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ABSTRACT

An analytical function for the spectrum of spinning dust emission is presented. It is derived through the application
of careful approximations, with each step tested against numerical calculations. This approach ensures accuracy
while providing an intuitive picture of the physics. The final result may be useful for fitting of anomalous microwave
emission observations, as is demonstrated by a comparison with the Planck observations of the Perseus Molecular
Cloud. It is hoped that this will lead to a broader consideration of the spinning dust model when interpreting
microwave continuum observations, and that it will provide a standard framework for interpreting and comparing

the variety of anomalous microwave emission observations.
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1. INTRODUCTION

The existence of an anomalous component of diffuse mi-
crowave emission is well established, though it has yet to mature
as an astrophysical probe. This emission was first detected as a
cosmological foreground by Kogut et al. (1996) and de Oliveira-
Costa et al. (1997), and was first discovered to be anomalous
by Leitch et al. (1997) in observations near the north celestial
pole. It was quickly demonstrated by Draine & Lazarian (1998,
DL98 hereafter) to be consistent with electric dipole radiation
from very small dust grains, a process now commonly referred to
as spinning dust emission. This explanation has gained wide fa-
vor, though perhaps prematurely, as it remains to be proven that
this is the cause of the north celestial pole emission. Free—free
emission from very hot gas and magnetic dipole emission from
dust grains (Draine & Lazarian 1999; Draine & Hensley 2013)
may plausibly explain the anomalous emission in this region
and in some others.

Anomalous microwave emission has now been observed
by many authors in a variety of Galactic and extragalactic
environments (Finkbeiner et al. 2002; Finkbeiner 2004; Murphy
et al. 2010, 2012; Lu et al. 2012). The emission is characterized
by a broad peak around 20-40 GHz, spatial correlation with
dust on degree scales, peak brightness roughly four orders of
magnitude less than that of thermal dust emission, and little
polarization (Rubifio-Martin et al. 2012). Puzzlingly, a strong
correlation with infrared tracers of small grains at arcminute
scales has not been observed (Tibbs et al. 2011, 2012).

The original model of DL98 was derived under the key as-
sumptions of a Maxwellian distribution of grain angular veloc-
ity, grain rotation about the axis of maximum moment of inertia,
simple grain geometries (spherical, disk-like, and rod-like), and
electric dipole moments of the grains based on random walks
over chemical bonds. This model found wide success in fit-
ting anomalous microwave emission measurements. Finkbeiner
et al. (2004) and Gold et al. (2009) are notable examples of this.

Lazarian & Draine (2000) explored the theory of polarized
spinning dust radiation, finding that the radiation could not be
polarized by more than 10%, and even then only below 10 GHz.
Since then, observational studies have consistently found upper
limits of anomalous microwave emission polarization at the
percent level (Dickinson et al. 2007; Mason et al. 2009;
Macellari et al. 2011; Rubifio-Martin et al. 2012). These upper

limits have been interpreted to support the spinning dust model.
Most recently, Hoang et al. (2013) used the 2175 A polarization
feature, as observed for two stars, to argue that the spinning dust
polarization should peak at 3% at 5 GHz, and decrease rapidly
above 20 GHz.

Since DL98, spinning dust theory has advanced in both pre-
cision and scope. Rafikov (2006) applied the theory to proto-
planetary disks, while Ysard & Verstraete (2010) showed that
a quantum treatment gave the same results as the classical ap-
proach of DL98. Ali-Haimoud et al. (2009, AHDO09 hereafter)
advanced the theory by allowing for non-Maxwellian distribu-
tions of grain rotation via the Fokker—Planck equation, through
refined treatments of the excitation and damping processes, and
by producing the SpDust IDL package, which allowed users to
calculate custom spectra given astrophysical parameters. Hoang
et al. (2010, HDL10 hereafter) considered the dramatic ef-
fects of irregular rotation about non-principal axes and used
the Langevin equation instead of the Fokker—Planck equation
to capture the transient effects due to collisions with individual
ions. Silsbee et al. (2011, SAH11 hereafter) updated SpDust
to include irregular rotation and improved calculations of the
rotational damping and excitation. Hoang et al. (2011, HLD11
hereafter) extended the theory to irregularly shaped grains and
further explored the distribution of rotational energies arising
from vibrational-rotational energy coupling. These refinements
and extensions have been accompanied by increases in com-
plexity: the latest models depend on upward of 30 parameters.

SpDust has had a large impact on this field. It allows for quick
calculation of models using nine physical parameters and has
shown great utility in fitting observations (Planck Collaboration
2011). Its use has been limited, however, in cosmological
foreground separation. Nine parameters is more than the shape
of the spectrum justifies, and the code runs too slowly to allow
rapid exploration of multi-dimensional parameter space.

Foreground separation efforts have instead resorted to simple
analytical models with three parameters or less. No single
function has found wide use. Bonaldi et al. (2007), following
Tegmark (1998) and de Oliveira-Costa et al. (2004), suggested
a parabola in log S—log v space, Tegmark et al. (2000) put forth
a modified graybody, and Gold et al. (2009) simply shifted the
numerical models of DL98. Although expedient for fitting, these
approaches do not easily lead to astrophysical interpretation. An
analytical function that is easily relatable to the physics would
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offer an advantage: it would be well suited to fitting and to
interpretation. It is the aim of this paper to provide such a
function by analytically deriving the spinning dust spectrum
through use of careful approximations.

