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The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the
case where the initial magnetic field is unperturbed and aligned with the mean inter-
face location. For this initial condition, the magnetic field lines penetrate the perturbed
density interface, forbidding a tangential velocity jump and therefore the presence of
a vortex sheet. Through simulation, we find that the vorticity distribution present on
the interface immediately after the shock acceleration breaks up into waves traveling
parallel and anti-parallel to the magnetic field, which transport the vorticity. The
interference of these waves as they propagate causes the perturbation amplitude of
the interface to oscillate in time. This interface behavior is accurately predicted over
a broad range of parameters by an incompressible linearized model derived presently
by solving the corresponding impulse driven, linearized initial value problem. Our
use of an equilibrium initial condition results in interface motion produced solely by
the impulsive acceleration. Nonlinear compressible simulations are used to investi-
gate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov
instability, and the performance of the incompressible model, over a range of shock
strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4851255]

I. INTRODUCTION

When a perturbed interface separating fluids with different densities is impulsively accelerated,
typically by a shock wave, the interface becomes unstable and the perturbations grow. This scenario
was first considered by Markstein.1 A rigorous theoretical and numerical analysis of the flow was
later presented by Richtmyer,2 whose predictions were confirmed by the shock tube experiments of
Meshkov.3 This instability is, therefore, known as the Richtmyer-Meshkov instability (RMI). The
canonical situation in which the RMI occurs is shown in Fig. 1(a), where a shock wave interacts
with a sinusoidal density interface. Figure 1(b) shows the effect of the instability on the interface
after the interaction is complete: it has become highly distorted which can lead to significant mixing
between the two fluids.

The RMI is important in a wide variety of applications. One of the most significant of these is
inertial confinement fusion (ICF), which has been a major impetus for the study of shock accelerated
interfaces.4 In current ICF experiments, rapid ablation of a spherical capsule drives an implosion
into the deuterium-tritium fuel contained within.5 The RMI promotes mixing between the capsule
material and the fuel. This mixing limits the final compression of the fuel and hence the possibility of
achieving energy break-even or production.6 The RMI is also important in astrophysical phenomena.
It has been used to account for the lack of stratification in the products of supernova 1987A and
is required in stellar evolution models.7 In supersonic and hypersonic air breathing engines, the
RMI may be used to enhance the mixing of fuel and air.8 The RMI also arises in many combustion
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FIG. 1. (a) Initial condition for the normal field MHD RMI simulations of Wheatley et al.15 (b) Post shock-interaction
vorticity (∇ × u, left half frames) and density (ρ, right half frames) fields for an incident shock sonic Mach number of M
= 2, a density ratio of ρ2/ρ1 = 1/3, and a ratio of specific heats of γ = 5/3 when no magnetic field is present. (c) Post
shock-interaction vorticity and density fields for the same case as (b) when an initial magnetic field of non-dimensional
strength β−1 = B2/2p0 = 1/16 is present, where p0 is the initial thermodynamic pressure

systems where shock-flame interactions occur; the resulting instability is significant in deflagration-
to-detonation transition.9 In reflected shock tunnels, the RMI is one mechanism for explaining driver
gas contamination.10

In the first two applications of the RMI listed above, inertial confinement fusion and astrophysical
phenomena, the media involved may be in the plasma state and hence be affected by magnetic
fields. It is well known that the linear growth rate of the Rayleigh-Taylor instability, a hydrodynamic
instability related to the RMI, is mitigated at high wavenumbers in the presence of a magnetic field.11

The effect of a magnetic field on the RMI, however, had not been investigated until Samtaney12

demonstrated, via numerical simulations, that for the magnetic field orientation shown in Fig. 1(a)
the growth of the RMI is suppressed. This can clearly be seen by comparing Fig. 1(b), which shows
the post-interaction density contours when no magnetic field is present, and Fig. 1(c), which shows
the result of an identical simulation carried out in the presence of a magnetic field. It was shown by
Wheatley et al.13 that the suppression of the instability is caused by changes in the shock refraction
process at the interface with the application of a magnetic field that leaves the interface vorticity free.
Subsequently, Wheatley et al.14 carried out an analytical linear analysis of an impulsively accelerated
density interface in the presence of a normal magnetic field. This successfully models the behavior
of the interface in the magnetohydrodynamic (MHD) RMI for weak shocks and magnetic fields.15

The other canonical MHD RMI case, where the magnetic field is parallel to the density interface,
was linearly modeled by Cao et al.16 However, their formulation, which differs from that used in
Wheatley et al.,14 results in oscillation of the interface even when no forcing is present. In addition,
their model has not been compared to other results to assess its accuracy and appropriateness.
Motivated by understanding magnetic field amplification in supernova remnants, Sano et al.17 have
simulated the two-dimensional MHD RMI for three different initial magnetic field orientations:
normal, parallel, and at an angle π /4 to the interface. Their study, however, focused on a very weak
initial magnetic field (β = 108) that had little effect on the dynamics of the RMI.17

The recent intense interest in the RMI12, 15, 16, 18–21 is primarily motivated by its significance in in-
ertial confinement fusion, a technology with the potential to demonstrate highly efficient carbon-free
energy production.22 In ICF, suppression of the instability is desirable and we have established that
in certain idealized cases, a magnetic field can suppress the MHD RMI. Consequently, investigating
the suppression of the RMI by a magnetic field of different orientations is an important research
topic. Furthermore, in recent experiments, ICF targets were immersed in a seed magnetic field before
implosion with the goal of enhancing compression through electron confinement.23 This resulted in
the observed ion temperature and neutron yield being significantly enhanced, demonstrating that the
concept utilizing magnetic fields in ICF experiments has merit. In the present work, we formulate
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FIG. 2. (a) Initial condition for the shock driven compressible MHD RMI with a transverse magnetic field. (b) Initial
condition for the corresponding impulse driven, incompressible model problem.

