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Abstract

This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled
to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were
used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2

partial pressures. In all scenarios, AOM is exergonic, ranging from - 31 to - 135 kJ/mol CH4. A reaction
transport model was constructed to examine how environmentally relevant parameters such as advection
velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of
AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich
groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane
from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible
metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath
the surface and in surface exposures of eroded ancient terrains. Key Words: Mars—Methanotrophy—Methane.
Astrobiology 14, xxx–xxx.

1. Introduction

During its Noachian (4.1–3.7 Ga) and Hesperian (3.7–
3.0 Ga) periods, Mars was a geologically active body,

with frequent impacts (Hartmann and Neukum, 2001), ex-
tensive volcanism (McEwen et al., 1999), and subsurface and
surficial liquid water (Carr and Head, 2010). As a result of
these processes, water-rock interactions provided a poten-
tially exploitable energy source for biological processes.
Based on assumed martian geochemical conditions, several
microbial metabolisms have been proposed, including iron
or manganese reduction or oxidation, methanogenesis, acet-
ogenesis, and sulfur-processing pathways (Boston et al., 1992;
Varnes et al., 2004).

The discovery of syntrophic methane-oxidizing archaea
and sulfate-reducing bacteria on Earth, along with evidence
of methane production and sulfate-bearing minerals on Mars,
suggest that the anaerobic oxidation of methane (AOM) may
have been a viable metabolism for subsurface microbial
communities on ancient Mars. Martian AOM has been pro-
posed (House et al., 2011; Miller et al., 2011), but a rigorous
assessment of its energetic viability under environmentally
relevant parameters is lacking. Here, we calculate Gibbs
energies of the metabolism and incorporate reaction trans-

port modeling to demonstrate the feasibility of AOM on
ancient Mars.

In the terrestrial context, AOM is an important compo-
nent of Earth’s carbon cycle, consuming an estimated 80–
90% of the methane produced beneath the world’s oceans
(Reeburgh, 2007). Microbial consortia comprised of archaea
and bacteria mediate the metabolic consumption of meth-
ane in methane-rich anoxic systems (Boetius et al., 2000;
Orphan et al., 2001). Although the identities of all possible
electron acceptors and metabolic intermediates of the mi-
crobial partners are topics of active debate (Strous and
Jetten, 2004; LaRowe et al., 2008; Beal et al., 2009; Stams
and Plugge, 2009; Milucka et al., 2012), the overall process
can be summarized with the following reaction:

CH4(aq)þ SO2�
4 (aq)þHþ/HCO�3 (aq)

þH2S(aq)þH2Oð1Þ (1)

The electron donor and acceptor—methane and sulfate, re-
spectively—were both likely present on early Mars as a
result of abiotic chemical reactions. Sulfate minerals are wide-
spread, having been detected or inferred from elemental
chemistry at every Mars landing site to date (Toulmin et al.,
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1977; Wänke et al., 2001; Squyres et al., 2004; Wang et al.,
2006; Kounaves et al., 2010). Ca-, Mg-, and Fe-hydrated
sulfates have also been identified from Mars orbit (e.g.,
Gendrin et al., 2005) in numerous locations correlated with
expected locations of groundwater upwelling (Murchie
et al., 2009). The geological characteristics of these deposits
are diverse, including lacustrine (Gendrin et al., 2005; Wray
et al., 2011), evaporitic (Tosca et al., 2005), diagenetic
(McLennan et al., 2005), near-surface weathering (Hurowitz
et al., 2006), and hydrothermal (Thollot et al., 2012) set-
tings. This range of environments indicates a sulfate com-
ponent in waters across many locations on ancient Mars.

Surface exposures of serpentine in Noachian terrains
(Ehlmann et al., 2010) suggest that methane was once
formed in substantial quantities by hydrogen-forming ser-
pentinization (eq. 2) and subsequent abiotic methanogenesis
(eq. 3) as proposed by Oze and Sharma (2005), for example:

4H2(g)þCO2(g)/CH4(g)þ 2H2O(l) (3)

Serpentine has been identified in nearly a dozen locations in
Noachian-age crust in three distinctive geological settings:
in stratigraphic section; in mélange terrains with other al-
teration minerals in discrete deposits; and in the ejecta,
walls, and central peaks of impact craters (Ehlmann et al.,
2010). Modern-day serpentinization has been proposed to
explain recent reports of methane in the atmosphere of Mars
either from localized centers or microseeps (Atreya et al.,
2007; Mumma et al., 2009; Etiope et al., 2012).

Lyons et al. (2005) offered a model of martian methane
production that would generate a more widespread, perva-
sive source of the gas. They posited that, when carbon-
bearing hydrothermal fluid reacts with basaltic crust in
metamorphic reactions, dissolved methane becomes the
dominant carbon species. This process accounts for abio-
genic methane at mid-ocean ridges on Earth (Welhan and
Craig, 1979); and under predicted crustal permeability and
oxygen fugacity conditions on Mars, methane could be

pervasive in martian groundwaters between the near-surface
and 9.5 km depth.

It is thus probable that sulfate-bearing waters interacted
with methane-bearing fluids on Noachian Mars. Many ex-
posures of clay minerals thought to form under hydro-
thermal conditions are found across Mars, occasionally
co-located with sulfates (Wray et al., 2009; Ehlmann et al.,
2011). Indeed, in one location, sulfate-bearing rocks have
been detected overlying a unit with serpentine and olivine at
the northeastern boundary of the Syrtis Major lava flows,
west of the Isidis Basin (Ehlmann and Mustard, 2012). In
this context, AOM is a plausible metabolic pathway with
habitability implications for both ancient and modern Mars.
In the present study, we compiled a suite of fluid compo-
sitions representative of a range of martian geological
provinces and calculated Gibbs energies of AOM within
predicted chemical and physical constraints. In addition, a

reaction transport model (RTM) is presented to demonstrate
the biological potential of AOM as a function of several
environmentally relevant variables. Finally, we offer pro-
scriptive analysis of geological targets that may inform the
search for evidence of AOM on Mars.

