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Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the
exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds
of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids,
retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding
sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules
is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”)
between transcription of different genes. We develop a statistical mechanical model which takes the TF titration
effect into account and use it to predict both the level of gene expression for a general set of promoters and the
resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could
be important for understanding gene expression in many regulatory settings.
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I. INTRODUCTION

Organisms respond to a variety of environmental stimuli by
regulating gene expression through the action of transcription
factors (TFs). An increasingly quantitative description of
transcriptional regulation has made it possible to construct
predictive physical models based on equilibrium statistical
mechanics. A number of biologically relevant parameters have
been identified in these models, including the copy number
of RNA polymerase (RNAP), TFs, the strengths of their
corresponding binding sites, their interaction energies and the
mechanical properties of the DNA [1–3]. Another such model
parameter which so far has received less attention is the number
of promoters N (or operators) that a TF regulates. One reason
might be that implicitly it has been assumed that the number
of TFs is much greater than N , hence making TF binding to
different promoters independent.

In this work we use a statistical mechanical model to show
that when the number of TF molecules is comparable to the
number of targets, depletion of the TF can result in nontrivial
dependence of the regulatory effect on the relative abundance
of targets and TF molecules. The existence of this effect
has been previously explored in the context of ultrasensitive
regulatory networks [4], as well as the impact of decoy binding
sites on TF lifetimes and the response of particular genetic
circuits [5,6]. Here we present a generalized model of gene
expression in the presence of TF competition. An advantage
with this model is that any system of entangled promoters can
be explicitly described in terms of its individual components.
Moreover, quantities of interest can be expressed analytically,

which, for example, allows us to easily study the role of model
parameters, explore certain limits of, e.g., strong/weak TF
binding, and efficiently compute TF titration curves without
the need of running thousands of time-consuming Gillespie
simulations.

A recent study asserts that half of the proteins in E. coli
come in fewer than 10 copies [7] (30 for TFs), a number
comparable to the gene copy number in many important
biological situations, including plasmids [8], viral infections
[9], gene duplications [10], (retro)transposons [11–13], rapid
cell growth [14], and transfection of DNA into animal cells
[15]. Even for some TFs the number of regular chromo-
somal binding sites could be large enough to titrate TFs
(see Appendix B). If this picture is correct, a quantitative
understanding of TF titration due to multiple targets will
be essential for making predictive models of transcription
regulation. Such models could potentially also shed new light
onto diseases where gene copy number abnormalities play a
role, including cancers [16], neuropsychiatric diseases [17],
and autoimmune disorders [15].

As case studies we use three specific promoter architectures,
representing three different mechanisms of repressing a gene.
All three of these examples have been studied extensively
both experimentally and theoretically [18–23]. The simple
repression promoter architecture is arguably the most common
nonconstitutive architecture in E. coli [24] and refers to a
single TF binding site blocking RNAP from binding the
promoter. For promoters with more than one binding site for a
particular TF, 34% of these promoters have two binding sites
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separated by more than 100 bp [24], indicating a frequent
scenario of facilitated repression with DNA looping [25],
Table 1]. A famous example of this promoter architecture
is the well-studied lac operon. In a variant of this promoter
architecture, reminiscent of GalR repression at the P2 pro-
moter [26], repression can only be achieved in the looped
conformation. This repression exclusively due to looping
promoter architecture has the interesting feature that the level
of repression is not a monotonic function in number of TFs.
Though we believe these three promoter architectures are both
interesting and relevant, the particular choices are not central
and the formalism presented here makes it possible to calculate
the titration effect for any arbitrary regulatory architecture.

The organization of this paper is as follows. In Sec. II we in-
troduce the thermodynamic models used throughout this work
and discuss their validity. In Sec. III we compute individual
(N = 1) partition functions for the three important promoter
architecture case studies. This will be an instructive exercise
before turning to the more abstract treatment of Sec. IV,
where we compute the partition function for a general set of
promoters (N � 1). In Sec. V we benefit from the hard work of
the previous two sections to make predictions of a quantity of
great biological importance, namely the fold change in gene
expression, a quantity directly accessible experimentally. In
Sec. VI we study correlation in transcription rates of different
genes due to TF titration. In Sec. VII we extend the work of
previous sections to include the case when TF and promoter
copy numbers are not fixed but rather fluctuating according to
a statistical distribution. Finally, in Sec. VIII we use Gillespie
simulations to verify the thermodynamic model and derive a
relationship between the stochastic model rate constants and
thermodynamic free energy parameters for the three specific
promoter architectures considered.

II. UNDERLYING ASSUMPTIONS
OF THERMODYNAMIC MODEL

One of the most ubiquitous quantitative descriptions of tran-
scription is founded upon the so-called thermodynamic models
of regulation. In these models, the quantitative behavior of a
given promoter is characterized in terms of the occupancy of
that promoter by the transcription apparatus and a constellation
of molecular partners such as TFs and nucleosomes [1–3,27].
One of the reasons for the success of these thermodynamic
approaches is that in some cases the time scale associated
with the production of mRNA is often much slower than
the rate at which most proteins, such as TFs, move around
within the cell [28] and bind or unbind DNA. For example,
the effective (1D + 3D [29]) diffusion constant of LacI has
been measured as Deff = 0.4 ± 0.02 μm−2 s−1 [28], which
means that a LacI molecule can explore the full length of an
E. coli cell in a few seconds. This should be compared to the
significantly slower production rate of LacI which, averaged
over the cell cycle, corresponds to around ∼0.3 per min [30].
Thus, there is reason to believe that LacI, and probably other
TFs, can significantly explore the DNA over the time scales
at which LacI is produced, providing circumstantial support
for a quasiequilibrium approximation. This separation of time
scales permits the use of statistical mechanics at promoters
that satisfy this condition in order to compute the probabilities

of different configurations of TFs and RNAP on the promoter
targets. The thermodynamic approach has been used far and
wide for characterizing a host of different regulatory processes
[1,2,27,31–37]. Interestingly, this approach not only serves
as a very powerful conceptual framework for predicting the
behavior of different architectures, but even in those cases
where it fails it is useful for suggesting new hypotheses
[22,38–42].

Of course, this thermodynamic approach is really only
the simplest first idea that one can exploit, but at a deeper
level it is just a caricature of the real complications of the
transcription process and the next layer of sophistication
involves using rate equations. However, even in those cases
in which models of transcription are built using rate equations,
they too essentially appeal to thermodynamic models through
the functions describing the occupancy of TFs. Generically, in
these cases one writes a rate of production for some protein as

dA

dt
= −γA + foccupancy([TF]), (1)

where foccupancy([TF]) is an occupancy function that reflects the
probability of occupancy of TF binding sites as a function of
the concentration of these factors. To make the point concrete,
consider the example of an activator that activates its own
production. In this case, one typically writes a rate equation of
the form

dA

dt
= −γA + r0 + r1

(
A
Kd

)n

1 + (
A
Kd

)n , (2)

where the first term describes protein degradation and dilu-
tion from cell growth and the second term describes basal
production at a rate r0. The third term is a Hill function [43]
relating production to the occupancy of the promoter by its
activator. This is obtained using precisely the same statistical
mechanics arguments that are common in thermodynamic
models. The dissociation constant Kd is only meaningful in
the context of equilibrium, and a rapid change in TF copy
number cannot correspond to an instantaneous response in
promoter occupancy. Therefore, one again needs to rest on
the assumption of quasiequilibrium. The literature is replete
with examples of both prokaryotic and eukaryotic transcription
regulation based upon these kinds of occupancy-based rate
equations [44–58], only further raising the stakes for exploring
the limits and validity of this approach.

Using the thermodynamic formalism described above, we
consider a (quasi) equilibrium system, where the number of
RNAP (P ), TFs (F ), and target promoters (N ) are fixed. The
term promoter will be used either to refer to the RNAP binding
site or the full promoter region, including TF binding sites,
depending on context. The number of nonspecific binding sites
NNS is assumed to be much larger than the number of RNAPs,
the number of TFs, and the number of promoters (NNS �
P,F,N ). Representative values for these parameters in E. coli
are given by P ≈ 103 [59–61], NNS ≈ 5 × 106 (the size of
the E. coli genome), F ≈ 1–103 [7,62], and N ≈ 1–102 [8,9].
Unless stated otherwise we will use these given values of P and
NNS where concrete numbers are needed. Further, we assume
that TFs and RNAP are always bound to DNA and do not roam
freely in the cell. This is justified in the cases of RNAP and the
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Lac repressor, for example, by studies using minicells [63,64],
though this is not necessarily generically true. The results are
easily adjusted to the case in which the TFs are free in the
cytoplasm rather than nonspecifically bound. We furthermore
assume that the promoters have no shared binding sites and
that they do not interact except via the competition for TFs.

For each configuration of TFs and RNAP we associate a
free energy and corresponding Boltzmann weight, which will
determine the probability for the system to be in that particular
state [1–3,27]. The partition function (Z) is the sum of all these
weights. Using the partition function the probability of finding
RNAP bound to the promoter of interest can be calculated.
This probability can, in turn, be related to the level of gene
expression, a quantity accessible through the use of genetic
reporters, or fold change, defined as the ratio of the level
of gene expression in the presence vs the absence of a TF
of interest, by assuming that the RNAP binding probability
and gene expression are linearly related [2,3]. Such a linear
relationship has been observed in vitro between RNAP binding
probability and open complex formation when RNAP binding
is the rate limiting step in transcription initiation [65]. A
fully generalized model of transcription initiation taking the
rates of open complex formation, promoter escape as well as
intermediate conformational changes into account [66–68] is
beyond the scope of this paper. Likewise, we assume that TFs
act by modifying the RNAP binding affinity to the promoter.
For repressors we can argue that this is indeed a common
mechanism of repression by noticing that almost half [69]
of these operators overlap with the RNAP binding region
spanning about 40 bp upstream from the transcription start
site, hence blocking RNAP from binding the promoter. In some
cases also other mechanisms of transcriptional regulation, such
as modulation of the promoter escape rate, can be rephrased
in the thermodynamic language above, e.g., in the case of fast
open complex formation. In general, however, the regulatory
effect of a TF on transcription initiation depends in a complex
way on the TF (un)binding rates and the rates of the various
transcription initiation steps of the particular promoter, which
again is beyond the scope of this paper.