The approach in this study is to follow the derivation of
SAHL11, but using analytical approximations where numerical
calculations would otherwise be required. The approximations
are tested against the results of SpDust to demonstrate where
they succeed in capturing the numerical model. As this approach
uses the Fokker—Planck equation instead of the Langevin
equation, it is not possible to reproduce the transient spin-up
effects of HDL10. These effects were shown to be contained
in the high-frequency fall-off the spectrum, and their exclusion
does represent an inaccuracy in this new approach. The triaxial
grains and range of vibrational-rotational energy coupling
considered in HLD11 are not directly addressed in this paper,
although the present treatment of irregular rotation is extensible
to such effects. These omissions should be considered when
applying this model to data. Polarization of the spinning dust
radiation is not considered.

This paper is structured as follows. An overview of the
derivation steps is provided in Section 2. Section 3 describes the
assumed dust properties. The rotational distribution function,
and its dependence on environment, is discussed in Section 4.
Section 5 presents the emissivity itself, including a treatment of
irregular rotation. Finally, Section 6 provides a discussion of the
derived function, its use, and various caveats.

2. OVERVIEW

The total emissivity of an ensemble of rotating grains, j,/ng,
is the integral of the emissivity of grains of a given size, j,
weighted by the grain size distribution, 1/ny dng/da. This is

written as
j b l Amax

dn
a—=j.

da
The grain emissivity is calculated by integrating emitted power

over the angular momentum and electric dipole moment distri-
butions,
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in which f,(J, w)is the angular momentum distribution function
for grains of size a and electric dipole moment p, P(u) is
the electric dipole moment distribution, and Peq ,,(J, i) is the
power emitted at frequency w. This last function accounts for
the complex, torque-free motion of aspherical grains (called
“wobbling” in HDL10 and “tumbling” in SAH11).

The integrals benefit from two changes of variable. The first
is to calculate rotation using the ratio of angular momentum to
maximum moment of inertia,

=2 3)

=1
rather than the angular momentum itself. Q is henceforth
referred to as the rotation rate, though it is understood that this
label is only truly accurate in the non-tumbling case. The second
is to separate the electric dipole moment from the grain size
using a new variable b (as discussed in Section 3.5). Equation (2)
then becomes

Jy =2m /OO deQ/wdbfa(Q, D)P(D)Pey.n(2,D). (4)
0 0
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Table 1
Important Variables Used in this Paper
Variable Description Equation
a Grain size 5)
Nat Number of atoms (5), (6)
L L Distribution of )
B Normalization of a distribution (6)
ay, Minimum grain size 6)
aop Peak grain size (6)
o Width of a distribution 6)
b Normalized electric dipole moment (8)
€ip In-plane b fraction an
P(b) Distribution of b ()]
B Width of b distribution )
Np Dimension of b distribution )
Q Grain rotation rate 3)
w=2mv Radiation frequency (22)
qr Ratio of w to Q 22)
fa(Q, D) Q distribution function (12)
Ag Exp. coefficient of Q distribution (15)
o Power law on a (15)
ap Power law on b (15)
o Power law on Q (15)
Qpa Peak Q for size a a7
Z.(Q) Q distribution, integrated over (32), (33)
To Normalization of Z, (34)
o0 Width of Z, (35)
Ped.o(Q, D) Emission from single grain (20)
R(w, Q) Dimensionless emission spectrum (20), (27)
Ry Normalization of R 27
oy Width of R 27)
Js Emissivity for grains of size a ), (31, (36)
oy Width of j (37)
Jv/nH Total emissivity per H (1), (39)
o Power law of j,/ny 41)
oy Log-normal width of j,/ng 42)
Vo Characteristic frequency of j,/ng (40)
Ny Error function slope for v (45)
Na Error function slope for a;, (46)

The strategy adopted in this paper is to make a number of judi-
cious simplifications aimed at approximating Equation (4) as a
log-normal function. Equation (1) is then evaluated analytically
to give the desired result.

A large number of symbols are used in this paper. For the
convenience of the reader, the most important of these are
compiled in Table 1.

3. DUST GRAINS

Spinning dust emission is sensitive to fundamental proper-
ties of the grains. The grain sizes and permanent electric dipole
moments are the most important; geometry and charge are of
lesser concern. A simple thermal calculation shows that ro-
tation at tens of GHz requires subnanometer grains. Such a
population is consistent with the polycyclic aromatic hydro-
carbon population described in Weingartner & Draine (2001,
WDO1 hereafter) and Draine & Li (2007), although debate per-
sists regarding the relative importance of aliphatic and aromatic
structures in these grains (Kwok & Zhang 2011). This popu-
lation is needed to explain the observed infrared emission and
its properties can be constrained by observations of ultraviolet
extinction.
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3.1. Size

If a is the spherical-equivalent radius, then the number of
atoms per grain is roughly

). 5)

consistent with the prescription of Li & Draine (2001) if there
is one hydrogen atom for every three carbons. The grains of
interest thus contain fewer than 600 atoms. The smallest may
be plausibly described as large molecules.