2. Data Selection and Methods

2.1. Martian fluids

Several fluid compositions that represent a range of po-
tential past martian geochemical environments were com-
piled in order to calculate Gibbs energies of AOM and to seed
RTM simulations. Each scenario serves as a geochemical
analogue to particular past martian conditions—an important
consideration in formulating theoretical and experimental
hypotheses (Marlow et al., 2011). The specific relevance of
each fluid to ancient Mars is discussed below and presented in
Table 1, and chemical compositions are provided in Table 2.

Tosca et al. (2011) predicted dilute fluids derived from
the chemical weathering of synthetic basalts; these solutions

(Fe, Mg)2SiO4þH2O(l)/(Fe, Mg)3Si2O5(OH)4þ (Mg, Fe)(OH)2þ Fe3O4þH2(g)

Olivine Serpentine Brucite Magnetite
(2)

Table 1. Characteristics and Martian Relevance of the Fluids Used for Energetics Calculations

and Reaction Transport Modeling in This Study

Fluid # Characteristics Martian relevance Reference

1 Chemical weathering of synthetic basalt,
highly acidic

Acid-sulfate alteration Tosca et al., 2011

2 Acid-sulfate waters from Yellowstone
rhyolite weathering

Acid-sulfate alteration Lewis et al., 1997

3 Acid weathering of basaltic minerals Acid-sulfate alteration Marion et al., 2008
4 Chemical weathering of synthetic basalt,

moderately acidic
Acid-sulfate alteration Tosca et al., 2011

5 Dissolution of primary Icelandic basalt Alkaline basalt alteration Gislason and Arnórsson, 1993
6 Deccan flood basalt hydrothermal spring Alkaline basalt alteration Minissale et al., 2000
7 Serpentinization model fluid Serpentinization site analogue Cardace and Hoehler, 2009
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are processed through evaporation simulations to give two
stages of more concentrated brines. The aqueous chemistries
cover a range of HCO�3 : SO2�

4 ratios (and thus a range of
pH values), leading to various assemblages of saline minerals
representative of Meridiani Planum, a region of Mars with
sedimentary sulfate, silica, and hematite-bearing deposits
formed by repeated episodes of groundwater upwelling and
diagenesis (Squyres et al., 2004; Tosca and McLennan, 2006).
The Tosca et al. (2011) brine composition most consistent with
Meridiani mineralogy is used here as Fluid 1. In recognition of
the challenges to life posed by highly acidic conditions, we
also use one of the relatively neutral pH brines of intermediate
composition employed by Tosca et al. (2011) (containing both
HCO�3 and SO2�

4 ), hereafter referred to as Fluid 4. Lewis
et al. (1997) determined major ion concentrations of acid-
sulfate waters in Yellowstone National Park (Fluid 2), while
Marion et al. (2008) derived their fluid composition from the
acid weathering of basaltic minerals (Fluid 3). Both solutions
are reflective of a low-pH (2–3), sulfate-rich, oxidizing geo-
chemical regime implied by Meridiani minerals such as jar-
osite, but differ in metal cation and chlorine composition
because of differences in lithology (Klingelhöfer et al., 2004).
The principal differences among the sulfate-rich fluids are the
high ionic strengths of Fluids 1 and 4 and the bicarbonate
present in Fluid 4.

The next three model fluids represent different, higher pH
water-rock interactions. The mean composition of Icelandic
rivers that results from the dissolution of primary basalts

(Gislason and Arnórsson, 1993) is used for Fluid 5. Ice-
landic lava flows, which exhibit a relatively unaltered
basaltic composition, have served as geological, geomor-
phological, and geochemical Mars analogues for decades
(Allen et al., 1981; Nelson et al., 2005; Cousins et al., 2010;
Ehlmann et al., 2012). Minissale et al. (2000) measured the
fluid composition of the moderately hydrothermal (48�C)
Deccan flood basalt springs, sourced from up to 3 km depth.
This system has been used as a baseline for geochemical
models of Gale Crater, the landing site for the Mars Science
Laboratory mission (Schwenzer et al., 2012) and is the basis
for Fluid 6 used in this study. Cardace and Hoehler (2009)
described the geochemical consequences of serpentiniza-
tion, the water-mediated, heat-generating destabilization
of ultramafic minerals such as olivine and pyroxene that
results from the exposure of upper mantle material to sur-
face temperatures and pressures. The aqueous chemistry
they described is used as our Fluid 7. Hydrogen forms as an
abiotic by-product of serpentinization, which can reduce
carbon dioxide to form methane; this mechanism has been
proposed as the source of putative methane signals on
modern Mars (Oze and Sharma, 2005). The temperatures
used in our calculations are those that produce the geo-
chemical concentrations specified in Table 2; these values
fall within the range of potential early Mars tempera-
tures estimated from carbonate inclusions in martian mete-
orites (Brack and Pillinger, 1998) and mineral assemblages
identified from Mars orbit (Ehlmann et al., 2011).

Table 2. Concentrations of Dissolved Species (mol/kg Fluid) in the Seven Fluids Used in This Study

Fluid label 1 2 3 4 5 6 7

Source Tosca Lewis Marion Tosca Gislason Minissale Cardace
pH 0.67 2 3 5.03 7.75 8.38 11.86
Temp. (K) 298 357 288 298 281 322 289
Na + 1.12 6.50E-04 3.15E-04 1.74 2.53E-04 1.97E-02 1.74E-03
K + 0.45 6.00E-04 1.05E-04 0.79 7.59E-06 1.86E-04 2.82E-05
NHþ4 0 0 0 0 0 2.92E-05 0
Li + 0 0 0 0 0 5.76E-06 0
Ca2 + 0 8.00E-05 2.84E-03 0 9.61E-05 6.86E-03 1.20E-03
Mg2 + 1.76 1.00E-05 5.56E-03 2.84 4.44E-05 8.23E-06 1.65E-05
Fe2 + 1.52 1.35E-04 2.78E-03 0 8.06E-08 0 0
Fe3 + 0 0 2.78E-03 0 0 0 0
Al3 + 0 1.22E-03 1.99E-04 0 6.23E-07 0 1.48E-05
B3 + 0 0 0 0 0 1.82E-05 0
Si4 + 0 3.12E-03 0 0 0 0 0
Cl - 4.47 1.90E-04 4.18E-03 4.27 7.08E-05 2.99E-02 9.03E-04
F - 0 5.30E-05 0 0 4.68E-06 1.12E-04 0
Br - 0 0 0 0 0 4.21E-05 0
HCO�3 0 0 0 2.94E-02 0 2.79E-04 0
NO�3 0 0 0 0 0 5.81E-06 3.23E-06
HSO�4 0.26 0 0 0 0 0 0
SO2�

4 2.23 1.38E-02 1.43E-02 1.96 3.66E-05 1.65E-03 1.46E-05

CO2�
3 0 0 0 0 0 4.17E-06 1.67E-12

CO2 0 0 0 0 4.50E-04 2.27E-07 0
H2S 1.01 2.50E-05 2.50E-05 1.55 6.60E-04 1.47E-07 9.12E-02
SiO2 0 0 2.29E-02 0 1.70E-04 1.02E-03 8.66E-05

H2S concentrations in Fluids 1 and 4 were determined by calculating the ratios of the five most abundant ions to sulfide in Fluid 2, which
has a similar acid-sulfate geochemistry. The mean of the analogous ratios for Fluids 1 and 4 was used to set the sulfide concentration. The
sulfide concentration in Fluid 2 was also used for Fluid 3, due to the solutions’ chemical similarities. The sulfide value for Fluid 5 was
obtained from a study by Seyfried and Bischoff (1981), whose data came from similarly sourced Icelandic groundwater. An upper limit for
sulfide in Fluid 7 is derived from a study by Alt and Shanks (2006), who characterized a serpentinization system in the Mariana forearc.
Dissolved inorganic carbon is introduced to all fluids from atmospheric CO2 as specified in the text.
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The precise formulation of the AOM reaction is depen-
dent upon the host solution’s pH, because carbonate, sulfate,
and sulfide speciation vary (H2CO3:HCO�3 pKa = 6.35,
HCO�3 :CO2�

3 pKa = 10.33; H2SO4:HSO�4 pKa = - 3, HSO�4 :
SO2�

4 pKa = 1.92; H2S:HS- pKa = 7, HS - :S2 - pKa = 13 at
25�C). Thus, five different aqueous reactions can be ex-
pected at 25�C:

pH range AOM reaction

<1:92 CH4þHSO�4 þHþ/CO2þH2Sþ 2H2O

1:92�6:35 CH4þ SO2�
4 þ 2Hþ/CO2þH2Sþ 2H2O

6:35�7 CH4þSO2�
4 þHþ/HCO�3 þH2SþH2O

7�10:33 CH4þ SO2�
4 /HCO�3 þHS� þH2O

10:33�13 CH4þ SO2�
4 /CO2�

3 þHS� þHþ þH2O

The reaction chosen to best represent AOM in each envi-
ronment is determined by the prevailing pH and tempera-
ture, which dictate the most abundant carbonate and sulfide
species.

During Mars’ ancient past, when liquid water would have
been thermodynamically stable on and below the planet’s
surface, Mars’ atmosphere was likely more dense than it is
today. Such compositional differences are particularly relevant
with regard to CO2 levels, since dissolved oxidized carbon
species are products of the AOM reaction and thereby mod-
ulate the equilibrium state. We propose four different CO2-
dominated atmospheres that reflect the likely oxidized nature
of Mars’ early atmosphere (Haberle, 1998) and encompass a
wide range of proposed compositions. The ‘‘atmosphere-
independent’’ case models a potential habitat in which
groundwater is not in contact with the atmosphere and neg-
ligible dissolved CO2 (1 lM) is present. The ‘‘modern atmo-
sphere’’ allows for a CO2 partial pressure of 6 mbar, the
‘‘thick ancient atmosphere’’ accommodates the upper end of
modeled CO2 concentrations (2 bar, Yung et al., 1997), and
the ‘‘ancient atmosphere’’ falls between the two extremes (200
mbar). The atmosphere scenarios indicate the quantity of CO2

available to go into solution but are not indicative of the
pressures at which Gibbs energies were calculated or the RTM
was run. For each environment (i.e., combination of fluid and
atmospheric composition), the ratios of carbonate species were
determined under the aforementioned concentrations of CO2

by minimizing the Gibbs function for the constituent species
with the SpecE8 program in Geochemist’s Workbench.

2.2. Gibbs energy calculations

Calculating the Gibbs energy of potential catabolic re-
actions constrains the thermodynamic feasibility of these
reactions under specific environmental conditions and in-
dicates which metabolisms might be the most prevalent in a
given system. These kinds of calculations have been carried
out to describe a number of extreme environments on Earth,
including submarine hydrothermal settings (Shock et al.,
1995; McCollom and Shock, 1997; McCollom, 2000,
2007; Amend and Shock, 2001; Shock and Holland, 2004;
LaRowe et al., 2008; Amend et al., 2011), shallow marine
and terrestrial hydrothermal systems (Amend et al., 2003;
Inskeep and McDermott, 2005; Inskeep et al., 2005; Rogers
and Amend, 2005, 2006; Spear et al., 2005; Rogers
et al., 2007; Skoog et al., 2007; Windman et al., 2007; Costa
et al., 2009; Shock et al., 2010; Vick et al., 2010), and to a

lesser extent ocean sediments (Schrum et al., 2009; Wang
et al., 2010) and basement rock (Bach and Edwards, 2003;
Cowen, 2004; Edwards et al., 2005; Boettger et al., 2012).
Furthermore, this type of analysis has been used to explore
the biological potential beyond Earth (Hoehler, 2007), such
as in Europa’s oceans (McCollom, 1999; Zolotov and
Shock, 2003, 2004).