III. SINGLE PROMOTER PARTITION FUNCTION

A. Simple repression

Of 795 transcription units reported in RegulonDB 7.1
[24] to have at least one TF interaction, 125 correspond to
simple repressors [22], making it the most common promoter
architecture in E. coli. The simple repressor has a single
binding site overlapping the promoter such that RNAP cannot
bind (or form an open complex which is mathematically
equivalent in the context of our model) in the presence of
repressor hence inhibiting transcription [see Fig. 1(a)]. A
classic example of this regulatory motif are the well-studied
lac operon mutants [18,21].

The partition function for a simple repressor was derived
in [2], but is for the independence of this paper recaptured
here. We assume that when not bound to the promoter, RNAP
can be found at any of NNS nonspecific binding sites with
a binding energy of εNS

pd . Treating the RNAP molecules as
indistinguishable, there are ( NNS

P
) ways of arranging P RNAP

molecules on this nonspecific reservoir. The partition function
corresponding to this situation is

ZNS
P =

(
NNS

P

)
e−βPεNS

pd . (3)

As stated above, we assume that NNS � P , which allows us

to make the approximation ( NNS

P
) = NNS !

P !(NNS−P )! � NP
NS

P ! .

Assuming that the repressor has only one binding head,
leaving the more complicated case of two binding heads to
Sec. III B, the logic for finding the contribution of R repressor
molecules to the total partition function imitates that for RNAP,
namely,

ZNS
R =

(
NNS

R

)
e−βRεNS

rd , (4)

where εNS
rd is the nonspecific repressor binding energy. Again,

assuming NNS � R allows us to approximate ( NNS

R
) � NR

NS

R! .

Since the total number of nonspecific sites is in great
excess with respect to both number of repressors and RNAP,
we can treat nonspecific binding of repressors and RNAP as
independent, and hence the total nonspecific partition function
is given by the product

ZNS = ZNS
P ZNS

R . (5)

We use this nonspecific partition function to find the overall
partition function Z that accounts for binding to the promoter.
The promoter can be found in three different states: empty, oc-
cupied by RNAP, or occupied by a repressor. As a consequence
the overall partition function is given by

Z(P,R) = ZNS(P,R)︸ ︷︷ ︸
empty

+ZNS(P − 1,R)e−βεS
pd︸ ︷︷ ︸

RNAP bound

+ ZNS(P,R − 1)e−βεS
rd︸ ︷︷ ︸

repressor bound

. (6)

The first term corresponds to an empty promoter, the second
term corresponds to taking an RNAP molecule from the non-
specific reservoir and binding it to the promoter with a specific
binding energy of εS

pd , and the third term similarly corresponds
to taking a repressor from the nonspecific reservoir and binding
it to the promoter with a specific binding energy εS

rd . If we
normalize by ZNS(P,R) to assign the empty promoter weight
1, the partition function is given by

Z = 1 + P

NNS

e−β�εpd + R

NNS

e−β�εrd , (7)

where we have defined the energy differences �εrd = εS
rd −

εNS
rd and �εpd = εS

pd − εNS
pd . The factors R

NNS
, P
NNS

in the last
two terms are of entropic origin and associated with the cost
of forcing one molecule to stay on a particular site on the
DNA, rather than letting it explore the full range of possible
nonspecific sites.

B. Repression with looping

In repression with looping, RNAP is still excluded from the
promoter by repressor binding to a main operator in the vicinity
of the promoter. In this case, however, the repressors have two
binding heads that can simultaneously bind the main operator
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FIG. 1. (Color online) States and weights for three studied promoter architectures (a) simple repression, (b) repression with looping, and
(c) repression exclusively due to looping. The last two promoter architectures differ only by the addition of two states to the exclusive looping
architecture (third and eighth from the top), corresponding to RNAP and the main operator being simultaneously bound.

and an auxiliary operator through the formation of a DNA loop,
though the auxiliary operator does not block the promoter on
its own (see Fig. 2). As a result, there is an increase of effective
concentration of repressor in the vicinity of the main operator
leading to an increase in repression [18–20,70]. One of the
most studied realizations of this promoter architecture is again
based on modifications of the lac operon [18,19].

To compute the nonspecific partition function for repressors
with two binding heads, we begin with a single repressor

FIG. 2. (Color online) Repression through DNA looping. The
repressor binds to the main and auxiliary operators simultaneously
looping the intervening DNA.

molecule (R = 1). Then, invoking the assumption that the
nonspecifically bound repressors are noninteracting, it is
easy to generalize the result to any number of repressors
(R > 1). A single repressor molecule can be found in either
a looped state, with both heads bound, or in a state with one
head unbound. Each bound repressor head acquires a binding
energy of εNS

rd , and for looped states there is an additional free
energy cost (elastic plus entropic) Floop(i,j ) of bringing two
sites i and j together.

Taking every possible such configuration into account we
find the nonspecific single repressor partition function

ZNS
R (R = 1) =

NNS∑
i=1

e−βεNS
rd

︸ ︷︷ ︸
One head bound

+ 1

2
e−2βεNS

rd

NNS∑
i=1

NNS∑
j=1,j �=i

e−βFloop(i,j )

︸ ︷︷ ︸
Two heads bound

. (8)
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The factor of 1
2 in the second sum is necessary to avoid double

counting of the looped states. To simplify this expression we
assume translational invariance, such that the last sum over j

is independent of i. This assumes that on average DNA “looks
the same” everywhere, at least locally. Using this assumption
we get

ZNS
R (R = 1) = NNSe

−βεNS
rd

⎛
⎝1 + 1

2
e−βεNS

rd

NNS∑
j=2

e−βFloop(1,j )

⎞
⎠

≡ NNSe
−βεNS

rd e−βFNS
eff . (9)

In the last step we defined the effective nonspecific free
energy FNS

eff . To extend ZNS
R (R = 1) to an arbitrary number

of repressors R � 1 we use a familiar result from statistical
mechanics, namely,

ZNS
R (R) = 1

R!

[
ZNS

R (R = 1)
]R

(10)

= NR
NS

R!
e−βR(εNS

rd +FNS
eff ), (11)

which is applicable for indistinguishable and noninteracting
repressors.

Finally, to find the total nonspecific partition function we
combine ZNS

R (R) with the non-specific partition function for
RNAP found in previous section [Eq. (3)] resulting in

ZNS(R,P ) = ZNS
R (R)ZNS

P (P )

= NR
NS

R!

NP
NS

P !
e
−βR

(
εNS
rd +FNS

eff

)
e−βPεNS

pd . (12)

Our next task is to determine the weights for all states of
the promoter that are shown in Fig. 1(b). As an example we
show how to determine the weight for the state with only
the main operator bound by a repressor with binding energy
εS
rmd . For this state we need to consider all configurations for

the second repressor head not bound to the main operator, as
well as all configurations ZNS

R (R − 1) for the remaining R − 1
nonspecifically bound repressors. The weight associated with
the specifically bound repressor is given by

ZNS
R (R = 1,one repressor head bound to main operator)

= e−βεS
rmd

⎛
⎝1 + e−βεNS

rd

NNS∑
j=2

e−βFloop(1,j )

⎞
⎠

≡ e−βεS
rmd e−βF̃NS

eff , (13)

where we have introduced another useful effective free energy
F̃ NS

eff (note the absent factor of 1
2 ), which allows us to express

the weight associated with the nonspecifically bound or free
hanging repressor head simply as e−βF̃NS

eff .
Using the same normalization condition as above we find

the Boltzmann weight for the state with only the main operator
bound,

Weight ( ) = e−βεS
rmd e−βF̃NS

eff ZNS
R (R − 1)ZNS

P (P )

ZNS
R (R)ZNS

P (P )

= R

NNS

e−β(εS
rmd−εNS

rd )e−β(F̃ NS
eff −FNS

eff )

= κR

NNS

e−β�εrmd . (14)

For convenience we introduce the following notation:

�εrmd = εS
rmd − εNS

rd , �εrad = εS
rad

− εNS
rd ,

�εpd = εS
pd − εNS

pd , �Floop = FS
loop − (

F̃ NS
eff − εNS

rd

)
, (15)

κ = e−β(F̃ NS
eff −FNS

eff ), p = P

NNS

e−β�εpd .

Here �εrmd and �εrad correspond to the main and auxiliary
operators, respectively. From the definitions of F̃ NS

eff and FNS
eff

it is easy to see that κ is always a number between 1 and 2.
If F̃ NS

eff � 1 there is a large probability of nonspecific loop
formation and κ � 2. On the other hand, if F̃ NS

eff � 1 then
there is just a small probability of nonspecific loop formation
and κ � 1. Thus, κ can be viewed as a parameter related to how
many repressor heads are effectively bound nonspecifically to
DNA.

Using the same method we can compute the weights for all
other states, and by adding these weights together we get the
single promoter partition function

Z = 1 + p + p

(
κR

NNS

)
e−β�εrad +

(
κR

NNS

)
e−β�εrad

+
(

κR

NNS

)
e−β�εrmd + κR

NNS

κ(R − 1)

NNS

e−β(�εrad+�εrmd )

+
(

κR

NNS

)
e−β(�εrad+�εrmd+�Floop). (16)

Here the states are listed in the same order as in Fig. 1(b).

