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Abstract. Since mid-1985, the average flux of >70 
MeV/nucleon cosmic rays at Voyager 2 (r•.-17 AU, 
0 2 •0 ø) has been -3-5% greater than that at Voyager 
I (r•-24 AU, O•-26øN). This is the first direct obser- 
vation over such a large radial range in which the 
galactic cosmic ray flux closer to the sun is higher than 
the flux farther from the sun for an extended period of 
time. This observation is consistent with the presence 
of a negative latitudinal gradient Go=-0.36 +_ 0.05 (or 
-0.60 -+ 0.08) %/deg, assuming a coexistent radial gra- 
dient G r of I (or 2) %/AU. We suggest that the 
appearance of this persistent negative latitudinal gra- 
dient may be due to the abrupt, large decrease of the 
hellospheric current sheet tilt to -20 ø in early 1985. 

Introduction 

In an earlier paper [Christon et al., 1986] we derived 
an average latitudinal component of the cosmic ray gra- 
dient with respect to the hellospheric current sheet of 
G^=-0.22 --+ 0.03 %/deg during periods of restricted 
interplanetary conditions from 1981 to 1983. These 
results were in qualitative agreement with cosmic ray 
propagation models incorporating particle drifts. Since 
then, the general level of solar activity has decreased 
and the maximum latitudinal extent of the hellospheric 
current sheet has also decreased (e.g., Smith and Tho- 
mas [1986]), leading to the possibility that a negative 
latitudinal gradient might be observed by the Voyagers 
under less restrictive interplanetary conditions. 

The first observational evidence for a persistent 
large-scale negative cosmic ray latitudinal gradient is 
presented in this letter and in a companion paper by 
McDonald and Lal [1986]. The radial and latitudinal 
separations of the observation points are -7 AU and 
-26 ø , respectively, and the negative latitudinal gradient 
has persisted for over one-half year (7 solar rotations). 

Observations 

Our cosmic ray data are from the Voyager 1 (dis- 
tance from the sun r•-24 AU, hellographic latitude 
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O•-26øN in mid-1985) and Voyager 2 (r•.-17 AU, 
02-0 ø in mid-1985)spacecraft. Concurrent 26-day 
solar rotation averages of the integral counting rates of 
>70 MeV/nucleon cosmic ray hydrogen and helium are 
determined for particles penetrating a stack of solid 
state detectors [Stone et al., 1977]. The median energy 
of the cosmic rays contributing to this counting rate is 
-1 GeV. In Figures 1A and lB, 26-day averages of 
normalized H and He counting rates at the Voyagers 
are plotted versus Voyager 2 observation time. The 
counting rates were normalized during a quiet period in 
1977 when the spacecraft were at the same radial dis- 
tance from the sun (e.g., Roelof et al. [1983]). The col- 
lection times of the Voyager i data were adjusted for 
500 km/s radial propagation from Voyager 2 to Voy- 
ager i before these 'shifted' 26-day Voyager i averages 
were accumulated. We use 500 km/s for the radial pro- 
pagation speed since this is the average apparent out- 
ward propagation speed of corotating interaction 
regions in 1983 and early 1984 [Christon and Stone, 
1985a; Burlaga et al., 1985]. Shifting the data for the 
propagation delay should minimize the effects due to 
temporal variations convected with the solar wind and 
provide reasonable organization of data obtained at 
different heliocentric distances. 

Latitudinal and radial gradients are calculated from 
the data using 

lnF=GrAr+GoA © (1) 

where F is the ratio of cosmic ray flux measurements at 
Voyager i to those at Voyager 2, Gr (Go) is the radial 
{latitudinal) component of the cosmic ray gradient, and 
Ar (AO) is the radial (latitudinal) difference of the Voy- 
agers (see Christon et al. [1986]). Since Voyager 
latitudinal and radial separations are both increasing 
steadily (see ephemeris at the top of Figure 1) and since 
effects due to both separations may be intermixed, we 
initially investigate temporal variations of the apparent 
radial gradient Gr, evaluated assuming Go=0 {see Fig- 
ures 1C and 1D). In 1984 the values of the apparent G r 
for hydrogen range from -0.2 to -1.2 %/AU, con- 
sistent with those evaluated by Venkatesan et al. 
[1985]. However, we note that these apparent values of 
Gr from comparisons of Voyager i and Voyager 2 are 
less than half the values of G r from comparisons of 
Voyager 2 and Pioneer 10 which is also close to the 
hellographic equator but on the opposite side of the 
solar system [McDonald and Lal, 1986]. This suggests 
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Fig. 1. Twenty-six day averages of > 70 MeV cosmic ray H and He normalized counting rates (panels A and B) and 
apparent radial gradients assuming a zero latitudinal gradient (panels C and D) from Voyager I (plus) and Voyager 
2 (diamond).are plotted. Note that a negative apparent radial gradient Gr, as observed following day 136, 1985, 
will result if there is a sufficiently large negative latitudinal gradient. Solar rotation averages of c•, the current 
sheet tilt, are plotted in panel E. Smooth curves are three-period running averages of the data. 

that latitude effects are already measurable in 1984. 
Early in 1985, the apparent value of G r for both hydro- 
gen and helium becomes negative and remains so, 
reflecting the presence of the higher fluxes at Voyager 
2. We interpret these persistent negative values of the 
apparent G r to indicate that there is a persistent nega- 
tive latitudinal gradient. 