The total amount of energy available to a microorganism
can be readily quantified by calculating the Gibbs energy of
reaction, DGr, at the particular temperature, pressure, and
composition of interest. Negative values of DGr indicate that
the electron donor-acceptor pair under consideration is not in
equilibrium and could provide energy for organisms capable of
catalyzing the transfer of electrons between the two molecules.
Organisms must be able to catalyze these reactions faster than
they occur abiotically if they are to gain energy from them.
Values of Gibbs energies are calculated as follows:

DGr¼RT ln
Q

K

� �
(4)

where R stands for the gas constant (8.314 J/mol K), T de-
notes the temperature in kelvin, Q designates the reaction
quotient, and K represents the equilibrium constant. Values
of Q, which take into account the effects of aqueous
chemistry on reaction energetics, can be calculated by using

Q¼
Y

i

avi

i (5)

where ai indicates the activity of the ith species, and vi

corresponds to the stoichiometric coefficient of the ith spe-
cies. Values of K were calculated by using the revised-HKF
equations of state (Helgeson et al., 1981; Tanger and Hel-
geson, 1988; Shock et al., 1992), the SUPCRT92 software
package ( Johnson et al., 1992), and thermodynamic data
taken from several studies (Shock and Helgeson, 1988,
1990; Shock et al., 1989; Sverjensky et al., 1997; Schulte
et al., 2001). Molalities of the ith species, mi, listed in Table
2 were converted into activities by using individual activity
coefficients of the ith species (ci),

ai¼mici (6)

Values of ci were in turn computed as a function of tem-
perature and ionic strength by using an extended version of
the Debye-Hückel equation (Helgeson, 1969) and Geoche-
mist’s Workbench. Non-redox species (e.g., Na + , Cl - ) were
used to charge balance the fluids described in Table 2 prior
to thermodynamic calculations. All calculations of ci, Q, and
K were conducted at 1 bar but apply to the top several tens
of kilometers of martian crust. The effect of changing li-
thostatic pressure on energetic parameters is negligible
( < 0.2%) within the top 5 km of martian crust—the zone
with which this study is concerned.

2.3. Reaction transport model

Gibbs energy calculations quantify the favorability of
AOM reactions for a particular set of conditions. However,
because these conditions are influenced by the rates of
chemical reactions and the transport of reactant and product
species, RTMs are required to assess the plausibility of
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biogeochemical processes in dynamic environments. To
assess the likelihood that AOM could sustain life on Mars,
an RTM was developed that considers advection and dif-
fusion of nutrients, AOM reaction rates, and the feed-
back between growing organisms’ methane consumption
and downstream concentrations.

Several other investigators have developed RTMs with
specific AOM-centered questions in mind (for a recent re-
view, see Regnier et al., 2011). Treude et al. (2003) modeled
changing methane concentrations with time, considering
diffusion and advection of dissolved sulfate and methane,
depth-dependent sediment porosity, and a kinetically dictated
rate of AOM. Dale et al. (2006) placed AOM within a larger
ecological context, ultimately applying the model to Ska-
gerrak sediment cores to show that low levels of methane
persist at the surface due to bioenergetic limitations (Dale
et al., 2008). Orcutt and Meile (2008) examined AOM en-
ergetics at the consortium scale to show that the accumulation
of proposed interspecies intermediates such as hydrogen or
formate results in low Gibbs energy availability.

The RTM presented here builds upon many features of
the models highlighted above and is tailored to our specific
investigation. We constructed a one-dimensional model that
simulates a vertical column of groundwater-infused rocky
martian crust receiving a methane flux from below. The
source of CH4 is attributed to serpentinization and down-
stream reactions that are hypothesized to have occurred on
early Mars (Oze and Sharma, 2007; Cardace and Hoehler,
2009) and/or hydrothermal alteration of basalt with C-rich
fluids (Lyons et al., 2005). An initial CH4 concentration of
2 mM is used (Alperin et al., 1988; see Supplementary In-
formation, available online at www.liebertonline.com/ast),
and methane formation reactions (e.g., Reactions 2 and 3)
are not incorporated into the model.

The model tracks the changing concentrations of meth-
ane, sulfate, oxidized carbon species CO2�

3 , HCO�3 , or
CO2�

3 , and reduced sulfur species (H2S or HS-), due to
advection, diffusion, and AOM. Furthermore, the Gibbs
energy of AOM, the reaction quotient (Q), and the amount
of biomass are computed at each reaction step. The RTM
was run in Matlab, simulating a 100 m long layer of mar-
tian crust over 1000 Earth days. This mixing zone is often
framed as a vertical column, with methane-rich fluid
coming from below, but it could be oriented in any man-
ner such that advective flow facilitates movement of the
fluid front. These parameters were selected to portray the
initial perturbations and steady-state results of an AOM-
based microbial system while minimizing computation
intensity.

The upper boundary of the crustal layer under consider-
ation could range from 12.5 m below the martian surface
(to ensure sufficient pressure to maintain 2 mM dissolved
methane) to several kilometers (beyond which chemical
activities and equilibrium constants change significantly).
Within the experimental zone, pressure was not considered,
as effects on all reported parameters were insignificant.

Concentration of the ith species, Ci, was determined
by using a standard, one-dimensional advection-diffusion-
reaction equation (e.g., Berner, 1980),

/
vCi

vt
¼ v

vz
/Di, T

vCi

vz

� �
� v

vz
(/uCi)�/RAOM (7)

where / represents porosity, Di,T stands for the temperature-
dependent diffusion coefficient for species i (m2/d), u indi-
cates the advection velocity (m/d), RAOM represents the rate
of consumption or production of species i due to AOM (mol/
m3 d), and t and z are time (d) and vertical distance (m),
respectively. The partial differential equations were dis-
cretized, with components allowing for diffusive, advective,
and reactive losses and gains, depending on whether the
species was consumed or produced by AOM.