a linear incompressible model for the MHD RMI when the magnetic field is parallel to the mean
interface location, as shown in Fig. 2. The approach of Wheatley et al.14 is used so that interface
motion occurs only as a result of the impulsive acceleration and not due to the initial condition. The
behavior predicted by this model is then compared to the results of shock driven simulations of the
full nonlinear compressible ideal MHD equations. This allows the appropriateness and accuracy of
the model to be investigated and reveals new details of the flow physics that were not seen in the
work of Cao et al.16 The behavior of the MHD RMI and the performance of the model as problem
parameters are altered to increase the nonlinearity of the flow are also documented.

II. INCOMPRESSIBLE MODEL

A. Flow formulation and equations of motion

The initial condition for the problem under consideration is shown in Fig. 2(a): A shock wave
of sonic Mach number M is set-up to impact a sinusoidally perturbed density interface in the
presence of a transverse magnetic field, B. Here M = US/a where US is the shock speed and a is
the speed of sound. The corresponding incompressible model problem is shown in Fig. 2(b). The
shock acceleration of the fluid is replaced by an impulsive acceleration in the z-direction, V δ(t),
where δ(t) is the Dirac delta function in time and V � c, the speed of light. This accelerates uniform
quiescent conducting fluids of densities ρ1 and ρ2, respectively, separated by an interface with initial
perturbation amplitude η0 and wavelength λ. The initial magnetic field, B0 = Bêx , is aligned with
the mean interface location in the x-direction and has non-dimensional strength β−1 = B2/(2μ0p0),
where p0 is the uniform initial pressure and μ0 is the permeability of vacuum.

The ideal MHD variables are non-dimensionalized using a reference density ρ0, pressure p0,
and length scale L. The non-dimensional variables are given by

x̂ = x
L

, t̂ = t

L/
√

p0/ρ0
, ρ̂ = ρ

ρ0
, p̂ = p

p0
, û = u√

p0/ρ0
, B̂ = B√

μ0 p0
,

where x ≡ (x, y, z)T , u ≡ (u, v, w)T is velocity and B ≡ (Bx, By, Bz)T is the magnetic field. From
here on, we consider the problem in non-dimensional form with the carets omitted for clarity. We seek
solutions to the model problem that satisfy the linearized equations of ideal, incompressible MHD.
The nonlinear equations from which these are derived govern the evolution of an incompressible,
quasi-neutral conducting fluid if viscosity, thermal conductivity, the Hall effect, and electrical resis-
tivity are neglected.25 In the mathematically convenient reference frame with acceleration V δ(t)ez

that moves with the interface, these equations are

∇ · u = 0, (1)

ρ ∂u
∂t + ρ (u · ∇) u = −∇ p + (∇ × B) × B + f − ρV δ(t)ez, (2)
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∇ · B = 0, (3)

∂B
∂t = ∇ × (u × B) . (4)

The forcing that impulsively accelerates the fluids is given by

f = [ρ1 + H (z)(ρ2 − ρ1)] V δ(t)ez,

where H(z) is the Heaviside function. The base-flow about which the governing equations are
linearized results from subjecting uniform fluids separated by an unperturbed interface at z = 0 to
the impulsive body force f. In this case, f is exactly balanced by the term in Eq. (2) that arises due
to the use of an accelerating reference frame. Thus, the base-flow (denoted with a subscript 0) in the
chosen frame of reference is identical to the initial conditions and is given by

ρ0(z) = ρ1 + H (z) (ρ2 − ρ1) , (5)

u0 = 0, w0 = 0, Bx0 = B, Bz0 = 0, p0(z, t) = p0. (6)

B. Linearized initial value problem

Imposing an initial perturbation h(x, t) = η(t)eikx � λ on the interface location produces the
required initial condition for the model problem. The linearized equations for the perturbations to
the base-flow are then obtained by setting the density equal to

ρ(x, z, t) = ρ1 + H [z − h(x, t)](ρ2 − ρ1)

and by assuming that all other flow quantities have the form q(x, z, t) = q0(z) + q′(x, z, t), where q′ are
small perturbations to the base-flow. Substituting these expressions into Eqs. (1)–(4) and neglecting
terms involving products of perturbations yields

∂u′

∂x
+ ∂w′

∂z
= 0, (7)

ρ
∂u′

∂t
+ ∂p′

∂x
= 0, (8)

ρ
∂w′

∂t
+ ∂p′

∂z
+ B

(
∂ B ′

x

∂z
−∂ B ′

z

∂x

)
= (ρ2 − ρ1) [H (z) − H (z − h)] V δ (t) , (9)

∂ B ′
x

∂x
+ ∂ B ′

z

∂z
= 0, (10)

∂B′

∂t
− B

∂u′

∂x
= 0. (11)