A log-normal size distribution is conventionally assumed
for these grains (WDO1; Compiegne et al. 2011). As noted
by WDOI1, this form is not motivated by physics, but by
mathematical convenience. This distribution is accompanied
by a second log-normal distribution peaking at 3nm and a
power law extending beyond 0.1 um, though these additional
components are insignificant below 1 nm. Inspired by photolytic
considerations (Guhathakurta & Draine 1989), the distribution
is assumed to truncate sharply at a smallest grain size. I therefore
approximate the size distribution as

dt~600(
1 nm

0 a < ay
1 dng

_ 2
a da ﬂexp{—% [—log(a/ao)] } a = ay. ©
a

o

Following WDO1 and AHDO09, the values B; = 1.2 x 1076,

= 0.4, and a9 = 3.5A are used when calculating model
parameters, though in practice these can be varied if the data
require. In particular, B; represents the abundance of the small
grains and there is no reason to expect it to be fixed by nature.
Breaking from previous approaches, I do not assume that ay and
ay, are equal.

The log-normal form of Equation (6) heavily influenced the
mathematics of this paper. Different size distributions would
require different approximations to be made in Sections 5.1
and 5.2, resulting in a qualitatively different analytical forms
for j,/ny.

3.2. Shape

It is unlikely that these grains have simple shapes. DL9S8 as-
sumed rod-like and disk-like geometries for the smallest grains,
inspired by aliphatic and aromatic molecules. Spherical shapes
were assumed for larger grains. Sharp transitions between these
occur at sizes a; and ap, with the grains smaller than a; being
rod-like, grains larger than a; but smaller than a;, being disk-like,
and grains larger than a, being spherical. Later models followed
DL98 in setting a, = 6 10%, but set a; = 0. These precedents are
followed here, though it is shown in Section 5.3 that a, has little
effect on the final result.

Grain shape influences the rotational distribution functions
by way of grain cross sections, charge distributions, and electric
dipole moment geometry. These effects are felt in the numeri-
cally calculated values of the parameters of Equation (15) and
when considering the irregular rotation of grains. In Section 5.1,
the effects of geometry and irregular rotation are parameterized
as part of the full derivation. This parameterization is applicable
to the range of plausible geometries, although only disk-like and
spherical grains are explicitly considered.

3.3. Temperature

The internal temperatures of the grains are not constant. The
grains are transiently heated by UV photon absorption and cool
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near to ground state before the next UV photon is absorbed.
The result is a grain temperature distribution (Guhathakurta &
Draine 1989). This is important for the rotational distribution
functions, as it will affect IR photon emission rate and the atom
desorption rates and evaporation temperatures.

The temperatures of the grains will be coupled to their
rotational energy. HDL.10 and HLD11 showed that the strength
of this coupling, or the rate of internal relaxation, has a
significant effect on the grain tumbling. In the case of strong
coupling, there will be a minimum vibrational temperature at
which coupling can occur (due to the sparsity of the vibrational
mode spectrum at low temperatures). If this temperature is much
greater than the rotational energy of the grain, then there will
be a uniform distribution of sin 6, where @ is the rotation angle:
the angle between the grain’s angular momentum and axis of
maximum moment of inertia. This is the case considered by
SAHI11. Conversely, if the decoupling temperature is much
less than rotational energy, then the rotation angle will be
zero. When coupling is weak, the rotation angle is governed
by a Maxwellian distribution. Section 5.1 explicitly calculates
the grain tumbling in the case of strong coupling with a high
decoupling temperature, though the suggested parameterization
can also be applied to the other cases.

3.4. Charge

Collisional and photoelectric charging of grains has implica-
tions for electric dipole moments and interaction cross sections.
DL98 considered this and presented the charge distribution func-
tions for a variety of grain sizes and environments. Subnanome-
ter grains had typical charges between —1 and 3. Such small
charges are unlikely to dominate the electric dipole moments.
They are, however, important when calculating grain rotation
rates (see Section 4).

3.5. Dipole Moment

The intrinsic, electric dipole moments of the grains are
poorly constrained observationally, and attempts to derive them
theoretically are subject to uncertainty in the specific chemical
compositions of the grains. DL98 instead assumed a typical
moment per molecular bond b and used a random walk over all
bonds to get the total dipole moment . AHDO9 extended this
by having © normally distributed. The variance is then

(1?) = NuB*. 7)

Note that this distribution is a function of grain size.

With the aim of separating the integrals over grain size
and dipole moment cleanly, I have taken a different approach.
Defining the normalized dipole moment, b, via

1%
at

allows use of the normal distribution

7}1
2(%)° N b>2
P(b = exp|——= (=) |- ©
)= Ty s () p[2<ﬂ ©)
N, is the dimensionality of the distribution and is 1, 2, or 3
for linearly, cylindrically, and spherically distributed dipole mo-

ments. I'(x) is the gamma function. When calculating numerical
parameters, B is taken as 0.4 D.
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SAHI11 considered the case of disk-like grains with three-
dimensional electric dipole moment distributions, which could
be due to disk warping from pentacyclene structures. They
parameterize this possibility via the in-plane fraction of the
dipole moment:

(1)

o Wl 10
P {10

The out-of-plane fraction is similarly defined, and
€ip +€op = 1. 1D

4. DISTRIBUTION FUNCTION

The physics of dust grain rotation is nontrivial. A rotational
distribution function is desired, which will be a function of
grain size and astrophysical environment. Smaller grains tend
to rotate faster due to smaller moments of inertia, while for a
given grain size, the preferred rotation rate is the result of a
variety of excitation and damping mechanisms.