C. Exclusive looping repression

For repression due exclusively to looping the situation is
similar to the previous section but with the difference that
RNAP is considered to be blocked from binding the promoter
only in the looped state. Hence, it is not enough for just the main
operator to be occupied to achieve repression. Such a model
of repression is reminiscent of the mechanism of galactose
metabolism repression by GalR at the P 2 promoter [26] and
the arabinose metabolism AraC repression at the PC promoter
in the absence of arabinose [71].

For this promoter architecture terms need to be added to
the partition function of Eq. (16) corresponding to states with
the main or auxiliary operator bound by repressor and the
promoter bound by RNAP. In Fig. 1(c) these states are given
by the third and eighth states from the top. After taking these
new states into account we find the single promoter partition
function

Z = 1 + p + p

(
κR

NNS

)
e−β�εrmd + p

(
κR

NNS

)
e−β�εrad

+
(

κR

NNS

)
e−β�εrad +

(
κR

NNS

)
e−β�εrmd

+ (1 + p)
κR

NNS

κ(R − 1)

NNS

e−β(�εrad+�εrmd )

+
(

κR

NNS

)
e−β(�εrad+�εrmd+�Floop), (17)

where again the states have been listed in the same order as in
Fig. 1(c).
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IV. MULTIPLE PROMOTER PARTITION FUNCTION

The simplest example of computing the total partition
function for a set of promoters with individual partition
functions Z(1),Z(2), . . . Z(N) is when these are independent.
In our model this happens when the promoters are unregulated
or regulated by a TF whose copy number F greatly exceeds
the number of promoters (F � N ). Then if one TF binds to
a promoter, the number of remaining available TFs is left
essentially unchanged, and hence the other promoters are
unaffected. By a familiar result from statistical mechanics
the total partition function Ztot for a system of independent
promoters is given by

Ztot = Z(1)Z(2) · · ·Z(N) for F � N. (18)

The complications associated with computing the partition
function for a set of promoters regulated by the same TFs
originate from the fact that at low TF copy numbers the
promoters get “entangled.” For entangled promoters, binding
of one TF molecule to a promoter directly influences the TF
binding probability to another promoter, due to an effective
decrease in the number of available TFs. In the following
sections we extend Eq. (18) and derive the total partition
function for a general set of promoters without making any
assumptions about the number of TFs or promoters. While
this generality leads to somewhat more abstract derivations, it
has the benefit of allowing us to apply the results to a wide
range of interesting problems.

A. General set of promoters

We start by deriving the total partition function for a general
set of, potentially different, promoters under control of a single
type of TF (F ). In Appendix A we generalize to regulation with
an arbitrary number of TF types.

First we introduce the notation needed to make these
calculations. Let fn and pn denote the number of TFs and
RNAP bound to promoter n ∈ {1, . . . ,N}, respectively. Here
fn is constrained by the number of binding sites and the total
number of TFs in the cell, namely,

∑
n fn � F and pn is

always either 0 or 1. Let sn denote the state of promoter
n (e.g., empty promoter, operator 1 occupied, operator 2
unoccupied, etc.), and let F (sn) and P (sn) denote number
of TFs and RNAP bound at promoter n for state sn. To
compute the total partition function we take every allowed
state into account by summing over the variables fn and
pn, as well as the variables sn for all states compatible
with the choice (fn,pn). For each choice {fn} and {pn}
there will be F − ∑

i fi TFs and P − ∑
i pi RNAPs left for

nonspecific binding on the DNA “reservoir,” and the statistical
weight associated with these are given by the nonspecific
partition functions ZNS

F (F − ∑
i fi) and ZNS

P (F − ∑
i pi),

which we assume to have the forms ZNS
F (F ) = NF

NS

F ! e−βFεNS
f d

and ZNS
P (P ) = NP

NS

P ! e−βPεNS
pd , in accordance with our results for

the simple repressor (Sec. III A) and repression by looping
architecture (Sec. III B). The parameter εNS

f d is assumed to be
independent of F . The specifically bound TFs and RNAP to
promoter n will acquire a free energy E(sn) for state sn. Since
there might be many possible states sn for a given choice
(fn,pn) we need to sum over all states sn compatible with this

choice, to find the specific part
∑

sn
e−βE(sn)|F (sn)=fn, P (sn)=pn

of the statistical weight for promoter n. If there are no states
sn for a given (fn, pn), the sum over sn is set equal to 0.
This is, for example, the case for the simple repressor which
cannot have both TF and RNAP specifically bound at the same
time (fn = pn = 1) due to steric exclusion. The specific part of
the weight for different promoters “commute,” meaning that
we can simply multiply these parts together. The promoter
entanglement is fully contained inside the F dependent
factorial terms, which motivates the order we have chosen
to carry out the summations (fn,pn,sn). Using a normalization
where the state with N empty promoters is assigned weight 1,
the total partition function is given by

Ztot =
∑

f1, . . . ,fN∑
i fi � F

∑
p1,...,pN

ZNS
F

(
F−∑

i fi

)
ZNS

P

(
P− ∑

i pi

)
ZNS

F (F )ZNS
P (P )

×
N∏

n=1

∑
sn

F (sn) = fn

P (sn) = pn

e−βE(sn)

=
∑

f1, . . . ,fN∑
i fi � F

∑
p1,...,pN

F !

N
∑

i fi

NS

(
F − ∑

i fi

)
!

× P !

N
∑

i pi

NS

(
P − ∑

i pi

)
!

N∏
n=1

∑
sn

F (sn) = fn

P (sn) = pn

e−β�E(sn), (19)

where on the second line we have defined �E(sn) = E(sn) −
fnε

NS
f d − pnε

NS
pd .

We now use the “high RNAP copy number” assumption
P � N to make further progress on Eq. (19) by approximating

( P
P−i

) � P i

i! for i specifically bound RNAP, resulting in

Ztot �
∑

f1, . . . ,fN∑
i fi � F

∑
p1,...,pN

F !

N
∑

i fi

NS

(
F − ∑

i fi

)
!

×
N∏

n=1

∑
sn

F (sn) = fn

P (sn) = pn

(
P

NNS

)pn

e−β�E(sn)

=
∑

f1, . . . ,fN∑
i fi � F

F !

N
∑

i fi

NS

(
F − ∑

i fi

)
!
Z

(1)
f1

Z
(2)
f2

· · ·Z(N)
fN

=
min(B1,F )∑

f1=0

min(B2,F−f1)∑
f2=0

· · ·
min(BN ,F−∑N−1

i=1 fi )∑
fN =0

× F !

N
∑

i fi

NS

(
F − ∑

i fi

)
!
Z

(1)
f1

Z
(2)
f2

· · · Z(N)
fN

. (20)
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Here Bn is the number of TF binding sites on promoter n, and
Z

(n)
fn

has been defined as

Z
(n)
fn

≡
∑
pn

∑
sn

F (sn) = fn

P (sn) = pn

(
P

NNS

)pn

e−β�E(sn). (21)

A key observation is that the single promoter partition
functions Z(n) are precisely given in terms of the Z

(n)
i factors,

Z(n) =
Bn∑
i=0

F !

Ni
NS(F − i)!

Z
(n)
i , (22)

which implies that once the single promoter partition functions
are known, the total partition function for the set of promoters
can be directly obtained from Eq. (20), independently of
promoter architectures.

B. Identical promoters

Evaluating the total partition function for a general set
of promoters can be computationally expensive. In Eq. (20)
there are N summation indices {fi} and if these are not
constrained by the number of TFs (F �

∑N
i=1 Bi) there are∏N

i=1(1 + Bi) different terms in the summation. As the number
of promoters N increases this number grows exponentially, and
computing the partition function presents a great challenge. In
the important special case of N identical promoter copies each
with partition function,

Z =
B∑

i=0

F !

Ni
NS(F − i)!

Zi ; (23)

however, the computational cost can be significantly reduced.
One way to keep track of the total number of bound TFs

is to introduce numbers {ki}, where ki denotes the number
of promoter copies occupied by i TFs, with the additional
constraints

∑B
i=0 ki = N and

∑B
i=0 iki � F . To compute the

partition function we first need to find the number of possible
arrangements given numbers {ki}, or the “degeneracy.” As an
example for k0 = N there is only one choice (all promoters
empty), but for k0 = N − 1,k1 = 1 there are N different
choices, corresponding to N different ways of choosing a sin-
gle promoter to be occupied by one TF (assuming B,F � 1).
Here we treat the promoters as distinguishable physical
objects, which is a valid assumption since the promoters have
additional intrinsic degrees of freedom (e.g., position) that
separate them. Starting with empty promoters, there are ( N

k0
)

ways of choosing k0 promoters without bound TF. From the
remaining N − k0 promoters we choose k1 promoters with
exactly one TF bound; this can be done in ( N−k0

k1
) ways.

Repeating this procedure B times gives us the degeneracy,
namely,

degeneracy {ki} =
(

N

k0

)(
N − k0

k1

)
· · ·

(
N − ∑B−1

i=0 ki

kB

)

=
(

N

k0,k1, . . . ,kB

)
, (24)

where ( N
k0,k1,...,kB

) = N!
k0!k1!···kB ! is the multinomial coefficient.

To find the total partition function Ztot we need to sum over all
allowed values of {k0,k1, . . . ,kB} and take the degeneracy into
account. Using otherwise the same weights as in Eq. (20) we
find the total partition function for identical promoter copies,

Ztot =
∑

k0,k1, . . . kB∑
i ki = N∑
i iki � F

(
N

k0,k1, . . . ,kB

)
F !

