response of the suspen-

sion to deformation is given by its linear viscoelastic spectrum. When a� 1 and

Pe=a� 1, the oscillation is quick while the extent of deformation in the suspension is

small—the linear response is also recovered. When Pe� 1 and a� 1, the force is

strong while the oscillation is slow—the response of the suspension is pseudosteady and

nonlinear. Finally, when Pe� 1; a� 1, and Pe=a� 1, the force on the probe is strong,

the oscillation is quick and the extent of deformation is large. In this last regime, we dis-

covered the hypoviscous state in which oscillations lead to a locally depleted microstruc-

ture and a reduction from equilibrium in the averaged hydrodynamic resistance to

deformation. In another material with a single relaxation time scale, these same four

regimes delineated by extreme values of a, Pe, and Pe/a likely persist, though the

response within these regimes may differ. The hypoviscous effect, for instance, is a

purely hydrodynamic product, so in a material with weak hydrodynamic stresses, this

may not be observed. Nonetheless, simple dimensional analysis and a microstructural

view of the deformed material offer great insight into nonlinear viscoelasticity.

The approach taken in this article is prototypical of microstructural analysis of com-

plex materials. It is by no means limited to the realms of microrheology and colloidal dis-

persions—though those both provide many convenient analytical footholds. It seems

worthwhile to interrogate the microstructural response and the stresses that result from

the oscillatory driving of other materials and subject to other modes of deformation. One

obvious extension of this work is the investigation of suspensions of hard-spheres

deformed by an oscillatory, simple shear. Similar analyses must be possible for other

microstructured materials such as polymer solutions and melts. These would provide a

valuable theoretical framework, beyond constitutive modeling, for the interpretation of

LAOS experiments which have become all but de rigeur in recent years.
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APPENDIX: ANALYSIS OF LAOS FROM THE N-PARTICLE PERSPECTIVE

Consider a suspension of N spherical particles. The flux of particle a is denoted

jaðxN; tÞ ¼ UaðxN; tÞ �
XN

b¼1

DabðxNÞ � rb
VðxNÞ

kT
þ log PNðxN ; tÞ

� �2
4

3
5PNðxN; tÞ; (A1)

where xN is a vector representing the positions of all the particle centers and PNðxN; tÞ is

the probability of finding them in that configuration at time t. At equilibrium,

PNðxN; tÞ ¼ Peq
N ðxNÞ � exp½�VðxNÞ=kT�, where VðxNÞ is the conservative potential among

the particles. Then, UaðxN; tÞ is the velocity of particle a due to nonconservative forces.
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For the present purposes, it will suffice to assume that it is independent of the particle prob-

ability distribution. We write this probability distribution as a perturbation about its equilib-

rium value so that PNðxN; tÞ ¼ Peq
N ðxNÞ½1þ fNðxN; tÞ�. The flux of particle a is then

jaðxN; tÞ ¼ Peq
N ðxNÞ½UaðxN; tÞ½1þ fNðxN ; tÞ� �

XN

b¼1

DabðxNÞ � rbfNðxN; tÞ�: (A2)

If we assume that UaðxN; tÞ can be decomposed into ~UaðxNÞcosðxtÞ as would be the

case for a dispersion driven by an oscillatory flow or force, then the microstructural per-

turbation can be expanded as

fNðxN; tÞ ¼
X1

n¼�1
einxtf

ðnÞ
N ðxNÞ; (A3)

where the f
ðnÞ
N ðxNÞ are the microstructural harmonics. The flux of particle a can be

expanded likewise such that

ja ¼
X1

n¼�1
einxtjðnÞa ðxNÞ; (A4)

where jðnÞa ðxNÞ is

Peq
N ðxNÞ 1

2
~UaðxNÞ½d1n þ d�1n þ f

ðn�1Þ
N ðxNÞ þ f

ðnþ1Þ
N ðxNÞ� �

XN

b¼1

DabðxNÞ � rbf
ðnÞ
N ðxNÞ

8<
:

9=
;:

(A5)

The N-particle Smoluchowski equation states

_PNðxN; tÞ ¼ �
XN

a¼1

ra � ja; (A6)

where upon matching orthogonal modes,

inxPeq
N ðxNÞf ðnÞN ðxNÞ ¼ �

XN

a¼1

ra � jðnÞa ðxNÞ; (A7)

for n¼ 0, 61, 62,…. The structure of this equation is obviously the same as Eq. (15).

Thus, the analysis of the microstructure presented in the article can be easily extended to

the N-particle perspective while allowing incorporation of other interparticle potentials

and flow profiles.
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