It is useful to think of rotation rate using an intuitive picture,
in which the various excitation and damping mechanisms
are competing to thermalize grain rotation to their respective
temperatures. Torques from the emission of infrared photons
(which follow thermal spikes due to UV photon absorption) push
the grain rotation toward the average IR radiation temperatures,
which depend upon the grain heat capacities and emission
spectra and can reach ~103 K. Desorption of atoms (adsorbed
via gas collisions) pushes to the evaporation temperature, of
the order of 10?K. Plasma interactions cause the rotation
to tend to the gas temperature, which varies widely with
interstellar phase. At the same time, drag from the electric
dipole emission itself can limit grain rotation, causing the
distribution function to fall off non-thermally at high rotation
rates.

Detailed treatments of these effects need to be done numeri-
cally, and no attempt to reproduce or improve upon these efforts
are made in this paper; see DL98, AHD09, HDL10, and SAH11
for careful discussions and calculations. Rather, I will show
how a simple parameterization of the distribution function can
encompass the important effects.

AHDO09 and SAHI11 used the Fokker—Planck equation to
calculate the distribution function. This differential equation
allows one to account for damping and excitation of a stationary
system from small impulses. Adapted from SAHI11,

dfa (@)  InQF fi (@) _

0, 12
dQ kT G Q (12)
where
F=Y"F (13)
J
and
G=)G; (14)
J

are the sums of the dimensionless damping and excitation
coefficients. Note that while SAH11 treated the electric dipole
damping as a separate term, itis included here as one of the F}. In
the current work, the above is simplified further by assuming that
the actions of dipole moment, grain size, and rotation frequency
are separable and are described by power laws (with influences
of interstellar medium environment, grain charge, and grain
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Figure 1. Power-law parameters from Equation (15) plotted against peak
rotation frequency for the ideal interstellar environments. Parameters are
calculated numerically from SpDust. Data are listed in Table 2.

temperature being folded into the parameterization):

IyQ* F b\ QA"
(B () () o
kT G ,3 ap Q‘,,,an

In quantifying these assumptions, this equation serves as the
definition of the power-law indices and the peak rotation
frequency €, ,, for grains of size ag. Q, 4, is guaranteed to
be the peak frequency of the rotational distribution function by
the definition of Ag,

2 _ (Ne\*
=(7)
o (T(8/0t)T(Np/2 + 1 — Sap /20,) P
[T(7/a)T(Np /2 + 1 — 20 /o, )P [T/t )T(Np /2 + 1 — 3atp Jay )P
(16)

Although quite useful, it should be clear that reducing the
Fokker—Planck equation to this form may introduce degeneracy
amongst the astrophysical parameters and ultimately limit the
physics one can infer when fitting this model.

The power-law indices and rotational peak can be acquired
directly from Equation (15) given numerically calculated tables
of the F;j and G;. SpDust was used to do this for the idealized
environments of DL98: cold neutral medium (CNM), dark cloud
(DC), molecular cloud (MC), photodissociation region (PDR),
reflection nebula (RN), warm ionized medium (WIM), and
warm neutral medium (WNM). The results of these calculations
are presented in Table 2. For each environment, the parameters
are calculated for disk-like (1) and spherical (2) grains at
sizes of 4.5A and at 6.3 A. The peak rotation frequencies are
extrapolated to ag and a;.

These parameters are plotted in Figure 1. If the astrophysical
parameters were not already degenerate prior to imposing
Equation (15), then the correlations between these parameters
ought to be weak. As can be seen, however, the parameters are
highly correlated. The dichotomy seen in «;, and o, reflects the
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Environment
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Table 2
Rotational Distribution Function Parameters
Parameter
Calculated at 4.5 A Calculated at 6.3 A
o ap oy Qpq Qp 4 (o2 o oy Qpa Qpay

CNM (1) 5.01 1.63 3.86 98.6

2) 5.09 1.54 3.93 153.3
DC (1) 5.69 0.12 2.10 70.9
2) 4.56 0.14 2.13 1154
MC (1) 5.05 1.59 3.32 126.5
2) 3.53 1.57 3.36 200.9
PDR (1) 6.66 0.13 2.13 367.6
2) 5.95 0.25 2.25 653.2
RN (1) 6.19 0.31 2.33 200.5
2) 5.20 0.52 2.54 3555