The forcing of the perturbations due to the impulse at t = 0+ is non-zero only in the vanishingly small
region z ∈ [0, h(x, t)]. Our approach is to account for the forcing in the matching conditions between
homogeneous solutions that are valid above and below this region. To obtain the homogeneous
solutions, we assume that all perturbations have the form q ′(x, z, t) = q̂(z, t)eikx then take the
temporal Laplace transforms of Eqs. (7)–(11) outside of the forced region. Initial conditions are
taken at t = 0−, when there are no perturbations to the velocity or magnetic field. The resulting
transformed homogeneous equations are

ikU j (z, s) + DW j (z, s) = 0, (12)

sρ jU j (z, s) = −ik Pj (z, s), (13)
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sρ j W (z, s) = −D Pj (z, s) − B [DHx (z, s) − ik Hz(z, s)] , (14)

ik Hx j (z, s) + DHz j (z, s) = 0, (15)

s Hx j (z, s) = ik BU j (z, s), (16)

s Hz j (z, s) = ik BW j (z, s), (17)

where U, W , Hx, Hz, and P are the temporal Laplace transforms of û, ŵ, B̂x , B̂z , and p̂, respectively,
j = 1 or 2, s is the Laplace variable and D ≡ d/dz. Equations (12)–(17) can then be combined to give
a single differential equation for the transformed vertical velocity magnitude in each fluid,

D2W j (z, s) − k2W j (z, s) = 0, (18)

Eq. (18) has the general solution

W j = A j (s) ekz + B j (s) e−kz . (19)

This general solution lacks the wave-like modes of the form H (t ± z
√

ρ j/Bz) f (t ± z
√

ρ j/Bz) that
were present in the normal field case.14 These modes were responsible for transporting the vorticity
generated by impulse away from the interface, which suppressed growth in the amplitude of its
perturbations.15 Thus, the mechanism by which the RMI was suppressed in the normal field case is
apparently absent in this model.

C. Matching conditions

The unknown coefficient functions in Eq. (19) must now be determined in each fluid. The
requirement that perturbations be bounded as |z| → ∞, assuming k > 0, implies that A2(s) = 0 and
B1(s) = 0. The transformed velocity magnitudes in each fluid then simplify to

W1 (z, s) = A1 (s) ekz, W2(z, s) = B2(s)e−kz . (20)

These homogeneous solutions are subject to matching conditions at the contact (z = h(x, t)
= η(t)eikx). The number of jump conditions that must be satisfied across an MHD contact dis-
continuity depends on its type, which has yet to be discussed for the present problem. However,
two conditions must be satisfied for every type of contact discontinuity: the normal velocity w and
total pressure p + B · B/2 must be continuous. As only two matching conditions are required to
determine the solution in this case, the derivation can proceed without assuming the contact is of a
certain type. The first matching condition used is the kinematic condition that w′ must be continuous.
To leading order in h, this is equivalent to

[W ]z=0 = 0 → A1(s) = B2(s) ≡ A(s), (21)

where [q]z = 0 ≡ q2|z = 0 − q1|z = 0 and Eq. (20) was used to obtain the expression on the right.
The second matching condition, which accounts for the forcing, is derived by integrating

Eq. (9) in z across its inhomogeneous region, which extends from 0 to h(x, t) � 1 as illustrated in
Fig. 3. Along the path indicated, which is contained within fluid 1, Eq. (9) simplifies to

ρ1
∂w′

1

∂t
+ ∂p′

1

∂z
+ B

(
∂ B ′

x1

∂z
−∂ B ′

z1

∂x

)
= (ρ2 − ρ1)V δ(t). (22)

Integrating Eq. (22) in z from 0 to h yields

ρ1

∫ h

0

∂w′
1

∂t
dz + p′

1(x, h, t) − p′
1(x, 0, t) + B

(
B ′

x1(x, h, t) − B ′
x1(x, 0, t) −

∫ h

0

∂ B ′
z1

∂x
dz

)
= (ρ2 − ρ1)V δ(t)h. (23)
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FIG. 3. Inhomogeneous region of the governing equations and integration path used to derive the dynamic condition.

Assuming ∂w′
1/∂t and ∂ B ′

z1/∂x are smooth within the inhomogeneous region, the remaining inte-
grals can be approximated by

ρ1

∫ h

0

∂w′
1

∂t
dz ≈ ρ1h

∂w′
1

∂t

∣∣∣∣
z=0

, B
∫ h

0

∂ B ′
z1

∂x
dz ≈ Bh

∂ B ′
z1

∂x

∣∣∣∣
z=0

. (24)

These terms are O(h2) and thus can be neglected. Next, consider the terms evaluated at the contact
discontinuity z = h. The continuity of p + B · B/2 across the contact can be expressed as[

p′ + 1

2
(Bêx + B′) · (Bêx + B′)

]
= [

p′ + B B ′
x

] + H.O.T . = 0. (25)

Thus, to leading order, assuming p′
2 and B ′

x2 are smooth

p′
1(x, h, t) + B B ′

x1(x, h, t) = p′
2(x, h, t) + B B ′

x2(x, h, t) ≈ p′
2(x, 0, t) + B B ′

x2(x, 0, t). (26)

Combining Eq. (23) with Eqs. (24) and (26), neglecting products of perturbations and higher order
terms in h, yields the final form of the dynamic condition:

p′
2 (x, 0, t) − p′

1 (x, 0, t) + B
[
B ′

x2 (x, 0, t) − B ′
x1 (x, 0, t)

] = (ρ2 − ρ1)V δ(t)η(t)eikx . (27)

D. Oscillatory solutions

Taking the Laplace transform of Eq. (27) then using Eqs. (12)–(17) to express all variables in
terms of W1 and W2 gives

[(ρ1 + ρ2)
s

k
+ 2k B2

s
]A(s) = (ρ2 − ρ1) V η0, (28)

where the expressions for W1 and W2 given in Eq. (20) have been used. The final solutions for the
vertical velocity perturbations are obtained by solving Eq. (28) for A(s), taking the inverse Laplace
transform, then substituting the result in the assumed forms of the perturbations. This gives

w′
1(x, z, t) = kV η0Acos (ωt) H (t) ekzeikx , (29)

w′
2(x, z, t) = kV η0Acos (ωt) H (t) e−kzeikx , (30)

where

ω = Bk√
(ρ1 + ρ2)/2

= k√
1
2

(
c−2

A1 + c−2
A2

) ,A ≡ ρ2 − ρ1

ρ2 + ρ1
.