N
∑

i iki

NS

(
F− ∑

i iki

)
!

B∏
i=0

Z
ki

i

=
min(N,	F/B
)∑

kB=0

· · ·
min(N−∑B

i=j+1 ki ,	(F−∑B
i=j+1 iki )/j
∑

kj =0

· · ·
min(N−∑B

i=2 ki ,F−∑B
i=2 iki )∑

k1=0

×
(

N

k0,k1, . . . ,kB

)
F !

N
∑

i iki

NS

(
F − ∑

i iki

)
!

B∏
i=0

Z
ki

i .

(25)

Here k0 is assigned the implicit value k0 = N − ∑B
i=1 ki and

	·
 denotes the floor function.1

When the indices {ki} are not constrained by the number of
TFs (F � NB), corresponding to the most computationally
expensive case, the number of terms in the summation of
Eq. (25) equals the number of non-negative integer solutions
to the equation

k0 + k1 + · · · + kB = N. (26)

This is a classical problem from combinatorics with the
number of solutions given by ( N + B

N ) ≈ NB/B!, which grows
polynomially with number of promoters N . Intuitively, we can
understand the polynomial dependence from the fact that there
are B different indices (not counting k0 = N − ∑B

i=1 ki), each
of which can take N different values. Hence, the partition
function for identical promoter copies can be computed for
much higher values of promoter copies N than permitted by
the general formula [Eq. (20)].

1. Simple repression

We now use our general results [Eq. (25)] to compute the
partition function for multiple copies of the specific promoter
architectures considered in Sec. III, starting with simple repres-
sion. From the single promoter partition function Z [Eq. (7)]
one can easily termwise identify Z0 = 1 + P

NNS
e−β�εpd and

Z1 = e−β�εrd , where Z = Z0 + R
NNS

Z1. These factors are
needed to compute the total partition function for multiple
promoter copies.

1The floor function 	x
 is the largest integer not greater than x, e.g.,
	1.8
 = 	1.2
 = 1.
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Plugging Z0,Z1 into the general formula of Eq. (25) gives
us the total partition function for N promoters,

Ztot =
min(N,R)∑

k1=0

(
N

k1

)
R!

N
k1
NS(R − k1)!

e−βk1�εrd (1 + p)N−k1 ,

(27)

where p = P
NNS

e−β�εpd . The summation in Eq. (27) can be
carried out explicitly to yield a closed form expression of
the partition function in terms of the Tricomi confluent
hypergeometric function [72,73].

2. Repression with looping

From the single promoter partition function for repression
with looping [Eq. (16)] we identify the Z0,Z1,Z2 factors

Z0 = 1 + p,

Z1 = κ
[
e−β�εrmd + (1 + p)e−β�εrad + e−β(�εrmd+�εrad+�Floop)],

Z2 = κ2e−β(�εrmd+�εrad ), (28)

where Z = Z0 + R
NNS

Z1 + R(R−1)
N2

NS

Z2. With the help of these

we get the total promoter partition function for N promoter
copies from Eq. (25),

Ztot =
min(N,	R/2
)∑

k2=0

min(N−k2,R−2k2)∑
k1=0

(
N

k2,k1,N − k2 − k1

)

× R!

N
k1+2k2
NS (R − k1 − 2k2)!

× κk1+2k2
[
e−β�εrmd + (1 + p)e−β�εrad

+ e−β(�εrmd+�εrad+�Floop)]k1

× (1 + p)N−k1−k2e−βk2(�εrmd+�εrad ). (29)

3. Exclusive looping repression

Again, using the single promoter partition function
[Eq. (17)] we identify the Z0,Z1,Z2 factors for the exclusive
looping repression architecture,

Z0 = 1 + p,

Z1 = κ
[
(1 + p)

(
e−β�εrmd + e−β�εrad

)
+ e−β(�εrmd+�εrad+�Floop)

]
,

Z2 = κ2(1 + p)e−β(�εrmd+�εrad ). (30)

By plugging these factors into Eq. (25) we find the total
partition function for N promoter copies

Ztot =
min(N,	R/2
)∑

k2=0

min(N−k2,R−2k2)∑
k1=0

(
N

k2,k1,N − k2 − k1

)

× R!

N
k1+2k2
NS (R − k1 − 2k2)!

× κk1+2k2
[
(1 + p)

(
e−β�εrmd + e−β�εrad

)
+ e−β(�εrmd+�εrad+�Floop)

]k1

× (1 + p)N−k1e−βk2(�εrmd+�εrad ). (31)

V. FOLD CHANGE

In order to create a bridge between experimental measure-
ments and the thermodynamic model a key assumption is made
stating that the level of expression of a gene is proportional to
the probability of RNAP being bound to the promoter of the
gene, or in the case of multiple gene copies, the expression
is proportional to the average number of promoters bound by
RNAP. Using this assumption we can predict the fold change,
defined as the ratio of level of gene expression in the presence
vs absence of a certain TF, which is a quantity commonly
measured by experiments. We start by computing the fold
change for a set of identical promoter copies and then move to
the case with a general set of promoters. In the Supplemental
Material [74] we show how to perform these computations
using MATHEMATICA.

By assuming the number of RNAP molecules to be much
bigger than the number of promoter copies, any state with
i promoters bound by RNAP will have a weight of the
form ∝pi , with p = P

NNS
e−β�εpd . Here �εpd is the energy

difference between specific and nonspecific RNAP binding
to the promoter. Using this observation one can show that
the expectation value for the number of promoters bound by
RNAP is given by

Occupancy = p
∂

∂p
ln Ztot. (32)

Equation (32) together with the partition function derived in
the previous section allows us to compute the fold change f ,
defined as the ratio between occupancy in the presence and
absence of a TF,

f = Occupancy (F )

Occupancy (F = 0)
. (33)

In the particular case of simple repression, plugging the
partition function [Eq. (27)] into Eqs. (32) + (33) leads, after
a bit of algebra, to

f = 1 + p

N

∑min(N,R)
k1=0

(
N

k1

)
R!

N
k1
NS (R−k1)!

e−βk1�εrd (N − k1)(1 + p)N−k1−1

∑min(N,R)
k1=0

(
N

k1

)
R!

N
k1
NS (R−k1)!

e−βk1�εrd (1 + p)N−k1

. (34)
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For weak promoters (p � 1) we can simplify this expression
somewhat by dropping the last factor in the numerator and
denominator. The summation can again be expressed in closed
form using the Tricomi confluent hypergeometric function and
a corresponding differentiation rule [75].

In Fig. 3, we show fold change as a function of number of
repressors (R) for the three different promoter architectures
considered in Sec. III. This figure shows the importance of TF
titration as there can exist order of magnitude differences in
predicted fold change for N = 1 vs N � 1 promoter copies.
For the simple repressor [Fig. 3(a)], with R < N the fold
change will never be less than 1

N
, corresponding to a situation

where all promoters but one are “turned off.” However, as
soon as R � N all promoters can be repressed, which yields
a steep decline in fold change around R ≈ N , at least when
the operators are strong enough to have high repressor binding
probability (as is the case in Fig. 3). For weak operators the
move across the “boundary” R ≈ N is uneventful and no such
steep response occurs (see Fig. 4).

In the exclusive looping repression architecture [Fig. 3(c)],
the fold change exhibits a sharp trough near R ≈ N . This
is explained by the fact that at high repressor copy number
the operators will be bound by repressors separately (an
unrepressed state), hence avoiding having to pay the energy
cost of bending the DNA, and for low repressor copy number
(R < N ) the fold change is again never less than 1

N
. The

observed trough corresponds to the middle range between
these two extremes.

Finally, the repression with looping architecture [Fig. 3(b)]
is a combination of the simple repression and exclusive looping
repression architectures. Since both of these architectures
show steep response around R ≈ N the repression by looping
architecture will share this feature, as is apparent from
Fig. 3(b). The free energy cost �Floop of forming DNA
loops is critical for this behavior. If �Floop is increased
such that it exceeds the binding energy of both operators,
�Floop > max(|�εrmd |,|�εrad |), the auxiliary operator serves
only to titrate repressors and the fold change will resemble
the simple repression case. For all architectures, the fold
change curves converge in the high TF copy number limit
(R � N ) independently of promoter copy number. In this
limit the number of TFs available for binding is essentially
constant and transcription from each promoter can be regarded
as independent.

So far we assumed that all promoters are identical; however,
for a general set of promoters there might be several different
“output” proteins, each with its own associated fold change.
By analogy to the identical promoter case [Eq. (33)] we define
the fold change f (n) with respect to promoter n as

f (n) ≡ Occupancy for promoter n(F )

Occupancy for promoter n(F = 0)
, (35)

where the occupancy is given by

Occupancy for promoter n = p(n) ∂

∂p(n)
ln Ztot, (36)

with p(n) ≡ P
NNS

e−β�εpnd and �εpnd the energy difference
between specific and nonspecific RNAP binding to promoter n.

(a)

(b)

(c)

l

l

ll

l
l

l

FIG. 3. (Color online) Fold change as a function of repressor
copy number (R) for gene copy numbers N = 1 (solid line), N = 10
(dashed line), and N = 100 (dotted line) for three different promoter
architectures: (a) simple repression, (b) repression with looping, and
(c) exclusive looping repression. For these plots we used operator
binding energy −17.3 kBT (equivalent to the strongest known lac
operator Oid [21]), the number of nonspecific sites as the genome
length of E. coli (NNS = 5 × 106), number of RNAP P = 1000,
and the looping energy �Floop = 10 kBT [2]. The RNAP promoter
binding energy is assumed to be weak (p � 1) [21,76].
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Operator binding 
energy (kBT)

l

FIG. 4. (Color online) Fold change of a simple repressor with
gene copy number N = 10 for three different TF binding site
strengths, with strengths chosen to correspond to the range observed
for real repressors. Stronger repressor binding leads to a steeper
response in fold change around R ≈ N . The RNAP promoter binding
energy is assumed to be weak (p � 1), and the number of nonspecific
sites NNS = 5 × 106.