WIM (1) 4.71 1.69 3.97 93.4
2) 4.92 1.57 4.01 146.6

WNM (1) 4.28 1.73 3.95 81.6
2) 4.62 1.64 3.99 127.9

135.3 5.49 1.32 3.36 60.9 66.1
210.3 5.43 1.29 3.58 94.8 102.3

137.1 6.10 0.06 2.01 26.8 31.3
194.4 4.60 0.11 2.04 54.4 61.0

183.3 5.93 1.47 2.58 67.2 75.4

259.7 5.63 1.60 2.83 124.8 137.9
787.4 6.67 0.01 2.01 120.6 142.5
1243.2 5.79 0.03 2.03 253.8 292.9

383.3 6.23 0.04 2.03 74.0 86.4
584.9 5.31 0.10 2.10 161.3 183.1

125.2 4.39 1.60 3.79 62.6 66.4
197.8 4.99 1.44 3.88 95.1 101.5

106.3 421 1.58 3.71 56.2 59.4
169.7 4.80 1.50 3.82 84.4 89.9

Notes. (1) Disk-like grains. (2) Spherical grains.

cases of whether or not electric dipole damping is dominant, with
op ~ 0 and «, ~ 2 in the latter case. The correlation between
a, and €, 4 is more subtle, as the various F; and G; depend
on a to different degrees. The result of these correlations is the
implication that the astrophysical parameters are themselves
highly degenerate, and that inferring environmental physics
from this emission would be challenging even without the
power-law approximation.

It is useful to define, €, 4, the peak rotation frequency for

grains of size a,
a g Qp a oy
— — =1. an
ap Qp,ao

Equation (15) becomes

IMQZF_ A b\ [ Q \* (18)
it ¢ \g) \Q,.)

and the Fokker—Planck equation is integrated to give
avAz{a” b 3ap/ay,
4711“(3/01”)9;,0 B

conl () ()]
p Q B Q. .

The validity of this approach is demonstrated in Figure 2.
Distribution functions for a variety of grain sizes are plotted
for the CNM environment. Curves calculated from SpDust are
compared to the results of the power-law approximation (extrap-
olated from 4.5 A grains). Agreement is satisfactory for grains
smaller than 6 A, but then deteriorates rapidly. This disagree-
ment is due to variations in ¢, and «, (indicating a failure
of the power-law approximation), also shown in this figure.
This figure demonstrates that the power-law approximation is
reasonable over small ranges in grain size, but becomes a sig-
nificant source of error when used over wider ranges of sizes
and frequencies. In particular, one should be careful when using
parameters derived at g = 3.5 A when a,, > 6 A.

fa(Q2, b) =

47 f, (,b)

Parameters
[\
/>
2
|

5 10 20
Q/2r (GHz)

Figure 2. Rotational distribution functions for grains of various sizes in the
CNM environment with b = B are shown in the upper panel. Solid, black curves
show the analytical, power-law approximation. Gray, dashed curves show the
numerically calculated functions from SpDust. Lower panel shows the variation
of power-law parameters with grain size.

5. EMISSIVITY

It is now possible to seek a solution to the integrals in
Equations (1) and (4). Further approximations will be needed
in order to achieve an analytical result, and a log-normal form
is suggested by the grain size distribution. These integrals are
approached with this goal in mind. I first consider the effects
of grain tumbling, then find a log-normal approximation for j¢,
and finally complete the derivation of j,/ny.

In the following, tumbling is only considered in the case of
axisymmetric grains with strong vibrational-rotational coupling
and high decoupling temperatures, resulting in a uniform dis-
tribution in the sine of the rotation angle. Although these tech-
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niques may also be applied to triaxial grains and the broader
variety of vibrational-rotational coupling, these cases are not
treated here.

5.1. Grain Tumbling

The effects of irregular grain rotation manifest themselves
in the power emitted by a single grain. In general, this can
written as

»: ot
Peq (Q,0) =Ppo—5 ——R(0,Q), (20
B> Qs ,
where 5 .
2 B*Nyw, ,
e = _m. 1)
' 3 c3

This form naturally allows for the various permutations of grain
geometry and rotation dynamics, with the emission spectrum
itself being contained in the R function. The emission frequency
is related to rotation frequency by

» = q,Q, (22)
and the emission spectrum is described by R(w, €2).
In the non-tumbling case, ¢, = 1. The spectrum is a delta
function:
R (w, Q) = €ipd (w — Q) (23)
or )
R(w,Q) = 58 (w— Q) (24)

for disk-like and spherical grains, respectively. In the case of
tumbling, there is emission due to the in-plane and out-of-
plane electric dipole moments. From SAH11, the out-of-plane
emission has g, = 2 and

260 5 (0 — 200). (25)

R(w, Q) = 3

while in-plane has

. 4 2
€ip @ ( a))
——(3-= Q<w<3Q
4q* Q

4 2
€p W w
— |1 - = w <
o ()
The latter case does not lend itself to analytical progress, so
it is approximated it with a log-normal function having the
same first and second moments. This approximation is shown in
Figure 3. The fit is clearly not perfect, yet it deviates by less than

10% of the peak across most of the range. The approximated
function is

R(w,Q) = (26)

— o273
R(w, Q) ~ —1[1°g(“’/q’9) G’} } 7)

Ry
——ex
2rorw P 2 o,

with integral

Sfip
Ro="¢ (28)
width
o’ ~0.0518 (29)
and peak
qr ~ 1.775. (30)

STEVENSON
T
10.0 | -
—~ 1.0 E
C}.\
3
= 0.1 k
“w |
| &
>
0.01 | <F

0.3

Figure 3. Exact vs. approximate forms of the tumbling spectrum for in-plane
emission from disk-like grains.