Here, A is the Atwood ratio and cAj = B/
√

ρ j is the Alfvén speed. This solution shows that while
the initial (t = 0+) growth rate of the interface,

∂η

∂t

∣∣∣∣
t=0

= w′
j (0, 0, 0+) = η0kVA, (31)

is identical to the hydrodynamic case,2 the presence of the magnetic field prevents linear growth at
this rate. Instead, the amplitude of the interface oscillates in time at a frequency ω, as described by

η (t) = η0 +
∫ t

0+
w′

j (0, 0, τ ) dτ = η0

(
1 + kVA

ω
sin (ωt)

)
= η0 + �η sin (ωt) . (32)
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FIG. 4. Density contours overlaid with magnetic field lines at t = 1/5ω from the linear solution to the incompressible model
problem. The case shown is characterised by ρ1 = 1.26, ρ2 = 1.57, p0 = 1.47, Bx0 = 0.628, and η0 = 0.0395λ.

For one set of parameters, the resulting density field at t = 1/5ω is shown in Fig. 4 along with the
magnetic field lines. It can be seen that the motion of the interface has perturbed the magnetic field
lines, which creates a restoring force due to magnetic field line tension. This causes the fluids to
oscillate, however, it will be shown in Sec. IV that this does not completely describe the flow physics
around the interface.

One aspect of the solution that requires further investigation is the nature of the interface.
The unperturbed interface has no magnetic field lines crossing it and is known as a tangential
discontinuity. Only the normal velocity w and p + B · B/2 are required to be continuous across
a tangential discontinuity (see, e.g., Sutton and Sherman25), and these were the only constraints
built into the solution of the model problem. If the field lines cross the interface, however, as is
seen to occur in Fig. 4, two additional constraints must be satisfied: continuity of tangential velocity
and magnetic field. The tangential velocities on either side of the interface may be computed by
substituting the solutions for w′

j given in Eqs. (29) and (30) into Eq. (7). The jump in tangential
velocity across the interface is found to be non-zero and is given by

[u]z=0 = 2V η0Acos (ωt) H (t) sin(kx). (33)

This implies that the inhomogeneous region between the two fluids, which we integrated across
in our solution, must contain more structure than a simple MHD contact discontinuity. Additional
structures must be present in this matching region to carry the shear. To investigate the nature of
these structures, and determine whether our model, in which integration across them is utilized,
accurately predicts the motion of the interface, we turn to nonlinear compressible simulations. Note
that this issue can be avoided by a slight modification to the initial conditions: if the magnetic field
lines have the same initial perturbation as the interface, they will remain parallel to it for all time,
permitting the interface to be a tangential discontinuity. While this eliminates the need for additional
flow structures, the perturbed field lines will cause oscillation of the interface even in the absence of
any forcing, as seen in the model of Cao et al.16

III. SIMULATION METHODOLOGY

A. Unsplit method for ideal MHD

The nonlinear simulations were carried out using a compressible ideal MHD code similar to
that developed by Samtaney12 and Samtaney et al.26 Key details of the algorithm are presented here
for completeness. We write the equations of ideal MHD in conservation form as follows:

∂U

∂t
+

D−1∑
d=0

∂ Fd

∂xd
= 0, (34)

where D is the dimensionality of physical space, U = {ρ , ρ ui, Bi , e }T, e is the total energy per unit
volume, and the flux vector is given by

Fj (U )={ρ u j , ρ ui u j + (p + 1

2
Bk Bk)δi j − Bi B j , Bi u j − B j ui , (e+ p+ 1

2
Bk Bk)u j −B j (Bkuk)}.

Here, we limit our discussion to two dimensions (D = 2).
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We define a vector of variables called the “primitive variables” W (U ) = {ρ , ui , Bi , p )}T .
Rewriting the equations using W in quasilinear form, we get

∂W

∂t
+

D−1∑
d=0

Ad (W )
∂W

∂xd
= 0, Ad = ∇U W · ∇U Fd · ∇W U, (35)

Ad is a singular matrix with an eigenvector degeneracy. The unsplit algorithm is essentially a
predictor-corrector method in which face-centered and time-centered primitive variables are pre-
dicted, followed by a corrector step in which a Riemann problem is solved using the predicted values

to compute a second order accurate estimate of the fluxes: F
n+ 1

2

i+ 1
2 ed ≈ Fd (x0 + (i + 1

2 ed )h, tn + 1
2�t),

where x0 is the position of the lower left corner of the domain, i is a D-tuple index, ed is the unit
vector in the d-direction, h is the grid spacing and �t is the discrete time step. The predictor step is
further divided into a normal and a transverse predictor steps. We fit linear profiles in each computa-
tional cell, and compute slopes �d Wi which are subsequently limited in characteristic space using
Van Leer slope limiting. The normal predictor consists of the effect of the normal derivative terms
on the extrapolation in space and time from cell centers to faces. In this step, we split the primitive
variables as follows