The rate of AOM, RAOM, was described by a second-order
bimolecular rate law exhibiting Monod-type dependence on
methane and sulfate concentrations, tempered by a ther-
modynamic term:

RAOM¼Vmax

CCH4

CCH4
þKCH4

� �
CSO3�

4

CSO2�
4
þKSO2�

4

 !
FT (8)

In Eq. 8, Vmax indicates the maximum rate of AOM that has
been observed in a terrestrial context (mol/m3 d), K values
represent half saturation constants for the indicated reactants
(M), and HSO�4 concentration is used in place of SO2�

4

concentration at pH < 1.92. FT stands for the thermodynamic
rate-limiting term, which is calculated according to (LaR-
owe et al., 2012):

FT ¼
1

exp
DG0

r þFDC
RT

� �
þ 1

for DG0
r �0 (9a)

FT ¼ 0 for DG0
r >0 (9b)

where F signifies the Faraday constant, and DJ represents
the electric potential spanning an organism’s membrane (V).
A thermodynamic limiting term is included in Eq. 8 to ac-
commodate limitation of catabolic reaction rates by their
energy yield ( Jin and Bethke, 2003) and as a check to ensure
that the reaction under consideration is thermodynamically
possible under the specified conditions. FT takes on values
between 0 and 1.

Changes in microbial biomass (X) are computed by using

dX

dt
¼ YRAOM�DX (10)

where Y indicates the growth yield (mg biomass/mol of
reaction turnover), and D represents the biomass decay
constant (d - 1). Any calculation of biomass and its changing
abundance assumes the nonlimiting presence of nutrients
and micronutrients other than methane and sulfate, which is
not explicitly considered here. A maximum microbial load
of 3 · 106 mg/m3, beyond which no further growth was
permitted, was used as an upper limit based on abundances
measured at terrestrial cold seeps (Orcutt et al., 2005).

The Gibbs energy (DGr) and reaction quotient (Q) were
calculated as described in Eqs. 4 and 5, respectively. The pa-
rameter values used in the RTM are provided in the Supple-
mentary Information.

The RTM was run in two different modes in order to
account for contingencies in the geochemical behavior of
martian sulfate deposits. The ‘‘finite-sulfate’’ variation as-
sumes that the sulfate present in the fluid at t = 0 is the only
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biologically available sulfate for the duration of the simu-
lation. The ‘‘sulfate-replacement’’ mode allows for the re-
plenishment of sulfate, a scenario that would reflect an
aquifer hosted in readily soluble sulfate-bearing minerals.

3. Results

Gibbs energy calculations indicate that the AOM reac-
tions (Table 3) in all seven fluids under all four atmospheric
composition scenarios are exergonic, suggesting that this
metabolism would have been possible on Mars given the
assumptions described above.

Table 3 presents the Gibbs energies available immedi-
ately upon the introduction of 2 mM methane to the seven
fluids. The RTM allows for microbial metabolism to con-
sume methane and sulfate while increasing dissolved inor-
ganic carbon (DIC) and reduced sulfur concentrations,
effectively lowering the amount of available energy. Ulti-
mately, either methane or sulfate becomes limiting, and the
Gibbs energy of AOM becomes endergonic and thus ther-
modynamically unfeasible. To visualize the spatial depen-
dence of usable energy, heat maps of Gibbs energy values at
t = 1000 days (steady state) were generated (Fig. 1). Each of
the eight panels in this figure depicts data for a specific
atmospheric composition–sulfate replacement condition;
panels are subdivided by fluid composition, and each bar
signifies an advection velocity. The y axis indicates the
distance from the introduction of methane-rich fluid into the
modeled martian aquifer (where 0 represents the interface).
All heat map coloration is on the same scale, from - 135 kJ/
mol (red) to 0 kJ/mol (green); positive Gibbs values (end-
ergonic conditions) are plotted uniformly in gray. Overall,
Gibbs energy maps of 224 distinct combinations of atmo-
spheric composition, degree of sulfate replenishment, fluid
composition, and advection velocity were generated and are
provided in Fig. 1.

The rate of biomass production was determined for each
set of conditions. Two separate phases of productivity are
apparent when biomass is plotted as a function of time
(Fig. 2). During the first phase, the quantity of biological
material increases exponentially; thereafter, the rate of
biomass increase is linear as the system reaches a steady
state. The slopes of the associated best-fit lines represent the

amount of biomass generated per day (until the carrying
capacity is attained). These values are provided in Table S1
and demonstrate the biological production capacity of each
simulated condition, which ranges from 4 mg/d in Fluids 5
and 7 (u = 0 m/d and sulfate is not replenished) to 77,269 mg/
d in Fluid 5 (ancient atmosphere, u = 3 m/d, and sulfate is
replaced). Ultimately, biomass saturation (3 · 106 mg/m3) is
reached in all zones of exergonic AOM.

4. Discussion

4.1. Controls on energetic feasibility of martian AOM

Gibbs energy values for all considered fluid composi-
tions and CO2-dominated atmospheres are exergonic upon
the introduction of 2 mM CH4 (t = 0). Values of available
energy range from - 31 kJ/mol (Fluid 7 under a thick an-
cient atmosphere) to - 135 kJ/mol (Fluid 2 in the atmo-
sphere-independent condition). All conditions are more
exergonic than the estimated energetic limit for microbial
life on Earth, which has been reported to be approximately
- 20 kJ/mol (Schink, 1997), though a wide range of values
for this limit has been proposed (e.g., Hoehler, 2004 and
references therein). It is also important to note that our
calculated Gibbs energy values are reflective of initial
geochemical concentrations; localized intracellular energies
could differ depending on transport mechanisms and would
dissipate as reactants are used and products are generated.