Triaxial grains, lower vibrational-rotational coupling temper-
atures, and weak vibrational-rotational coupling, as described
in HDL10 and HLD11, are not explicitly considered here. The
above approximation can be applied to these cases, resulting in
different values for ¢,, o,, and R.

It is convenient to continue the derivation using the log-
normal form of R(w, €2). The results can be applied to non-
tumbling cases by setting o, = 0 and R equal to the coefficients
in Equations (23)—(25).

5.2. Grain Emissivity

The integrals of Equation (4) can be rewritten as
1 oo
=3P [ dOR .2, @ G31)
0

in which

oo 2 6
ra=tn [y @@
0 B Q)
In this, the functions Z,d €2 represents the dimensionless rotation
spectrum and R the dimensionless emission spectrum for a given
rotation rate. Equation (31) is a simple convolution of these. R
has already been approximated as a log-normal function, so if a
similar approximation to Z, can be found, then j{ will have the
desired form.

The main concern is whether the assumed power law «;, is
constant over the b integral. A nonzero ¢, indicates that grains
of different dipole moments will rotate at different frequencies,
so deviation from the power-law assumption leads to errors in
the width and peak frequency of this integral. Figure 4 shows o,
for the ideal environments and demonstrates that the power-law
assumption is reasonable, as the «;, do not change greatly over
the peak of P ().

A log-normal approximation for Z,(£2) is achieved by calcu-
lating the first and second moments of €2 over Equation (32). The
integral over b becomes analytical once €2 has been integrated,
giving the result

_ 5272
To 1 exp{—l [log(Q/QP,a) GQ:| } (33)

(32)

Za(Q) ~

A/ ZJTO'Q 5 2 o0
with
o N\ 2/ T(7Ja,)T(Np/2 + 1 — zab/av)AfMav
0=\73 I'(N,/2+ DI'(3/ay) @

(34)
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Figure 4. o, vs. b for 3.5 A grains at peak emission frequency. Curves are
calculated via SpDust. Light gray curves show b P(b) for N, of 2 and 3.

and

2
05 =
oo [TO/aOT (N /241 = 20,/ TO )TN 2 + 1 = 30t /)
08 [ T(8/ary 2T (N5 /2 + 1 — Sty 2c0, )2 ] '

(35)
The emissivity for grains of size a then follows immediately:
Pa 1 11 D—o271
jon Pa L 1] [M] 36)
47 2mo,v 2 Oy
in which
ol =0’ +0} (37)
and ) A
2 B*Nyw; ,
o= 2 g (38)
' 3 ¢

This is plotted in Figure 5 for disk-like grains in both the
tumbling and non-tumbling cases. The analytical functions
continue to show satisfactory agreement with the numerically
derived curves.

5.3. Total Emissivity

Given the above approximations, the integration over grain
size follows analytically,

. . o 2
jo | (v 1 [log (v/v)
— = JE— exp _—— —
na nH|, \Yo 2 o8
v am
x erfc | n,log — +n,log— | . (39)
Vo ao

The characteristic frequency

Vo = Vpay €XP (—asof) (40)

is that at which grains of size ay make their greatest fractional
contribution to the total emissivity (assuming a flat grain size
distribution). The power-law and log-normal width are

ay
o, =3—-3— 41)
o
and
O{2
o =207 +0,. (42)
al)
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Figure 5. Emissivity for an ensemble of grains of size 3.5A in the CNM
environment. Disk-like grains are assumed in the tumbling and non-tumbling
cases. Black, solid curves are analytically approximated. Gray, dashed curves
are numerically calculated from SpDust.
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Figure 6. Total spinning dust emissivity for the CNM environment. Solid, black
curve is the analytical function of Equation (39), while the dashed, gray curve is
that from SpDust. Components of the analytical curve are also shown: A is the
power-law term and B is the power law multiplied by the log-normal distribution.
The high-frequency fall-off is provided by the complementary error function,
shown in gray using the right y-axis.

The emissivity at vy is

Jv ,BzNatw(S)
E == BIA.YTv (43)
Vo
where
o o’ [ o?
Ay = —RyTyexp |:——” <9—; — 8>j| : (44)
K} 2 Ola

The complementary error function provides the high-frequency
fall-off with parameters

1 a0 45)
"= /3 o0,
and
1 o
Na = —= (46)