If one promoter has stronger TF binding sites than the other
promoters these binding sites will, in general, be filled first
by TFs, but as soon as this happens the other promoter
might experience a sudden regulatory response [4]. As an
example [6], let us assume we have Npl plasmids, each with
one TF binding site of energy �εpl as shown in Fig. 5(a). The
Z

(1)
i factors associated with these Npl binding sites are given

by

Z
(1)
i =

(
Npl

i

)
e−βi�εpl , (37)

corresponding to ( Npl

i
) ways of distributing i repressors on

Npl plasmids, each with one binding site. Furthermore, let
the same TF act as an inhibitor (see Sec. III A) for a single
simply repressed gene located on the chromosome. We already
know the Z

(2)
i factors for this promoter architecture from

Sec. IV B1, namely Z
(2)
0 = 1 + P

NNS
e−β�ε and Z

(2)
1 = e−β�ε.

Using Eq. (20) we find the total partition function of the system

Ztot =
min(Npl,R)∑

i1=0

min(1,R−i1)∑
i2=0

R!

N
i1+i2
NS (R − i1 − i2)!

Z
(1)
i1

Z
(2)
i2

= (1 + p)
min(Npl,R)∑

i1=0

R!

N
i1
NS(R − i1)!

(
Npl

i1

)
e−βi1�εpl

+
min(Npl,R−1)∑

i1=0

R!

N
i1
NS(R − i1 − 1)!

(
Npl

i1

)
e−βi1�εpl e−β�ε.

(38)

In Fig. 5(b) we show the fold change of the simple repressor
on the chromosome for three choices of operator strength
�ε < �εpl , �ε = �εpl , and �ε > �εpl . As expected when
the plasmid binding sites are very strong, we do not get
a response in fold change of the simple repressor until all
these sites have been filled. However, if the simple repressor
binding site is stronger than the plasmid binding sites, this is
no longer the case and we see an immediate decline in fold
change when repressors are added. Even on a logarithmic plot
the fold change shows a rich structure, which makes it an
ideal candidate for experimental verification since we expect
that this functional form can be easily detected above the

Bacterial
chromosome

Plasmids

No reporter

Reporter

(a)

Operator binding 
energy (kBT)

(b)

l

FIG. 5. (Color online) Effect of TF sequestration on fold change. (a) A repressor can bind to a reporter construct located in a single copy
on the chromosome or to a binding site on a multicopy plasmid which leads to no gene expression. (b) Fold change of a simple repressor for
different repressor binding site strengths, where the TF is subject to sequestration from 100 nonfunctional binding sites (�εpl = −15 kBT ). If
the sequestration sites are much stronger than the simple repressor operator, the fold change remains constant until these sites have been filled.
The RNAP promoter binding energy is assumed to be weak (p � 1), and the number of nonspecific sites NNS = 5 × 106.
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intrinsic experimental noise in making such gene expression
measurements.

Finally, for independent identical promoters, for example
when the TFs are in great excess with respect to number of
gene copies, the fold change for the set of promoters reduces to
the fold change of an individual promoter. This intuitive result
can be directly shown from Eqs. (32) + (33), using the fact
that for N independent promoters, each with partition function
Z, the total partition function is given by Ztot = ZN . Let fZ

denote the fold change of a single promoter and fZtot denote
the fold change for N promoter copies, then

fZtot =
p

Ztot
∂
∂p

Ztot

p

Ztot
F=0

∂
∂p

Ztot
F=0

=
(ZF=0)N ∂

∂p
ZN

ZN ∂
∂p

(ZF=0)N

=
p

Z
∂
∂p

Z

p

ZF=0

∂
∂p

ZF=0
= fZ. (39)

This equality, fZtot = fZ , greatly simplifies calculating the fold
change of the promoters.

VI. TRANSCRIPTIONAL CORRELATION

There are many reasons why expression of different genes
might be correlated [77–79]. One obvious example is if a gene
A regulates another gene B, then random intrinsic fluctuations
in A will affect the expression of B (with a time delay), result-
ing in correlated expression of the two genes. For genes without
direct regulatory connections, such random fluctuations due to
intrinsic noise do not lead to correlated expression. Extrinsic
noise, on the other hand, refers to fluctuations which affect
the expression of both A and B simultaneously; this includes
“global noise” such as fluctuating number of RNAP molecules
or cell size, which leads to a positive correlation in transcription
rates of the two genes. Another example of extrinsic noise,
which we study in more depth in Sec. VII B, is fluctuations in
TF copy number if A and B are regulated by the same TF.

In addition to these mechanisms we predict that promoter
entanglement due to TF titration constitutes another source
of correlation in transcription rates for genes regulated by the
same TFs. Quantifying this effect is the topic of this section.

A. Toy model of transcriptional correlation

To develop intuition for the correlation in transcription from
different promoters due to promoter entanglement, we first
consider a hypothetical system of two unregulated promoters
(PA,PB), transcribed by a single RNAP molecule (P = 1).
This system can be found in three different states: no promoter
bound by RNAP, PA bound by RNAP, or PB bound by RNAP.
Since the single RNAP molecule can only bind to one of the
promoters at a time, transcription of the two promoters will
become anticorrelated.

Let A,B denote the number (0 or 1) of RNAP bound to pro-
moters PA and PB , respectively. These two random variables
are correlated with the Pearson correlation coefficient,

ρcorr = 〈(A − Ā)(B − B̄)〉√
〈(A − Ā)2〉〈(B − B̄)2〉

(40)

= 〈(A − Ā)(B − B̄)〉
〈(A − Ā)2〉 . (41)

For the sake of simplicity we assume that the two promoters
PA,PB have the same strength, and hence in Eq. (41) we set
〈(A − Ā)2〉 = 〈(B − B̄)2〉. Let p0 and pA = pB denote the
probabilities of the three states listed above. In terms of these
probabilities the correlation coefficient translates to

ρcorr = − pA

1 − pA

, (42)

which is plotted as a function of pA in Fig. 6. When the
promoters are very strong PA or PB will always be bound by
RNAP (pA = pB = 1

2 ); hence, knowledge of the state of one
promoter is sufficient to tell the state of the other promoter
(ρcorr = −1). However, when the promoters are weak, at most
times both promoters are empty and the correlation between
the promoters will be weak.

These results can be framed in terms of the familiar partition
functions used throughout the paper. We now consider a
statistical mechanical model of RNAP binding. The partition
function for the two-promoter system is given by

Z = 1 + 1

NNS

e−β�εA + 1

NNS

e−β�εB (43)

= 1 + 2

NNS

e−β�ε, (44)

where we again assume that both promoters have the same
binding energy �ε = �εA = �εB . The probability pA for
promoter A to be in the bound state is then given by

pA =
1

NNS
e−β�ε

Z
. (45)

−

−

−

−

−

−

−

−

−

−

Promoter A Promoter B
B eneGA eneG

RNAP

(a)

(b)

FIG. 6. (Color online) Correlation coefficient between transcrip-
tion rates of two equally strong promoters PA,PB for a single RNAP
molecule (P = 1), as a function of probability pA = pB of one of the
promoters being bound.
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Plugging pA back into the correlation coefficient [Eq. (42)]
gives the transcriptional correlation as a function of promoter
strength, namely,

ρcorr = − 1

1 + NNSeβ�ε
. (46)

These results are intended to illustrate how the correlations
will be computed in the more general case considered next.

B. General theory

As reported in Sec. V, a state with i specifically bound
RNAP molecules to a certain promoter type has a statistical
weight of the form ∝pi with p = P

NNS
e−β�εpd . This weight

generalizes for a set of N different promoter types to the form
∝p

i1
1 · · · piN

N . Using this observation it is easy to derive the
statistical moments for promoter occupancies

〈i1, . . . ,im〉 ≡ 1

Ztot
pi1

∂

∂pi1

· · ·pim

∂

∂pim

Ztot,

(1 � ij � N,∀ j ), (47)

On the left hand side we use 〈i1, . . . ,im〉 as a shorthand
notation for the expectation value of the product of number
of RNAP simultaneously bound to the promoters specified by
the indices i1, . . . ,im. For two promoter types (N = 2) the
Pearson correlation coefficient can be expressed in terms of
the partition function as

ρi1i2 = 〈(i1 − ī1)(i2 − ī2)〉√
〈(i1 − ī1)2〉〈(i2 − ī2)2〉

(48)

=
p1p2

∂
∂p1

∂
∂p2

ln Ztot√[(
p1

∂
∂p1

)2
ln Ztot

][(
p2

∂
∂p2

)2
ln Ztot

] . (49)

Here ī1,2 denotes the occupancy (〈i1,2〉) for promoters 1,2,
respectively.

C. Two anticorrelated genes

Let us now study the specific example of transcriptional
correlation for a system with two genes located together on
Npl identical plasmids, where both genes are regulated by
the same A activating TFs (activators), as shown in Figs.
7 and 8. The transcription rates for the two genes will be
anticorrelated, because when one gene is highly activated
there are fewer activator molecules left to also activate the
other gene. When there are no activators (A = 0) transcription
of the two genes is clearly independent, but this is also true
if A � Npl because the number of activators available for
promoter binding will be essentially constant. Hence, we
expect anticorrelation of transcription rates between the two
genes to have a peak in magnitude when the number of
activators is roughly comparable to the number of plasmids
(A ≈ Npl).

activator
binding

site

promoter

pd

pd

ad

ap

ad

STATE WEIGHT

1

e– pd/kBT

e– ad/kBT

e– pd + ad + ap)/kBT

P
NNS

P
NNS

A
NNS

A
NNS

FIG. 7. (Color online) States and weights for the simple activation
regulatory motif [2].