The Gibbs energy variations are tightly coupled to the
initial activities of a fluid’s reactants (CH4, HSO�4 , SO2�

4 )
and products (CO2, HCO�3 , CO2�

3 , H2S, HS - ). With at-
mospheres of higher CO2 concentrations, the AOM reaction
becomes less exergonic, as the putative organism must
‘‘push’’ against higher levels of DIC, which is a product of
the reaction. Temperature is also an important factor (see
Eq. 1): Fluid 2, which exhibits the largest energy yield
across all atmospheric possibilities, does not have the largest
difference between the equilibrium constant and the reaction
quotient (see Eq. 4), but its high temperature (357 K) pro-
duces a more negative Gibbs energy result. Although 357 K
is warmer than the optimal growth temperature of many
terrestrial microorganisms, it is well within the survival
range of thermophiles (Madigan and Orent, 1999), including
thermophilic AOM-mediating organisms (Kallmeyer and
Boetius, 2004; Holler et al., 2011).

Gibbs energy profiles produced by the RTM show that the
spatial extent of AOM exergonicity is strongly dependent
upon the advection velocity (u). For example, under atmo-
sphere-independent, finite-sulfate conditions, Fluid 1 yields
exergonic conditions for 4 m with an advection velocity of
0 m/d, 24 m for 1 m/d, 48 m for 2 m/d, and 72 m for 3 m/d
(Fig. 1a). For each meter per day that advection increases,
approximately 24 additional meters of martian crust are
perfused with an exergonic AOM aqueous chemistry, a re-
lationship that is consistent across all non-sulfate-limiting
conditions.

The other major control on AOM-amenable crustal vol-
ume is the starting methane concentration. Under sulfate-
replacement conditions, each 1 mM increase in the dissolved
methane concentration puts an additional *11*u m of crust
under exergonic conditions (the exact coefficients of this
relationship depend upon the precise fluid-atmospheric com-
position situation). The spatial extent of exergonic AOM

Table 3. Initial DGr Values for the AOM

Reaction at Various Estimated CO2 Partial

Pressures in Modeled Martian Atmospheres

for the Seven Fluids Considered in This Study

Atm.
independent

Modern
atm.

Ancient
atm.

Thick
ancient atm.

Fluid
1 lM CO2

(aq)
6 mbar

CO2

200 mbar
CO2

2 bar
CO2

1 - 126.90 - 113.72 - 105.03 - 99.33
2 - 134.86 - 122.20 - 111.74 - 104.90
3 - 104.10 - 90.69 - 82.22 - 76.69
4 - 48.41 - 60.75 - 52.07 - 46.36
5 - 66.00 - 67.16 - 58.43 - 52.00
6 - 106.40 - 108.72 - 99.40 - 93.11
7 - 52.53 - 39.38 - 36.64 - 31.04

All values in kJ/mol of methane.
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reaches a steady state after the fluid front moves through the
entire zone of negative Gibbs energy; in most cases, this
occurs after 24 d. Even with significantly longer run times
(e.g., 1 · 106 d), Gibbs energy values remain constant, as
metabolic activity rates reach a steady state with reactant
fluxes.

In zones of positive Gibbs energies, AOM is limited
by insufficient sulfate or methane concentrations. Sulfate-

replacement cases are spatially constrained by methane
(Fig. 1b, 1d, 1f, 1h); finite-sulfate scenarios can be limited by
either reactant, depending on the initial fluid chemistry.
Fluids 5, 6, and 7, which have the lowest starting sulfate
concentrations, are sulfate-limited when sulfate is not re-
plenished and methane-limited when sulfate is held constant
at its initial concentration. The consequences are most visible
in comparisons of spatial extent of exergonic conditions in

FIG. 1. Heat maps representing Gibbs energies for AOM in seven fluids at t = 1000 days and advection velocities u of 0–3 m/d
for both finite-sulfate and sulfate-replacement scenarios. Only negative Gibbs values are plotted on the heat map; positive values
are undifferentiated and shown in gray. The vertical axis represents the distance away from the introduction of methane-rich fluid
into the martian aquifer. All values are in kJ/mol CH4. Color images available online at www.liebertonline.com/ast
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panels 5, 6, and 7 between Fig. 1a and 1b, 1c and 1d, 1e and
1f, and 1g and 1h.

Many transitions between Gibbs energy states are abrupt.
The exergonic-endergonic shift is controlled by reactant
concentration, while relative changes within the exergonic
zone are driven by product accumulation (and, less signifi-
cantly, by the RTM’s 1 m grid spacing). Endergonic sites are
often neighbored by strongly exergonic locations, with little
gradation between the two. In the panel for Fluid 1 in Fig. 1a,
for example, at 72 m past the mixing front when advection is
3 m/d, the steady state Gibbs energy is - 97 kJ/mol. At 73 m,
the Gibbs energy is highly endergonic. The transition is at-
tributable to methane limitation (or sulfate limitation for the
finite-sulfate cases of Fluids 5, 6, and 7). For the first 72 m of
mixing space, incoming methane-rich fluid is able to supply
more methane than AOM can process. This distance is ad-
vection velocity–dependent because higher flow rates deliver
more methane per unit of time to the system, overloading local
AOM capabilities and allowing methane to advance further
through the aquifer. However, even as the last methane is
consumed from Fluid 1, the process is highly exergonic be-
cause sulfate concentrations remain high (2.21 mol/kg at
72 m, compared with 2.23 mol/kg at 0 m). In general, fluids
that produce more exergonic conditions upon initial mixing
(Table 3) generate more sudden spatial transitions from highly
exergonic to endergonic conditions because the ancillary
factors that made the reaction favorable in the first place (low
sulfide concentration or higher temperature, for example)
remain even as the limiting reactant, whether sulfate or
methane, is depleted.

The stark energetic transitions within the exergonic zone—
most visibly at 4, 7, and 10 m for advection velocities of 1, 2,
and 3 m/d, respectively—are caused by product accumula-
tion and advection velocity. For example, in Fig. 1a, Fluid 2,
u = 3 m/d, Q increases by more than 2 orders of magnitude
between 9 and 10 m, and DGr changes from - 135 kJ/mol to
- 116 kJ/mol. The location of this shift is dependent on u, as
higher flow rates are able to push more exergonic conditions
representative of the initial interface deeper into the mixing
zone. The magnitude of the transition results from product
buildup; when starting from low concentrations of AOM
products, initial increases from biological activity represent
a large proportional change and exert a significant effect on
energetic parameters. The magnitude of these transitions
lessens as initial DIC concentrations increase with thicker
atmospheres, as seen with Fluid 2 in Fig. 1a, 1c, 1e, and 1g.
The transitions remain most abrupt for Fluid 6, which
has the lowest starting concentration of sulfide, meaning
that its proportionally significant increase continues to
drive Gibbs energy transitions despite higher initial DIC
concentrations.