20,0

Equation (39) is the chief result of this paper. It should
be regarded as the natural, functional form for the spinning
dust emission. The components of this function are plotted in
Figure 6, in which the power-law and log-normal components
are shown in turn, as is the complementary error function. The
analytical curve is plotted alongside the numerically calculated
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Table 3
Derived Parameters for the Analytical Emissivity
Environment Parameter
,{T‘; " Vo Ay Uy Oy My Na
(Jysr~'em™2H™') (GHz) (1072)
Generic 500 1200 0900 1.50 4.10
CNM (1) 748 x 10718 33.9 640  0.686 0666 132 282
2 7.77 x 10718 31.8 808 0685 0587 226 3.76
DC 6 3.24 x 10718 30.8 3.68 1.892  1.137 194 5.79
®)) 3.26 x 10718 27.8 5.08 1.599  0.895 259 6.07
MC 1) 1.53 x 10717 40.7 7.56 1.028 0777 1.14 284
2 1.56 x 10717 40.7 7.71 0.148  0.533 1.71 288
PDR 1) 5.23 x 10716 174.2 330 2,040 1297 197 6.63
®) 6.98 x 10716 175.0 434 1864 1.087 268 7.48
RN 1 7.53 x 10717 86.8 3.83 1.871 1.117 196 5.75
) 9.92 x 10717 84.3 5.52 1532 0.856 2.65 594
WIM 1) 6.36 x 10718 32.4 625 0505 0.638 127 2.69
) 6.81 x 10718 30.2 826 0559 0563 224 3.62
WNM 1 4.17 x 10718 28.7 585 0236 0611 1.17 251
) 4.44 x 10718 26.1 832 0413 0545 211 3.37

Notes. (1) Disk-like grains. (2) Spherical grains.

emissivity from SpDust. The agreement is excellent. This is par-
ticularly noteworthy as the parameter a, has been disregarded:
the grain geometry is thus of only secondary importance. The
same is shown for the rest of the ideal environments in Figure 7.

The function contains six parameters, which are heavily
degenerate both in derivation and effect. These are the amplitude
coefficient Ay, the characteristic frequency vy, the power-law
slope «y, the log-normal width oy, and the exponential slopes
ny, and n,. The parameters have been calculated in Table 3
for the idealized environments for disk-like (1) and spherical
(2) grains. The same is plotted in Figure 8 for case (1). Also
shown are a generic set of parameters recommended for use

when, for example, the data are not able to break degeneracies
between the parameters. Indeed, the strong correlations between
these parameters are clear.

The parameters in Equation (39) are not independent. They
depend on the excitation and damping power laws (o, op,
and «,), the rotational peak €, , , and the tumbling parame-
ters (Ro, g,, and o,), which are themselves dependent on the
environment and grain properties. Allowing the parameters of
Equation (39) to vary independently will complicate physical
interpretation. However, despite the ranges of these parame-
ters, the j,/nyg curves show remarkably little diversity. This
can be seen by plotting the analytical curves for the various
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Figure 8. Parameters of the analytical j,/ny function for the idealized
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Figure 9. j,/ny curves for various environments, but with vp = 30 GHz,
demonstrating the similar curve shapes. The gray, solid curve shows the function
using the suggested generic parameters.

environments, but with vy set to some constant value. This is
done in Figure 9, with vy = 30GHz. It is apparent that the
choice of generic values for «;, oy, 1,, and 5, are likely to
provide a satisfying fit in any environment.
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Figure 10. Spectral energy distribution of the Perseus Molecular Cloud. The
data are as published in Planck Collaboration (2011), as are the free—free and

thermal dust models. The spinning dust model is from this work, with generic
parameters, vp = 30 GHz, and scaled by a factor of 1.15.

The presence of the a, to ay ratio allows probing of the
smallest grain size. This requires care, though, as it will be
heavily degenerate with vy, itself depending on environment. If
the latter can be constrained independently, then measuring a,,
with this method will provide a new window on grain formation
and destruction.

Judging from published data, breaking the degeneracies in
this model will be challenging. I suggest setting a,, = ay, using
the generic values for «;, oy, 1y, and 7n,, and allowing only
Jv/nul,, and vy to vary. This is comparable to the analysis of
Bennett et al. (2012) and Planck Collaboration (2013). As data
quality improves, varying o, may allow an improved fit. If the fit
is still unsatisfactory, then fitting the o, «, and «,, directly may
be best, as the higher level parameters are ultimately functions
of these. Caution should be exercised, though, as inaccuracies
in the model due to approximations may become significant at
this point.

The model is demonstrated through comparison to the
Perseus Molecular Cloud data of Planck Collaboration (2011) in
Figure 10. The free—free and thermal dust curves are taken di-
rectly from their fit. The spinning dust model is that of this
paper, with the generic parameters assumed and vy = 30 GHz.
The amplitude of the emission was scaled by 1.15 to improve
agreement. The model provides a good fit to the data, with
x?/dof = 0.81. This counts five parameters in the free—free,
thermal dust, and cosmic microwave background anisotropy
(Planck Collaboration 2011) and the peak frequency and ampli-
tude of the spinning dust model.

6. DISCUSSION

The analytical derivation presented in this work allows one
to understand spinning dust emission intuitively. Emission from
a given grain size is spread over a broad peak. The breadth is
greater if rotation is not limited by electric dipole damping, butis
thermal. The emission is also broadened if rotation is a function
of the electric dipole moment, as in the case of plasma drag and
electric dipole damping, though not enough to overcome non-
thermal rotation. There is a further broadening due to tumbling
rotation. Larger grains rotate more slowly, so integrating over
grain size leads to a gently sloped, low-frequency tail. The
existence of a smallest grain size leads to an exponential cut-
off at high frequency. The log-normal shape is largely due to
the log-normal grain size distribution, though I have shown that
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emission from a given grain size is also well-approximated by
this form.