There are four different states for a simple activator
promoter architecture (see Fig. 7): empty state, activator
bound, promoter bound (by RNAP), and activator and pro-
moter bound. The last state has a (negative) activator-RNAP
interaction energy εap, used by the activator to “recruit” RNAP
to the promoter. For simplicity we assume that the two genes
have the same operator strength and promoter strengths, and
hence the same partition function,

Z = 1 + P

NNS

e−β�εpd + A

NNS

e−β�εad

+ A

NNS

P

NNS

e−β(�εpd+�εad+εap). (50)

We use Eq. (20) to find the partition function for the
two genes on one plasmid copy, then Eq. (25) to find the
partition function for multiple plasmid copies. Once we have
the total partition function we can calculate the transcriptional
correlation using Eq. (49).

In Fig. 9(a) we show the transcriptional correlation of the
system as a function of activator copy number for different
numbers of plasmids. As expected, the correlation exhibits
a peak when the number of activators is similar to the
number of plasmids (peak value ρ ≈ −0.8). As the number
of activators outgrows the total number of binding sites (2Npl)

Promoter 1
Activator

binding site 1

Gene 1

Promoter 2
Activator
binding site 2

Gene 2

Activator

FIG. 8. (Color online) Two simple activators regulated by the
same TF.
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Plasmids

εap (kBT)

Δεad (kBT)

Δεpd (kBT)

(a)

(b)

(c)

(d)

l
l

l
l

FIG. 9. (Color online) Correlation coefficient between transcrip-
tion rates of two positively regulated genes on a plasmid, as a function
of (a) number of plasmids, (b) RNAP-activator interaction energy
εap , (c) activator operator strength �εad , and (d) promoter strength
�εpd . For fixed parameter values we use number of nonspecific sites
NNS = 5 × 106, 10 plasmids, operator strength �εad = −17.3 kBT ,
promoter strength �εpd = −5 kBT , and interaction energy between
TF and RNAP εad = −7 kBT .

the correlation dies off rapidly, at least when the activator
operators are strong. In Figs. 9(b) and 9(c) we show how the
correlation depends on the RNAP-activator interaction energy
εap and the binding site strength of the activator �εad . As
expected, the transcriptional correlation between the two genes
increases in magnitude when these interactions are stronger
(more negative). In Fig. 9(d) we show how the transcriptional
correlation depends on the promoter binding strength. Weak
promoters only recruit RNAP when bound by activators. With
just one single activator molecule this system becomes similar
to the toy model of Sec. VI A, and we see a fast response
in correlation. Strong promoters can recruit RNAP well even
without activators and hence it takes more of them before we
see any substantial effect in fold change and correlation.

A necessary condition for the transcriptional correlation
effect to be experimentally observable is that TFs stay bound
to their binding sites a sufficient amount of time to avoid rapid
switching between different promoter states. For example, if
mRNA levels are measured at fixed time points (e.g., using
FISH), TFs would need to stay bound longer to the operators
than the mRNA lifetime. To see this, consider the opposite
extreme when the mRNA lifetime is very long (or say infinite),
then the observed mRNA expression merely corresponds to
an averaged production over every possible promoter state
and no effect of transcriptional correlation could be observed.
On the other hand, if the mRNA lifetime is much shorter
than the TF binding time, the observed mRNAs were likely
produced from the same promoter state (or configuration of
TFs). This condition is met, e.g., in the case of LacI regulating
lacZ, where the TF on average stays bound approximately
10 min to the strongest operator in 37 ◦C [80], whereas the
lacZ mRNA lifetime is only about 2 min [81]. Even when
this condition is not met one might still be able to detect
the transcriptional correlation effect by measuring mRNA
or protein production during a relatively short time interval
from fluorescence time traces, as long as the uncertainty in
production (and maturation) time of mRNA or proteins is small
compared to the TF binding time.

Another condition for the transcriptional correlation effect
to be biologically relevant is that extrinsic noise sources, like
fluctuations in plasmid or TF copy number, do not have a
stronger impact on gene expression than the correlation effect
due to TF titration. This matter is discussed at more length in
Sec. VII B.

VII. STATISTICALLY DISTRIBUTED TF
AND PROMOTER COPY NUMBERS

In a cell the number of TFs and promoter copies are, because
of inherent stochasticity, not fixed but rather fluctuating
according to a statistical distribution. These distributions vary
greatly, with examples ranging from the tightly regulated
low-copy F-plasmid [82], to the wide distribution of gene
copies produced at viral infections [83]. In this section we see
how the predicted fold change and transcriptional correlation
are affected by fluctuations in promoter copy number and TF
copy number. Given the wide range of possible copy number
distributions, our goal is not necessarily to model any particular
biological system but rather provide a general framework
which allows us to compute the fold change and transcriptional

012702-13



RYDENFELT, COX III, GARCIA, AND PHILLIPS PHYSICAL REVIEW E 89, 012702 (2014)

correlation for any given such distribution, as well as illustrate
this effect on our previously derived results in a few specific
cases.

A. Fold change

In Sec. V we show that the fold change of a promoter
architecture can depend sensitively on the number of repressors
R when this number is comparable to the number of promoter
copies N (see Fig. 3). We now see how this sensitivity
is affected when the number of repressors R or promoter
copies N are not fixed but rather fluctuating according to
a probability distribution P (R,N ). In this case the RNAP
occupancy [Eq. (32)] to the promoters needs to be replaced
by the expectation value with respect to P (R,N ),

〈Occupancy〉P (R,N) =
∑
R,N

P (R,N ) Occupancy (R,N ),

which we can consequently insert into the definition of fold
change,

f = 〈Occupancy〉P (R,N)

〈Occupancy (R = 0)〉P (N)
(51)

=
∑

R,N P (R,N ) Occupancy (R,N )∑
N P (N ) Occupancy (R = 0,N )

. (52)

We can simplify the last line [Eq. (52)] by noticing that for
R = 0 the promoters are independent and hence the occupancy
must be proportional to N

f =
∑

R,N P (R,N ) Occupancy (R,N )

〈N〉P (N) Occupancy (R = 0,N = 1)
. (53)

As an example in Fig. 10 we investigate the effect
of replacing the promoter copy number with a Poisson
distribution in the simple repression (Sec. III A) and exclusive
looping repression (Sec. III C) architectures. A set of simple
repressors will only be effectively repressed when all the
promoter copies are inhibited; therefore, the steep decline in
fold change around N ≈ R will now be shifted up to higher
repressor copy number. For the exclusive looping architecture
we note that a trough is still clearly visible but less deep and
slightly widened (at half peak depth) compared to the case
with fixed promoter copy number. If we in Fig. 10 instead
replace the repressor copy number by a Poisson distribution
and keep the promoter copy number fixed the fold change will
look close to identical (result not shown).

B. Transcriptional correlation

Fluctuations in TF copy number constitute an extrinsic form
of noise that affects the transcription rate of all genes regulated
by the TF. In this section we show that such fluctuations, when
large enough, can hide the effect of transcriptional correlation
due to TF titration. To include extrinsic noise into our
calculation of transcriptional correlation [Eq. (49)] between
two genes we compute the Pearson correlation coefficient
using weighted moments,

ρi1i2 = 〈i1i2〉P (F ) − 〈i1〉P (F )〈i2〉P (F )√〈(i1 − 〈i1〉P (F ))2〉P (F )〈(i2 − 〈i2〉P (F ))2〉P (F )

, (54)

(a)

(b)

l
l

FIG. 10. (Color online) (a) Fold change in the simple repression
architecture for fixed (N = 10) or Poisson distributed (mean N̄ = 10)
promoter copy number. (b) Fold change in the exclusive looping
repression architecture for fixed (N = 100) or Poisson distributed
(mean N̄ = 100) promoter copy number. For these plots we use
operator binding energy −17.3 kBT , looping energy 10 kBT , and
number of nonspecific sites NNS = 5 × 106. The RNAP promoter
binding energy is assumed to be weak.

where the expectation value 〈·〉P (F ) ≡ ∑∞
i=0 P (F = i)〈·〉F=i is

evaluated over the distribution of TFs. In Fig. 11 we use this
formula to show how TF fluctuations affect the transcriptional
correlation of the particular system of two genes activated
by the same TF studied in Sec. VI C. In this case we use,
for illustration purposes, a Gaussian distribution which allows
us to vary the distribution width and see what effect is has
on transcriptional correlation. Promoter entanglement and
extrinsic noise will have an opposite effect on transcriptional
correlation, and their relative strengths will determine the
resulting sign of the correlation coefficient. For A > 2Npl

there is no promoter entanglement but a positive correlation
due to TF fluctuations remains until the average number of
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FIG. 11. (Color online) Correlation coefficient between transcrip-
tion rates of two positively regulated genes located on 20 plasmids,
as a function of number of TFs. Three different Gaussian TF
copy number distributions are considered with standard deviations
σ = 0, 1

2

√
A,

√
A. TF fluctuations constitute extrinsic noise, affecting

expression of both genes, that hides the anticorrelation in transcription
rates due to promoter entanglement. As parameter values we choose
number of RNAP P = 1000, nonspecific sites NNS = 5 × 106, 20
plasmids, operator strength �εad = −17.3 kBT , promoter strength
�εpd = −5 kBT , and interaction energy between TF and RNAP
εad = −7 kBT .

activators is so high that essentially all operators will be
occupied.