In the model scenarios presented in this study, Gibbs
energy availability does not exhibit a strong deterministic
effect on the rate of biomass production, as long as the
reaction is exergonic. Gibbs energy values for a given fluid
vary by an average of 29% across the range of atmospheric
compositions; the variation in biomass production rates
across atmospheric compositions averages 1% (for a given
advection velocity). Rather, the spatial extent of negative
Gibbs energies—determined largely by advection velocity

FIG. 2. Biomass production rate of the entire mixing zone for a representative 1000-day model run (Fluid 2, atmosphere-
independent, u = 3, finite-sulfate). After an initial exponential increase in biomass with time (inset), the production rate
reaches a constant value.
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and the distribution of reactants—exerts the strongest effect
on biomass production rates. With sufficient time, all zones
of exergonic AOM reach the model-specified biomass car-
rying capacity. Thus, higher advection velocities, which
extend the zone of exergonic Gibbs energies, lead to higher
overall biomass yields. The time required to attain this
biomass varies from 7.3 years (Fluid 6, thick ancient at-
mosphere, u = 1 m/s, finite-sulfate) to 6,160 years (Fluids 5
and 7, all atmospheres, u = 0, finite-sulfate). With no advec-
tion, rates of biomass production (Table S1) are approxi-
mately 3 orders of magnitude lower than under advective
flow conditions, requiring longer time frames to achieve
biomass saturation.

4.2. Models for martian AOM

The calculations described in this study demonstrate that
AOM was likely an energetically viable metabolism on
ancient Mars, yielding Gibbs energies in excess of those
found in low-energy terrestrial environments (Hoehler
et al., 2001; Jackson and McInerney, 2002). The key
question is thus whether it was possible or probable on
ancient Mars for sulfate-bearing waters to interact with
methane sources.

Sulfates need not be present at high environmental con-
centrations to sustain AOM (Beal et al., 2011); nonetheless,
they are relatively common on Mars. Sulfur-bearing species
have been identified at several surface sites (Toulmin et al.,
1977; Wänke et al., 2001; Squyres et al., 2004; Wang et al.,
2006; Kounaves et al., 2010). Various regionally extensive
polyhydrated and monohydrated sulfate-bearing geological
units have been observed from orbit, distributed across the
planet (Bibring and Langevin, 2008), and Murchie et al.
(2009) described five distinct classes of sulfates that express
a range of co-occurring minerals and layer-forming ten-
dencies. Oxidized sulfur is also present in the ubiquitous
martian dust (6.8 wt% SO3) and soil (6.2 wt% SO3) (Taylor
and McLennan, 2009). The multiple forms and widespread
nature of sulfur species suggest that aqueously mobilized
sulfate would have been prevalent, resulting from ground-
water interaction with large sulfate deposits and/or sulfur-
containing particulates.

Methane production can result abiotically either from
the reaction of carbon dioxide with serpentinization-
derived hydrogen in ultramafic rocks (Oze and Sharma,
2005) or hydrothermal alteration of basalt (Lyons et al.,
2005) as noted above. Consequently, two end-member
scenarios for geological settings favorable to AOM on
Mars can be envisaged—one rare (with a single location
identified to date) and one common (with thousands of
potential locations).

In the NE Syrtis model (Fig. 3a), mineralogical expres-
sions on the modern martian surface suggest an ancient
groundwater regime that would have produced and then
mixed both AOM reactants at the contact between two large,
regionally extensive geological units. The eroded transition
between the Syrtis Major lava flows and the Isidis Basin, a
region known as NE Syrtis, exhibits multiple manifestations
of extensive and prolonged aqueous activity, from fluvial
morphology (Mangold et al., 2007) to mineral signatures
indicative of varied geochemical conditions (Ehlmann et al.,
2009, 2010).

Ehlmann and Mustard (2012) described a particular
*700 m thick stratigraphic section in which an olivine-rich
unit underlies sulfate deposits. As observed elsewhere in the
region, the olivine-bearing unit appears to have been par-
tially altered to serpentine and Mg carbonate, both of which
are consistent with AOM activity. Serpentinization provides
potential fuel for AOM by generating hydrogen and fa-
cilitating abiotic methanogenesis, and carbonate ions are
products of the AOM metabolism. Indeed, large carbonate
mounds are frequently found in association with terrestrial
cold seeps (Teichert et al., 2005). Overlying sulfate depos-
its, spectrally indicated by jarosite absorption features,
point to a shift in geochemistry from neutral-alkaline to
acidic waters (likely pH < 4, Papike et al., 2006). The
contact between olivine- and sulfate-bearing units may have
allowed for methane- and sulfate-bearing groundwaters that
could have formed the basis for biological AOM. Methane
produced through serpentinization and subsequent reactions
would have dissolved in the groundwater and moved up-
ward, via diffusion and possibly advective flow, into sulfate-
rich deposits (Fig. 3a). In this case, the ridges within the
sulfate units, inferred to be mineralized conduits of fluid
flow, would be a prime target for astrobiological missions
searching for organic carbon or AOM biomarkers.