As this derivation involved taking the products many inde-
pendent functions, a log-normal shape is not surprising. Indeed,
simple algebra would allow factoring the power-law component
of Equation (39) into the log-normal component. A pure log-
normal spectrum is not justified, though, as the high-frequency
cut-off gives asymmetry to the spectrum. This asymmetry is
important theoretically, as it contains information on the grain
size distribution, and observationally, because anomalous mi-
crowave emission measurements from Wilkinson Microwave
Anisotropy Probe and Planck are at frequencies above the peak
(Bennett et al. 2012; Planck Collaboration 2013).

Different interstellar environments lead to different power
laws in the distribution function and thus to different combi-
nations of low-frequency slope, log-normal width, and high-
frequency fall-off. As seen in Figure 9, however, these effects
do not lead to large deviations in spectral shape. The character-
istic frequency vy does vary with environment as it is closely
related to the grain rotation temperatures. There is degeneracy
between vy and the other parameters of Equation (39), implying
that the spectral shape ought to change as vy is shifted. How-
ever, the similarity between curves in Figure 9 suggests that
such variations in shape will only become important when the
precisions of anomalous microwave emission observations have
greatly improved.

Measurements of the characteristic frequency vy will face
strong degeneracy with the smallest grain size. Decreasing a,,
gives smaller, faster rotating grains which extend the radiation
to higher frequencies. This will present a significant challenge
to any attempts to constrain environment or smallest grain size
with spinning dust radiation.

A number of approximations were needed in this work.
These are the power-law dependencies on a, b, and €, the
log-normal distribution function, and the log-normal spectrum
for a tumbling grain. Disagreement with the SpDust model
below vy is mainly due to the first, while the latter two are
to blame above v,. Transient effects due to individual gas
collisions and the rotational consequences of triaxial grains
and vibrational-rotational coupling were disregarded. These
omissions cause inaccuracy above vy and possible frequency
shifts and broadening of the spectrum, respectively.

The caveats of this work extend beyond the analytical
approximations. Whether fitting numerical or analytical models,
one must bear these in mind. The most important are briefly
discussed.

Grain size distribution. The log-normal form of this distribu-
tion is inspired by convenience, not astrophysics. It is a four
parameter model, with parameter values consistent with but
not required by infrared and extinction data WDO1. These
parameters may vary with local conditions, as may the form
of the distribution itself. Such variations would be degen-
erate with variations in rotational excitation and damping.

Smallest grain size. Sublimation of small grains is a runaway
process (Guhathakurta & Draine 1989). Below a given
size, grains will have a very short lifetime. However, a
sudden cut-off is not predicted: a range of grains sizes will
be undergoing sublimation. Further, sublimation is likely
to dehydrogenate the grains before destroying the carbon
skeleton, which will undoubtedly affect the electric dipole
moments of these grains. Spinning dust models ignore these
complications, which may lead to structure above vy.
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Grain geometry. A sharp transition between disk-like and
spherical grains is unlikely to be physical. Indeed, the very
existence of purely disk-like and spherical grains is itself
an approximation. The true geometries of the grains will be
more complex and could conspire to have grains of differ-
ent sizes radiating at the same frequency. This would cause
structure in the spectrum below vy.

Electric dipole moments. DL98 noted that the permanent elec-
tric dipole moments of these grains are extremely uncertain.
The random-walk prescription laid out therein and adopted
thereafter leads to agreeable results, but is not physically
motivated. Possible effects can be probed by varying o
and B. An increase in the former broadens the spectrum via
oy, but weakens it via A;. An increase in the latter brightens
the emission, but boosts electric dipole damping to decrease
Vo. A breakdown in the random-walk prescription would
introduce a dependencies in o and B, potentially leading
to structure in the spectrum.

Rotational distribution function. The Fokker—Planck equation
assumes that the damping and excitation mechanisms are
stationary processes and that the impulses are small com-
pared to the overall motion. HDL10 showed, however, that
impulsive torques lead to a non-thermal tail at high angular
momenta. This translates to additional radiation above v
which the Fokker—Planck approach cannot capture.

These caveats may ultimately limit the precision of spinning
dust models, as they can only be resolved through detailed
knowledge of grain chemistry. On the other hand, if future
observations improve enough to require such precision, then
constraining this chemistry directly may become possible.

I have described a new, analytical derivation of the radia-
tion from spinning dust grains. This work bypasses the lengthy
numerical calculations of previous models while encouraging
an intuitive picture of the radiation. Accuracy is not signif-
icantly compromised by this approach. Indeed, strong caveats
are present in even the numerical models. These approximations
are clearly described and their applicability is demonstrated by
comparison with numerical calculations. The final result is a
simple, analytical function, well-suited for fitting to astronomi-
cal data.

I'thank Y. Ali-Haimoud, K. Cleary, C. Dickinson, B. Hensley,
C. Hirata, T. Pearson, A. Readhead, C. Tibbs, and J. Villadsen
for many useful conversations on the spinning dust radiation as
this paper evolved. I also thank the anonymous referee for many
insightful suggestions. This work was supported by the NSF
grants AST-1010024 and AST-1212217.
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