W n
i =

(
W̄ n

i
Bn

i,d

)
. (36)

For 0 ≤ d < D,

W̄i,±,d = W̄ n
i + 1

2
(±I − �t

h
Ād

i )P±(�d Wi ), (37)

Ād
i = Ād (Wi ), P±(W ) =

∑
±λk>0

(lk · W )rk,

Bi,±,d = Bi,d , W n
i,±,d =

(
W̄ n

i,±,d
Bn

i,±,d

)
,

where Ād
i is the matrix obtained from Ad

i after deleting the row and column corresponding to the
normal component of the magnetic field, λk are eigenvalues of Ād

i , and lk and rk are the corresponding
left and right eigenvectors. This step is followed by the so-called “Stone Correction” to the above
normal predicted states.26 This stems from the fact that in multi-dimensions the derivative of the
normal component of the magnetic field in the d-direction is not zero. The Stone Correction is given
as

W̄i,±,d = W̄i,±,d − �t

2

(
∂ Bd

∂xd

)
i
aB, (38)

where aB = {
0, Bk/ρ, ud1 , ud2 ,−(γ − 1)uk Bk

}T
, and dl = mod(d + l, 3); and the term ( ∂ Bd

∂xd
)i is

the derivative of the normal component of the magnetic field in the d-direction, computed using
a standard second-order central difference formula. The above normal predictor step gives us left
and right states at each cell interface. A correction stemming from the transverse derivatives to the
fluxes is required in addition to the normal predictor step. For this transverse predictor step, we
compute estimates of Fd suitable for computing 1D flux derivatives ∂ Fd

∂xd using a Riemann solver. We
employ a seven-wave linearized Riemann solver (see, e.g., Ryu and Jones24) to obtain the primitive
variables at the cell faces, except the normal component of the magnetic field, which is taken as
the arithmetic mean of the left and right states. The entire solution vector at i + 1

2 ed is termed
as the solution of the Riemann problem R(. , .). The fluxes are then computed from the primitive
variables as

F1D
i+ 1

2 ed ≡ F1D(Wi+ 1
2 ed ), Wi+ 1

2 ed ≡ R(Wi,+,d , Wi+ed ,−,d ). (39)
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Final corrections are then made to Wi,±,d due to the transverse derivatives:

W
n+ 1

2
i,±,d = Wi,±,d − �t

2h
∇U W · (F1D

i+ 1
2 ed1

− F1D
i− 1

2 ed1
) (40)

d �= d1, 0 ≤ d, d1 < D.

To obtain a final estimate of the fluxes, we first compute the solution to the Riemann problem using
the time-centered predicted states,

W
n+ 1

2

i+ 1
2 ed = R(W

n+ 1
2

i,+,d , W
n+ 1

2

i+ed ,−,d , d). (41)

Then, using the normal component of the magnetic field at cell faces i + 1
2 ed , compute a cell centered

divergence. To eliminate this divergence, the following Poisson equation is solved using a multigrid
technique with a Gauss-Seidel Red-Black ordering smoother,

∇2χ =
D−1∑
d=0

∂ Bd

∂xd i
. (42)

The magnetic field is then corrected to be Bi+ 1
2 ed = Bi+ 1

2 ed − ∇χ , and substituted into W
n+ 1

2

i+ 1
2 ed ,

which is used to compute the final fluxes F
n+ 1

2

i+ 1
2 ed = F(W

n+ 1
2

i+ 1
2 ed ). These fluxes are used to finally

update the conserved variables via

U n+1
i = U n

i − �t

h

D−1∑
d=0

(F
n+ 1

2

i+ 1
2 ed − F

n+ 1
2

i− 1
2 ed ). (43)

B. Simulation details and grid convergence

The geometry for the nonlinear simulations is as shown in Fig. 2. Periodic boundary conditions
are used in the x-direction and zero gradient boundary conditions are used in the z-direction. In
all simulations, the ratio of specific heats is set to γ = 5/3 and the state upstream of the shock is
used to non-dimensionalize the equations, thus the initial density below the interface is ρ1 = 1 and
the pressure upstream of the shock is p0 = 1. For the reference shock-driven simulation, the initial
density above the interface is ρ2 = 5/4 and the shock has a sonic Mach number M = 1.1. The initial
perturbation amplitude of the interface is η0/λ = 1/50 and the uniform horizontal magnetic field
upstream of the shock is characterised by β = 2p0/B2

x0 = 16 (Bz0 = 0 for all simulations). The
conditions downstream of the shock are obtained from the MHD Rankine-Hugoniot relations. As
the magnetic field is perpendicular to the shock normal, the driving shock is what is known as a
perpendicular shock. Perpendicular shocks are always fast as in their direction of propagation only
the fast characteristic speed is non-zero and is given by c f = (c2

A + a2)1/2. The shock-interaction
process compresses the fluids to higher densities and pressure, increases the magnetic field strength
and compresses the interface perturbation. Post-shock-compression values are used to evaluate the
behavior of the current model. For the reference case, these are ρ1 = 1.10, ρ2 = 1.37, p0 = 1.16,
Bx0 = 0.387, and η0 = 0.0179λ. The magnitude of the impulse is set to the velocity imparted to the
interface in the shock driven problem: V = 0.111. Shock driven simulations of other cases are setup
in the same manner as the reference case, but with altered ρ2, M, η0/λ, or β. The corresponding
model evaluations make use of the resulting post-shock-compression parameters.