As the TF copy number increases the TFs will distribute
themselves more and more evenly among its targets, and
the transcriptional correlation due to TF titration will have
a smaller impact on gene expression. We therefore expect
transcriptional correlation due to TF titration to be most
relevant when the TF copy number is low and extrinsic
noise limited. These conditions can be somewhat relaxed
through recent advances in molecular biology, for example,
cells with TFs labeled by a fluorescent reporter can be sorted
by fluorescence to limit the effect of TF fluctuations on
transcriptional correlation, hence allowing precision tests of
the thermodynamic model.

VIII. VERIFYING THE THERMODYNAMIC MODEL OF
TF TITRATION USING GILLESPIE SIMULATIONS

To examine the validity of the thermodynamic calculations,
we use Gillespie simulations [84] to predict fold change and
correlation in transcription rates. Although this is computa-
tionally more onerous than the thermodynamic models used
throughout the paper, it has the benefit of simplicity, requiring
only knowledge of the gene/TF copy numbers and allowed
reactions. Consequently, the intricate details of TF binding
combinatorics are given to us “for free.”

To demonstrate the Gillespie algorithm we consider, as
an example, free repressors (R) (un)binding to empty gene
promoters (G) to form repressor-gene complexes (GR) through
the reactions

G + R
kon
R

�
koff
R

GR. (55)

Here we assume, as in the law of mass action, that the total
rate of repressor association is proportional to both the number
of free repressors and empty promoters. The normalized
rate parameter kon

R gives number of associations per free
repressor, per empty promoter, per time unit. Similarly the
normalized disassociation rate parameter koff

R gives number
of disassociations per repressor-gene complex, per time unit.
These rate parameters will depend on operator strength and
number of competing nonspecific binding sites (NNS), but
not molecular numbers of the species involved. Notice that
since the repressors are assumed to be always bound on DNA
we do not consider cell volume, or cytosolic repressor/gene
concentration, as parameters of our model. However, cell
volume will have an indirect effect on above rate parameters
through its influence on the nonspecific free energy of binding
a repressor to DNA.

In the first step of the Gillespie algorithm we calculate the
total accumulated reaction rate, G × R × kon

R + GR × koff
R , for

both reactions and then draw a random time step at which the
next reaction will take place from an exponential distribution,
with mean equal to the inverse of this rate. The decision which
of the two reactions should be chosen is random but weighted
by the accumulated rate for each reaction G × R × kon

R vs
GR × koff

R . If the repressor binding reaction is chosen we
update the corresponding state variables according to G →
G − 1, R → R − 1, and GR → GR + 1 (analogously for
repressor unbinding). Notice that G, R, and GR are discrete
quantities, not continuous concentrations. By repeating this
procedure over and over we acquire time traces for G, R,
and GR, which can be used to compute the (time averaged)
occupancy of repressors to genes, fluctuations in G, R, and
GR, etc. To compute fold change, a quantity of central
importance throughout this work, we use Gillespie’s method
to find the average number of promoters bound by RNAP, with
and without TFs present.

In order to connect the stochastic model with our thermo-
dynamic calculations much effort in this section is dedicated to
finding mathematical relations between the stochastic model
rate constants and corresponding thermodynamic free energy
parameters. This matter is alleviated by the fact that the rate
constants are independent of gene copy number, TF copy
number, and RNAP copy number, which allows us to determine
the rates using stripped-down version of the full promoter
architectures.

A. Simple repression

To determine the rate parameters corresponding to repressor
(un)binding in the simple repression architecture (Sec. III A)
we consider a minimal system with a single promoter (N = 1)
and no RNAP. In this system there are only two states (see
Fig. 12): repressor bound (state B) and empty promoter (state
0), with dynamics described by the following master equation

dP (B)

dt
= Rkon

R P (0) − koff
R P (B). (56)

Here P (B),P (0) correspond to the respective state proba-
bilities [P (B) + P (0) = 1]. In equilibrium there is no net
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kR
on

kR
off

FIG. 12. (Color online) States and transition rates in a the simple
repression architecture with no RNAP present. The rates correspond
to “per molecule” rates, i.e., the total probability flux into the right,
repressed state, is given by Rkon

R P (0).

probability flux between the two states, or mathematically,

Rkon
R P (0) = koff

R P (B) =⇒ kon
R

koff
R

= 1

R

P (B)

[1 − P (B)]
. (57)

In the thermodynamic model we find the probability P (B)
from the partition function computed in Eq. (7),

P (B) =
R

NNS
e−β�εrd

1 + R
NNS

e−β�εrd

, (58)

which gives us a simple expression for the ratio between the
rates

kon
R

koff
R

= 1

NNS

e−β�εrd . (59)

This argument holds equally well for RNAP and we find

kon
RNAP

koff
RNAP

= 1

NNS

e−β�εpd . (60)

In equilibrium each reaction will be balanced by its reverse
reaction; hence, the final state probabilities can only depend
on these ratios, also in the case of multiple gene copies.

We are now ready to apply Gillespie’s method to simulate
the full simple repression promoter architecture [see Fig. 1(a)],
using the following set of reactions:

G + R
kon
R

�
koff
R

GR, G + P
kon

RNAP

�
koff

RNAP

GP. (61)

Here we use the notation: G (empty promoter), R (free
repressor), P (free RNAP), GR (promoter bound by repressor),
and GP (promoter bound by RNAP). From the resulting
simulation time trace we can compute the average number of
RNAP-promoter complexes (GP), which we use as a proxy
for gene expression. By repeating the simulation with no
repressors (R = 0) we can then determine the fold change.

Figure 13 shows a precise agreement in fold change
between Gillespie simulations and thermodynamic theory, as
one would expect.

B. Repression with looping

In the case of repression by looping (Sec. III B) we not
only need to take the repressor (un)binding rates into account
but also the rate of DNA (un)looping between the main and
auxiliary binding site. To find the rate constants corresponding
to the thermodynamic free energy parameters we consider
a simplified system with a single promoter, no RNAP and
only three states: empty promoter (state 0), main operator
bound (state M), and looped state (state L). The transitions

l

FIG. 13. (Color online) Fold change as a function of repressor
copy number in the simple repression ( ), repression with looping
( ), and repression exclusively due to looping ( ) promoter ar-
chitecture, for N = 10 promoter copies. Solid lines correspond to
thermodynamic model predictions and markers Gillespie simulated
data. Here we use the parameters: kon

R = 1.0, koff
R = 0.15 (simple

repression), koff
R = 0.075 (looping), kon

RNAP = 3.0 × 10−5, koff
RNAP = 1,

kloop = 1, and kunloop = 6.8 × 10−4 in arbitrary inverse time units,
chosen according to Eqs. (59), (60), (64). The standard deviations,
acquired from three separate runs, are smaller than the marker size.
Since the rates only enter as ratios in the state probabilities we use
this freedom to set larger of the two rates to 1. As initial condition
we set all promoters to the empty state, G = 10, RNAP copy number
P = 1000, and repressor copy number R indicated by the x axis.

between these states are illustrated in Fig. 14. We consider
the state with only the auxiliary operator bound by a repressor
to be forbidden. This does not affect the rate constants for
repressor (un)binding or DNA loop formation as compared to
the full repression with looping architecture, but makes the
mathematical derivations more straightforward. The detailed
balance equations for this system are

RP (0)kon
R = P (M)koff,

P (M)kloop = P (L)kunloop, (62)

P (0) + P (M) + P (L) = 1,

which can be easily solved for P (0), P (M), and P (L).

kR
on

kR
off

kloop

auxiliary
operator

main
operator

kunloop

FIG. 14. (Color online) States and transition rates in a simplified
version of the repression with looping promoter architecture, with no
RNAP and where the auxiliary operator is not allowed to be bound
individually.
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On the other hand, the state probabilities for this system can
be derived using the statistical mechanical framework, similar
to the procedure used in Sec. III B

P (0) = 1

1 + 2R
NNS

e−β�εrd + 2R
NNS

e−β(2�εrd+�Floop)
,

P (M) =
2R
NNS

e−β�εrd

1 + 2R
NNS

e−β�εrd + 2R
NNS

e−β(2�εrd+�Floop)
, (63)

P (L) =
2R
NNS

e−β(2�εrd+�Floop)

1 + 2R
NNS

e−β�εrd + 2R
NNS

e−β(2�εrd+�Floop)
.

Here we assume that the main and auxiliary operators have
the same binding energy �εrd . Equating the state probabilities
found in the thermodynamic model with those from Eq. (62)
allows us to express the (un)binding and (un)looping rates in
term of the free energies �εrd,�Floop

kon
R

koff
R

= 2

NNS

e−β�εrd ,
kloop

kunloop
= e−β(�εrd+�Floop). (64)

Notice that, by assuming that the two TF operators have the
same binding energy we only need one set of (un)looping
rates. We use these rates to apply Gillespie’s method on the
full repression with looping architecture, where all states in
Fig. 1(b) are allowed, using the reaction scheme

G + R
kon
R

�
koff
R

GRM, G + R
kon
R

�
koff
R

GRA,

GRM

kloop

�
kunloop

GL, GRA

kloop

�
kunloop

GL,

(65)

GRM + R
kon
R

�
koff
R

GRMA, GRA + R
kon
R

�
koff
R

GRMA,

GRA + P
kon

RNAP

�
koff

RNAP

GPRA, G + P
kon

RNAP

�
koff

RNAP

GP,

where we use the following notation: G (empty promoter), R

(free repressor), P (free RNAP), GRM (main operator bound),
GRA (auxiliary operator bound), GRMA (main and auxiliary
operator bound), GL (looped conformation), GPRA (auxiliary
operator bound by TF and promoter by RNAP), GP (promoter
bound by RNAP).