NE Syrtis–type conditions appear to be rare. Evidence of
hydrogen-generating serpentinization, and thus methane-
generating serpentinization, in the form of the mineral ser-
pentine has been seen in about a dozen other orbital images
across a range of geological provinces (Ehlmann et al.,
2010), none of which is also in direct contact with sulfate-
bearing units. On the other hand, the basalt alteration model
(Fig. 3b) allows for methane production from the reaction of
hydrothermal, carbon-rich fluid with basaltic crust at several
kilometers’ depth (Lyons et al., 2005). Basalt is ubiquitous
on Mars, making this scenario of methane production more
promising on a large scale. Moreover, it has been proposed
that groundwater systems and hydrothermal subsurface
aqueous alteration of basalt were globally widespread dur-
ing the Noachian period and formed the hydrated silicate
mineral assemblages found in thousands of exposures of
Noachian crust on Mars (Mustard et al., 2008; Ehlmann
et al., 2011). In the most potentially widespread scenario,
sulfate-bearing groundwater is generated from the dissolu-
tion of oxidized sulfur aerosols, which may have precipi-
tated from the atmosphere following volcanic expulsion
(Settle, 1979). Iron oxidation, mediated by atmospheric
molecular oxygen or solar radiation, and the precipitation of
schwertmannite (an iron-oxyhydroxysulfate mineral) would
have generated acidic geochemical conditions (Hurowitz
et al., 2010). The low pH and high sulfate concentrations
posited in this model are similar to Fluids 1, 2, and 3, all of
which yielded highly exergonic AOM conditions. Because
the hydrated silicate minerals formed by subsurface aqueous
alteration of basalt are found in thousands of exposures of
Noachian crust, many sites are available for astrobiological
investigation. Locations with well-preserved evidence of
fluid flow (e.g., ridges or hydrothermal zones) would be
promising sites to search for evidence of past biological
methane oxidation.

Several environmental and geological factors could pre-
clude biological AOM on early Mars. For methanotrophic
organisms to live off of methane- and sulfate-rich fluids,
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biochemical consumption of methane must be more kineti-
cally or thermodynamically favorable than abiotic sinks.
Given the high temperatures and exotic chemical catalysts
required for abiotic methane oxidation (Li and Hoflund
2003), microbial metabolisms would have been favored over
abiotic reactions in all environments considered in this
study. Geochemical barriers to AOM include insufficient
reactants or high concentrations of products that could
substantially alter the reaction quotient. Because of the
importance of advection in extending the footprint of ex-
ergonic conditions, hydrologically inert sites would exhibit
very low biomass levels. Subsurface AOM environments
would be shielded against the direct effects of ionizing ra-
diation, which are negligible below approximately 5 m
depth (Dartnell et al., 2007).

5. Conclusions and Implications

This study demonstrates that AOM may have been an
energy-yielding metabolism for putative organisms on an-
cient Mars, when liquid water was abundant on, and below,
the planet’s surface. Gibbs energy values indicate that ex-
ergonic conditions were present upon the addition of dis-
solved methane to model fluids representative of a range of
martian geochemistries. Results from the RTM show that

such energy-yielding conditions would have persisted in
steady state in a relatively narrow, advection velocity-
determined envelope of the martian subsurface. Provided
that additional physicochemical requirements for life were
met, including the availability of nitrogen, phosphorous, and
other nutrients, AOM may have formed the basis for a
sustainable ecosystem.

To establish a long-term biosphere, methane production
would have needed to persist over hundreds of thousands or
millions of years. Dissolved species transport by way of
diffusion or, more usefully, advection would have been
necessary to supply nutrients, remove end products, and
maintain favorable energetic conditions. Given these con-
siderations, sites on Mars that exhibit significant deposits of
sulfate minerals, particularly those co-located with serpen-
tine and/or evidence of basalt alteration by groundwater,
would be the most promising places to search for evidence
of AOM. Advective transport of AOM reactants is the
strongest determinant of overall biomass, making hydro-
logical investigations particularly important in an astro-
biological context. Future astrobiology-oriented missions
could scour mineralogically and geologically appropriate
target areas for isotopically distinct carbonates or sulfur
minerals indicative of biological fractionation or diagnostic
organic molecular fossils (Pancost et al., 2001).

FIG. 3. (Continued).
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Conditions amenable to AOM may persist in the martian
subsurface today. Crust alteration reactions could initiate the
abiotic synthesis of methane, and oxidized sulfur species
could be mobilized by groundwater flow. This study shows
that methane is consumed quickly upon its production,
which suggests that a methane signature at the surface need
not be present for local conditions to support AOM activity.
Thus, although the search for modern-day methane in the

martian atmosphere is intriguing, its absence (Webster et al.,
2013) would have no bearing on the possibility of subsur-
face AOM proposed here.

Warmer and wetter martian conditions may have sup-
ported a number of metabolisms on ancient Mars. Given the
exergonic potential of several different Mars analog fluids
and geological evidence of reactant-generating conditions,
AOM should be considered among the most promising and

FIG. 3. (a) A model for potential AOM on Mars, which uses the stratigraphy at NE Syrtis Major. Within a water-
permeated section, serpentinization of the olivine-bearing unit produces hydrogen, which in turn generates methane in the
abiotic reduction of CO2. This methane diffuses upward and is entrained in buoyant, heat-driven advective flow. In the
overlying jarosite-bearing layer, dissolved sulfate and incoming methane provide the reactants for AOM, which produces
carbonate species that may form magnesium carbonate minerals. Many of the minerals involved in this model have been
observed from orbit, and calculations suggest that the AOM metabolism is energetically favorable given modeled fluid
chemistries. (b) An alternative scenario for martian AOM, in which methane is produced by subsurface hydrothermal
alteration of basaltic crust (Lyons et al., 2005), and acid sulfate conditions (i.e., typical of Fluids 1–3) are produced from
fluids derived near the surface. Sulfate-bearing waters are formed by aerosol deposition and subsequent dissolution of
oxidized sulfur species by water. Acidity is generated through iron oxidation and schwertmannite formation within sulfate-
bearing groundwaters as is thought to have occurred at Meridiani Planum and other locations (Hurowitz et al., 2010). As
methane is produced through hydrothermal alteration of basalt in the subsurface, AOM could proceed at the zone of mixing
of these waters. The reaction is particularly favorable in zones of acidic, sulfate-rich groundwater, potentially leading to
larger biomass yields. Color images available online at www.liebertonline.com/ast
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observationally constrained possibilities to support past or
present life on Mars.
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