A uniform grid spacing of �x = λ/250 is utilized for all simulations used to characterise interface
behavior. To evaluate the adequacy of this resolution, the reference simulation was repeated with
grid spacings of �x = λ/500 (medium grid) and �x = λ/1024 (fine grid). The normalized interface
amplitude histories from these simulations are shown in Fig. 5(a). The amplitude (�η) and frequency
(ω) of the interface oscillations in these histories are estimated using nonlinear least-squares fitting
of the first two periods of data to a function of the form η0 + �ηsin [ω(t − t0)]. The convergence
of these two key statistics is examined using generalized Richardson extrapolation for unequal

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.215.71.79 On: Thu, 20 Mar 2014 14:55:57



016102-10 Wheatley et al. Phys. Fluids 26, 016102 (2014)

FIG. 5. (a) Interface amplitude histories from the shock-driven simulations of a case characterised by M = 1.1, ρ2/ρ1

= 5/4, β = 16, and η0 = λ/50 at different resolutions (�x/λ). (b) Convergence of interface statistics to Richardson
extrapolated values.

refinement ratios, as detailed in Stern et al.27 The orders of convergence of �η and ω are estimated
to be 1.54 and 1.18, respectively. The convergence of these statistics to their Richardson extrapolated
values for �x → 0 (denoted with a superscript *) is shown in Fig. 5(b). For the simulation on the
coarse grid, �η and ω differ from their Richardson extrapolated values by −1.21% and 0.241%,
respectively. This demonstrates that the effect of discretization error on the behavior of the interface,
which is of primary interest here, is acceptably small. In ideal MHD simulations, there is no physical
dissipation to set a minimum length scale, thus point-wise convergence of the solution with grid
refinement cannot be expected. As the grid is refined, numerical diffusion decreases, which, for
example, causes all discontinuities to be more sharply resolved. In order to more clearly illustrate
the wave structures in the vicinity of the interface, results fine-grid (�x = λ/1024) simulations are
used to generate contour plots.

IV. RESULTS

A. The reference case

For the reference case (M = 1.1, β = 16, ρ2/ρ1 = 5/4, and η0 = λ/50), the evolution of vorticity
in the vicinity of the interface from the shock-driven simulation is shown in Fig. 6. The baroclinic
generation of vorticity during the shock-interface interaction is not affected by the magnetic field.
The first frame of Fig. 6 shows the vorticity field immediately following the completion of the shock
interaction. It shows that only a small fraction of the vorticity is transported by the transmitted and
reflected fast shocks while the majority lies on the contact discontinuity, in good agreement with
the linear model at t = 0+. If the vorticity remained on the contact, as in the hydrodynamic case,
its induced velocity would cause the perturbation of the interface to grow and eventually roll-up of
the interface would occur. This cannot occur physically, however, as the MHD Rankine-Hugoniot
relations prohibit steady shear across a contact discontinuity that is penetrated by magnetic field
lines. Instead, the initial vorticity (and current) distribution is seen to break up into two vorticity-
carrying waves that propagate parallel and anti-parallel to the magnetic field. In the incompressible
limit, these waves are discontinuous, finite amplitude shear Alfvén waves. At each point, their phase
speed is equal to the local Alfvén speed. The corresponding waves in the compressible simulation
are closely approximated by incompressible waves as only small perturbations in density occur
through them. In Fig. 6, it can be seen that the structure of these waves remains unchanged as they
interact with each other. At t = T/2, where T = 2π /ω is the theoretical period from the linear model,
the waves constructively interfere to form a vorticity distribution π radians out-of-phase with the
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FIG. 6. Evolution of vorticity in the vicinity of the interface from the shock-driven simulation of the reference case (M
= 1.1, ρ2/ρ1 = 5/4, β = 16, and η0 = λ/50). The position of the interface is indicated by a single white density contour
corresponding to ρ = (ρ1 + ρ2)/2. Note that the domain has been rotated clockwise by π /2 radians to make the figure more
compact.

original. This will reverse the growth of the interface perturbation caused by the vorticity distribution
at t = 0+. The periodic constructive interference (with alternating phase) of the waves continues
with time and causes the interface to oscillate, as predicted by the linear model.

The nonlinear simulation has established that waves do exist in the vicinity of the interface
to support shear across the matching region while allowing the contact discontinuity to satisfy the
relevant jump conditions. We now investigate whether the linear model, which was derived by
integrating across this region, can accurately predict the behavior of the interface. This is assessed in
Fig. 7, which shows the interface amplitude histories from the incompressible model and the shock-
driven compressible simulation. The model accurately predicts the oscillatory nature of the interface
motion, with the frequency ω being predicted to within 1.6%. This difference is significantly greater
than the estimated numerical error in ω of 0.24%, thus the agreement is unlikely to be fortuitous. The
same statement holds for all model-to-simulation frequency comparisons made in Secs. IV B–IV E.
The wave structure observed in the compressible simulation indicates that the path-length of each
wave is evenly split between the two fluids. Thus the period of the waves, and consequently the
interface oscillation, can be estimated by

Twave = λ/2

cA1
+ λ/2

cA2
= λ

2B

(√
ρ1 + √

ρ2
)
,

assuming the waves travel at the Alfvén speed in each fluid and are solitary. The ratio between the
corresponding oscillation frequency and that predicted by the incompressible model is given by

ωwave

ωmodel
=

√
1
2 (ρ1 + ρ2)

1
2

(√
ρ1 + √

ρ2
) .