In Fig. 13 we find that our statistical mechanical predictions
for fold change are precisely replicated by Gillespie simula-
tions. To achieve the level of precision shown in the figure
required around 1 h of Gillespie simulations for 30 data points,
compared to the analytical framework which allowed us to
compute the fold change for 1000 data points in less than 1 s.

C. Repression exclusively due to looping

For repression exclusively due to looping (Sec. III C) we
use the same rate parameters as found in Eqs. (60) + (64),
but allow RNAP to bind all states except the looped state (see
Fig. 1). This means we need to add the following reactions to
the scheme in (65)

GRM + P
kon

RNAP

�
koff

RNAP

GPRM, GRMA + P
kon

RNAP

�
koff

RNAP

GPRMA, (66)

kA
on

Activator

RNA
polymerase

kA
off

Interaction

kRNAP*
on

kRNAP*
off

FIG. 15. (Color online) Simple activation promoter architecture
in the weak promoter approximation, neglecting RNAP binding to
the empty promoter.

where we use the notation GPRM (main operator bound by
TF and promoter by RNAP) and GPRMA (main plus auxiliary
bound by TF and promoter by RNAP).

In Fig. 13 we compare the fold change predicted by the
thermodynamic model with Gillespie simulations and again
find them to be in precise agreement.

D. Transcriptional correlation

In Sec. VI it was shown that under certain conditions the
transcription rates of two genes can be correlated and we used
the simple activation promoter architecture as a case study. To
find the rate constants that correspond to the thermodynamic
model free energy parameters for this promoter architecture
we solve the detailed balance equations resulting from Fig. 15

AP(0)kon
A = P (A)koff,

P (A)Pkon
RNAP∗ = P (AP)koff

RNAP∗ , (67)

P (0) + P (A) + P (AP) = 1,

where we use the following notation: empty promoter
(state 0), activator bound to promoter (state A), activator and
RNAP bound to promoter (state AP), and koff

RNAP∗ ,kon
RNAP∗ refer

to RNAP (un)binding rate when the promoter is already bound
by an activator. For mathematical convenience we invoke the
weak promoter approximation and neglect the state with RNAP
bound to an empty promoter.

In the thermodynamic model we can write down the
corresponding state probabilities (see notation Fig. 7)

P (0) = 1

1 + A
NNS

e−β�εrd + AP

N2
NS

e−β(�εad+εap)
,

P (A) =
A

NNS
e−β�εrd

1 + A
NNS

e−β�εrd + AP

N2
NS

e−β(�εad+εap)
, (68)

P (AP) =
AP

N2
NS

e−β(�εad+εap)

1 + A
NNS

e−β�εrd + AP

N2
NS

e−β(�εad+εap)
.

Equating the state probabilities in Eqs. (67) and (68) allows us
to express the TF and RNAP (un)binding rate in terms of the
thermodynamic model parameters

kon
A

koff
A

= 1

NNS

e−β�εad ,

(69)
kon

RNAP∗

koff
RNAP∗

= 1

NNS

e−β(�εpd+εap) = kon
RNAP

koff
RNAP

e−βεap .

Using these rates we can apply Gillespie’s method to the
system of two genes considered in Sec. VI C, described by
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FIG. 16. Correlation coefficient between transcription rates of
two positively regulated genes on a plasmid (copy number N = 10)
as a function of activator copy number. The solid line corresponds to
thermodynamic model prediction, and dots correspond to Gillespie
simulated data. Here we use the parameters: kon

A = 1.0, koff
A = 0.15,

kon
RNAP = 3.0 × 10−5, koff

RNAP = 1, kon
RNAP∗ = 0.033, and koff

RNAP∗ = 1 in
arbitrary inverse time units, chosen according to Eqs. (59), (60),
and (69). The standard deviations, acquired from three separate
runs, are smaller than the marker size. Since the rates only enter
as ratios, we use this freedom to set the larger of the two rates
to 1. As initial condition we set all promoters to the empty state,
G1 = G2 = 10, RNAP copy number P = 1000, and activator copy
number A indicated by the x axis.

the reaction scheme

G1 + A
kon
A

�
koff
A

G1A, G2 + A
kon
A

�
koff
A

G2A,

G1 + P
kon

RNAP

�
koff

RNAP

G1P, G2 + P
kon

RNAP

�
koff

RNAP

G2P, (70)

G1A + P
kon

RNAP∗
�

koff
RNAP∗

G1AP, G2A + P
kon

RNAP∗
�

koff
RNAP∗

G2AP.

At each time step of the simulation the number of promoters
of each type bound by RNAP is recorded, and using the time
traces we can compute the correlation coefficient between the
two quantities. Figure 16 again shows a precise agreement
between our thermodynamic model and Gillespie simulations.

IX. CONCLUSION

In this work we have developed a general framework based
on statistical mechanics to predict gene expression for systems
with multiple genes or gene copies regulated by the same TFs.
These kinds of systems arise in a multitude of biologically
relevant circumstances. In particular, we have shown that when
the number of TF binding sites is large enough to titrate
the TFs, the predicted gene expression depends in a highly
nontrivial way on the relative abundance of promoter and
TF copy numbers. New data [7] on protein copy numbers
in E. coli indicate that such titration might happen more often
than previously thought. We have also quantitatively linked

the effect of TF titration to correlation between transcription
rates of different genes.

An advantage with the presented model is that quantities of
interest, e.g., fold change or correlation in transcription rates,
can be expressed analytically for a set of promoters explicitly
in terms of the individual promoter architectures. This allows
us to vary model parameters and TF copy number without
the need of running thousands of time-consuming Gillespie
simulations.

Recent advances in the field of molecular biology have
made it possible to accurately measure and tune protein
copy numbers in a cell [7,21,62,85], which provides an
excellent opportunity to test the predictions presented here
experimentally. This will indeed be the topic of an upcoming
paper.2
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APPENDIX A: PARTITION FUNCTION FOR A SET
OF PROMOTERS REGULATED BY MULTIPLE

LOW-COPY TFS

One can easily show that the partition function derived in
Eq. (20) for a set of promoters regulated by one TF type is
valid also when the promoters are regulated by additional TFs,
as long as these extra factors are not subject to titration effects
and can be summed out together with RNAP in Eq. (21).
However, in the case of regulation by multiple low-copy TFs
the derivation needs to be generalized. To do this let us denote
the different TFs by F1, . . . ,Fm and fnj

the number of TFs
of type j ∈ {1, . . . ,m} bound to promoter n ∈ {1, . . . ,N}. By
analogy to the treatment in Sec. IV A the total partition function
is given by

Ztot =
∑

fnj
, ∀ n,j∑

n fnj
� Fj ,∀ j

⎡
⎣ m∏

j=1

Fj !

N

∑
n fnj

NS

(
Fj − ∑

n fnj

)
!

⎤
⎦

×
N∏

n=1

Z
(n)
fn1 ,...,fnm

, (A1)

where Z(n)
g1,...,gm

corresponds to states for promoter n occupied
by g1 number of TFs of type F1, g2 TFs of type F2, etc.
Analogously to Eq. (22) the single promoter partition functions

2Under review.
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FIG. 17. (Color online) Transcription factor (TF) copy number
vs number of binding sites, using two different protein censuses of E.
coli. Protein copy numbers were determined using mass spectrometry
[62] and fluorescence [7]. The number of binding sites was obtained
from RegulonDB [24]. The solid line marks the boundary between
depletable TFs (more binding sites than TF copies) and nondepletable
(more TF copies than binding sites). For TFs forming dimers (e.g.,
CRP, Fis, GalR), this boundary is replaced by the dashed line.
Due to incomplete knowledge about the E. coli regulatory system
we expect the number of binding sites to be underestimated, and
hence more TFs might belong to the depletable category than shown
in the figure.

with multiple TF types are given by

Z(n) =
∑

g1,...,gm

⎡
⎣ m∏

j=1

Fj !

N
gj

NS(Fj − gj )!

⎤
⎦ Z(n)

g1,...,gm
. (A2)

For the case when all promoter copies are identical we can
also generalize the computationally more efficient Eq. (25) to

multiple low-copy TF types F1, . . . ,Fm

Ztot =
∑

ki1 ,...,im ,∀ i1,...,im∑
i1 ,...,im

ki1 ,...,im =N∑
i1 ,...,im

ij ki1 ,...,ij ,...,im �Fj ,∀ j

(
N

{ki1,...,im}
)

×
⎛
⎝ ∏

i1,...,im

Z
ki1 ,...,im

i1,...,im

⎞
⎠

×
m∏

j=1

Fj

N

∑
i1 ,...,im

ij ki1 ,...,im

NS

(
Fj − ∑

i1,...,im
ij ki1,...,im

)
!
.

(A3)

Here ki1,...,im is the number of promoters which have i1 TF
of type F1 bound, i2 TF of type F2 bound, etc., Zi1,...,im

corresponds to states with ij TFs of type Fj bound, and

the notation ( N
{ki1 ,...,im } ) refers to the multinomial coefficient

N !
∏

i1,...,im

1
ki1 ,...,im ! .

APPENDIX B: NUMBER OF BINDING SITES
VS TF COPY NUMBER IN E. coli

For the specific case of E. coli, hundreds of TFs and
their corresponding vast array of binding sites have been
identified [24]. As a result, one can make an educated guess
about regulatory architectures where the TF titration effect
might play a role by looking for cases where the number of
binding sites (N ) approaches the number of TF molecules (F )
per cell. An attempt to amass such data is shown in Fig. 17. The
majority of genes belong to a regime where we do not expect
strong titration of TFs, however, with a handful of exceptions,
especially in the borderline regime F ≈ 2N where TFs binding
as dimers could experience depletion. As new binding sites are
discovered more TFs might fall into this category.
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