We evaluate G e in 1985 using Equation I and typical 
values of 1 and 2 %/AU for the actual Gr; 1%/AU 

agrees with our measurements in mid-1984 and is a rea- 
sonable lower limit, while 2 %/AU is representative of 
G r for equatorial measurements at lower energies during 
this period [McDonald and Lal, 1986]. The weighted- 
average value of G e for the eight solar rotations 
between days 136 and 343 in 1985 is-0.36-+ 0.05 (or 
-0.60 -+ 0.08) %/deg assuming Gr= 1 (or 2) %/AU. This 
can be compared to the value of GA=-0.22 -+ 0.03 
•/deg from our earlier estimate of the latitudinal corn- 
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ponent of the gradient obtained with a differential 
measurement [Christon et al., 1986] and can also be 
compared to the values at lower energies in the accom- 
panying paper by McDonald and Lal [1986]. 

The tilt of the hellospheric current sheet is estimated 
from (•, the amplitude of the maximum latitudinal 
excursion of the heliospheric current sheet near the sun 
during a Carrington solar rotation (see Figure 1E), 
analogous to the procedure of Smith and Thomas 
[1986]. The maximum latitude difference is 2ct. This 
angular extent is taken directly from published [U.S. 
Dept. of Commerce, 1986] and unpublished synoptic 
maps of the solar magnetic field predicted on a source 
surface 2.5 solar radii from the sun for every solar rota- 
tion, using a potential mapping technique and Stanford 
solar synoptic magnetograms [Hoeksema et al., 
1982,1983; Hoeksema, 1984; Smith and Thomas, 1986]. 
A continuous current sheet is usually well defined on 
this surface [Hoeksema, 1984]. The magnetic field pat- 
tern at the source surface is then assumed to be radially 
transported by the solar wind, controlling the 
configuration of the interplanetary magnetic field in the 
inner solar system. Distortions of the current sheet are 
expected at distances further from the sun due to velo- 
city differences and stream-stream interactions (see e.g., 
Seuss and Hildner [1985]), but are ignored here because 
it is not clear that these distortions should affect the 

maximum latitudinal extent of the current sheet. The 

average value of (• after day 121, 1985, when it reached 
a low, steady value, is 22.6 _+ 0.5 ø, just slightly higher 
than the average value of 15 ø during the last solar 
minimum [Hoeksema et al., 1982]. 

Discussion 

During 1984 and 1985 the interplanetary medium is 
dominated by corotating interaction regions and there 
is no evidence of large solar flare transient disturbances. 
Even if there had been some large flare initiated distur- 
bances, a persistent inversion of flux levels as a function 
of radius would not be expected to be produced by 
large scale solar flare transients. A flux inversion might 
be produced by a latitude dependence of the solar wind 
speed or magnetic field turbulence for an extended 
period of time [Christon and Stone, 1985a,b; Newkirk 
and Fisk, 1985]. Alternatively, a negative latitudinal 
gradient resulting in a flux inversion may indicate that 
drifts are important for particle transport at this time, 
since the observations can be modeled using a cosmic 
ray transport formalism including particle drifts (see 
e.g., Kota and Jokipii [1983]). 

In our previous paper we showed that measurements 
from two spacecraft, both encountering the current 
sheet at low to mid latitudes, will result in an average 
latitude gradient consistent with zero, even though a 
more selective analysis demonstrates that a negative 
latitudinal gradient is present. Average latitudinal gra- 
dients measured through 1984 are consistent with zero 
[Decker et al., 1984; Venkatesan et al., 1985; Webber 
and Lockwood, 1986]. However, in 1985, an asymmetry 
in the sampling of the cosmic ray flux has been intro- 
duced by the decrease of a to values at or lower than 

the latitude of Voyager 1, so that Voyager 1 now sam- 
ples mainly the northern magnetic hemisphere. For 
example, in models including drifts, Voyager 2 should 
sample average equatorial fluxes which would be more 
intense than average fluxes at the position of Voyager 
1, near the maximum latitudinal extent of the current 
sheet. Such a predicted inversion of flux intensities at 
different radii and latitudes (applicable to this half of 
the 22-year magnetic-activity solar cycle) appears in 
Figure 3B of Kota and Jokipii [1983]. Although only 
qualitatively comparable because of the assumed loca- 
tion of the boundary of the modulation region, the 
model does show for a-30 ø that the equatorial flux at 
a given radial distance is greater than that at higher 
latitudes (30 ø to 60 ø ) and slightly greater distances. 
This apparent radial inversion of fluxes is more exag- 
gerated for smaller values of a. 

Conclusions 

The primary conclusion of this report is that the 
observation of >70 MeV/nucleon cosmic ray flux at 
Voyager 2 with intensities greater than those at Voy- 
ager I during late 1985 requires the existence of a per- 
sistent, large-scale negative latitudinal gradient. 
Cosmic ray flux levels at Voyager 2 (r:•-•17 AU, 
O:•-•0 ø) exceed those at Voyager 1 (rl-24 AU, 
O1-•26øN) after the current sheet tilt decreases to 
values close to those observed during the last solar 
minimum. The appearance of the persistent negative 
latitudinal gradient at the Voyagers occurs during a 
period of relatively low solar activity and is not associ- 
ated with the passage of transient solar disturbances. 
Its appearance may, however, be associated with the 
large decrease in the latitudinal amplitude of the helios- 
pheric current sheet suggested by observations of the 
solar magnetic field. 
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