For the reference conditions, this ratio is approximately 1.002, which explains the accurate prediction
of the simulated oscillation frequency. The amplitude of the oscillations, �η, in the simulation is
over-predicted by the model of an average of 12.6% over the first two periods. The numerical
error in �η from the simulation, estimated to be −1.2%, makes a relatively minor contribution to
this over-prediction. For all cases examined in Secs. IV B–IV E, the estimated numerical error in
�η is also small compared to the difference between model and simulation. Figure 7 shows that
for the reference case, the agreement is initially closer than 12.6%, but as numerical dissipation
damps the oscillation of the interface in the simulation, the discrepancy in �η increases. Two factors
that contribute to the model over-predicting �η can be readily identified: First, the model does
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FIG. 7. Interface amplitude histories from the shock-driven simulation and the linear model of the reference case. The
shock-driven case is characterised by M = 1.1, ρ2/ρ1 = 5/4, β = 16, and η0 = λ/50.

not account for the small fraction of vorticity that is rapidly transported from the interface by the
transmitted and reflected fast shocks. Second, the model treats all vorticity as being present at z =
0 and takes w′(x, 0, t) to be the interfacial growth rate, effectively neglecting the amplitude of the
interface and waves in z as these are second-order effects. For finite perturbation amplitudes, such
as the 2% used in the reference case, this vertical displacement reduces the induced velocities at the
interface extrema and thus �η.

B. Effect of increasing shock strength

To assess the effects of increasing shock strength on the MHD RMI, simulations have been
carried out for incident shock sonic Mach numbers of M = 1.25 and M = 2, with the remaining
parameters fixed to their values in the reference case. The interface amplitude histories from these
simulations are compared to the M = 1.1 reference case and predictions from the model in Fig. 8.
As shock strength increases, both the frequency and amplitude of the interface oscillations increase
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FIG. 8. Interface amplitude histories from the shock-driven simulations and the linear model for ρ2/ρ1 = 5/4, β = 16,
η0 = λ/50, and various M.
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and appear to scale as predicted by the model. Greater shock compression at higher Mach numbers
causes both ρ and B at the interface to increase with M. As the oscillation frequency scales with
B/

√
ρ, this results in a sub-linear increase in ω with M. The accuracy of the frequency predicted by

the model appears insensitive to M: the relative difference from ω extracted from the corresponding
simulation is 1.6% at M = 1.1, 1.4% at M = 1.25, and −1.5% at M = 2.

The growth in �η with M is a result of the increasing velocity V imparted to the interface. This
overwhelms the damping effect of the increase in ω ∝ B/

√
ρ. The model predicts �η reasonably

at all M simulated: the relative difference is 12.6% at M = 1.1, 4.4% at M = 1.25, and −10.3% at
M = 2. Figure 8 reveals a large initial spike in η for M = 2 that is not captured by the model. This
is likely due to the growth caused by the vorticity transported by the transmitted and reflected fast
shocks, which is only significant at early times when these shocks are close to the interface.

C. Effect of increasing magnetic field

To assess the effects of increasing magnetic field strength on the MHD RMI, simulations have
been carried out for β = 4 and β = 1, with the remaining parameters except M fixed to their values
in the reference case. In order for the incident shock to exist for all β investigated, M = 2 was
used. The interface amplitude histories from the β = 16 and β = 1 simulations are compared to
predictions from the model in Fig. 9. It can be seen that, as predicted by the model, increasing
magnetic field strength restricts �η and increases ω. There are two primary causes of these effects:
the vorticity carrying waves in the vicinity of the interface propagate faster, causing more rapid
but smaller amplitude oscillations; and the compression of the shock decreases, resulting in lower
baroclinic vorticity production. The lowering of shock compression with increasing β results in the
velocity imparted to the interface by the shock interaction dropping from V = 1.33 at β = 16 to
V = 1.21 and V = 0.779 at β = 4 and β = 1, respectively.

Figure 9 indicates that for β = 1, the interface deviates from sinusoidal oscillation at early
times. This can be understood by examining how the distribution of vorticity at early times changes
with β, which is illustrated in Fig. 10. For β = 16, the majority of vorticity lies on the interface at
early times, while for β = 1 a much greater fraction is transported by the transmitted and reflected
fast shocks. The vorticity on the fast shocks has constant phase with respect to the interface. Thus,
it causes growth of the interface rather than oscillation, with the growth rate decaying as the shocks
propagate away from the interface. For β = 16, the vorticity on the fast shocks is weak enough that
it induces only a perturbation on the oscillatory behavior of the interface. For β = 1, however, it is
strong enough to cause a significant departure from sinusoidal oscillation for the first two nominal
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FIG. 9. Interface amplitude histories from the shock-driven simulations and the linear model for M = 2, ρ2/ρ1 = 5/4,
η0 = λ/50, and various β.
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FIG. 10. Post shock-interaction vorticity (left half frames) and density (right half frames) fields for M = 2, ρ2/ρ1 = 5/4, η0

= λ/50, β = 16 (top), and β = 1 (bottom).

periods. This non-sinusoidal behavior, coupled with the removal of vorticity from the vicinity of the
interface (in the model, all vorticity remains there), naturally causes the incompressible model to be
inaccurate for strong magnetic fields. The relative difference in �η increases from −10.25% at β =
16 to −38.6% at β = 4 and finally 48.6% at β = 1.

D. Effect of increased perturbation amplitude

The incompressible model predicts η(t)/η0 is independent of η0. To investigate how valid this
is in the nonlinear compressible case, additional simulations were carried out for η0/λ = 1/100 and
η0/λ = 1/10. Values from the reference case were used for the other parameters. The normalized
η histories from these simulations are compared to that from the reference case and the model
prediction in Fig. 11. The oscillation frequencies from all three simulations are in good agreement
with the model, with the maximum difference being 1.9%. For the lower η0 simulations, �η is also
reasonably predicted by the model with differences of 10.9% and 12.6% for η0/λ = 1/100 and η0/λ
= 1/50, respectively. For η0/λ = 1/10, however, �η/η0 is substantially lower, resulting in the model
over-predicting it by 69.6%. This discrepancy is due, in part, to the model approximating all vorticity
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FIG. 11. Interface amplitude histories from the shock-driven simulations and the linear model for M = 1.1, β = 16, ρ2/ρ1

= 5/4, η0 = λ/50, and various η0.
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FIG. 12. Interface amplitude histories from the shock-driven simulations and the linear model for M = 1.1, β = 16, η0

= λ/50, and various ρ2/ρ1.

as being present at z = 0 and taking w′(x, 0, t) at to be the growth rate of η. For larger η0, the vertical
extent of the interface and the waves substantially decreases the growth rate of η.

E. Effect of increasing Atwood number

The effect of fluid densities on the MHD RMI was investigated for density ratios (ρ2/ρ1) of 5/4,
2, and 3, corresponding to Atwood numbers (A) of 1/9, 1/3, and 1/2, respectively. The normalized
η histories from the relevant simulations are shown in Fig. 12, along with the incompressible model
predictions. As ρ2 is increased, the Alfvén speed in the heavy fluid decreases like ρ

−1/2
2 , which

causes the observed decrease in ω. This decrease is accurately predicted by the model, with the
maximum discrepancy in ω for all three simulations being 1.8%.

FIG. 13. Evolution of vorticity in the vicinity of the interface from the MHD RMI simulation with M = 1.1, ρ2/ρ1 = 3
(A = 1/2), β = 16, and η0 = λ/50). Frames are equispaced in time and span approximately half an oscillation period. The
position of the interface is indicated by a single white density contour corresponding to ρ = (ρ1 + ρ2)/2. Note that the
domain has been rotated clockwise by pi/2 radians to make the figure more compact.
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Figure 12 shows that �η increases rapidly with A. This is due to a combination of the linear
dependence of the interfacial growth rate on A and the decrease in ω, to which the growth rate
is inversely proportional in the model. For the first oscillation period, the model predicts �η with
similar accuracy for all A considered. For higher A, however, the interface oscillations become
more rapidly dissipated. To investigate the cause of this, the evolution of the wave structure near the
interface for A = 1/2 is plotted in Fig. 13. As the vorticity carrying waves traverse the interface in
the x-direction, they appear to produce transmitted and reflected waves. This continuously increases
the complexity of the wave structure. It is likely that this process also occurs at lower A, but that
the additional waves generated are too weak to appear in the visualizations presented. In the final
frame of Fig. 13, after approximately half an oscillation period, the system of waves has coalesced
to resemble the original vorticity distribution, but π radians out-of-phase. Thus, the more complex
system of waves is still capable of producing oscillatory behavior. However, the fine scale wave
structure present in this case will be more rapidly diffused by numerical dissipation, which causes
�η to decay with time.

V. CONCLUSIONS

We have investigated the MHD Richtmyer-Meshkov instability for the case where the initial
magnetic field is unperturbed and aligned with the mean interface location. This differs from the
situation modeled by Cao et al.,16 who assumed the magnetic field lines have the same initial pertur-
bation as the interface. In both cases, the impulsive acceleration results in the interface perturbation
amplitude oscillating with time, but the small change in the initial conditions greatly alters the flow
physics at the interface and hence the mechanism by which the instability is suppressed. In the work
of Cao et al.,16 the interface is permitted to be a vortex sheet and the instability is suppressed by mag-
netic field line tension. In the case investigated here, the vorticity distribution present on the interface
immediately after the shock interaction breaks up into waves traveling parallel and anti-parallel to
the magnetic field, which transport the vorticity. The interference of these waves, with alternating
phase, as they propagate causes the perturbation amplitude of the interface to oscillate in time. This
interface behavior is accurately predicted over a broad range of parameters by the incompressible
linear model we have developed, which integrates across these waves and the interface. Owing to
our use of an equilibrium initial condition, the predicted dynamics are driven only by the impulsive
acceleration.

We have carried out nonlinear compressible simulations to investigate the behavior of the
transverse field MHD RMI, and the performance of the incompressible model, over a range of shock
strengths, magnetic field strengths, perturbation amplitudes, and Atwood numbers. The performance
of the model was found to be reasonably insensitive to shock strength, accurately predicting the
increase in oscillation frequency and amplitude with Mach number. When the strength of the
magnetic field was increased, the interface oscillations followed the trend of increasing frequency and
decreasing amplitude predicted by the model. However, the fraction of vorticity carried by transmitted
and reflected fast shocks increased with field strength, causing the interface behavior to deviate from
sinusoidal oscillation at early times, which resulted in the model being quantitatively inaccurate.
For increasing initial perturbation amplitude, the increase in oscillation amplitude was below the
linear scaling predicted by the model, but the oscillation frequency was accurately predicted for all
amplitudes investigated. Finally, we found that the decrease in frequency and increase in amplitude
of interface oscillations with increasing Atwood number were well predicted by the model at early
times. In the simulations, however, the oscillations became more rapidly dissipated with time as
the Atwood number was increased. The wave structure in the vicinity of the interface was found to
become more complex with time.
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