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We have designed a two-dimensional, fractal-like lattice and explored, both numerically and analytically, the
differences between random walks on this lattice and a regular, square-planar Euclidean lattice. We study the
efficiency of diffusion-controlled processes for flows from external sites to a centrosymmetric reaction center
and, conversely, for flows from a centrosymmetric source to boundary sites. In both cases, we find that analytic
expressions derived for the mean walk length on the fractal-like lattice have an algebraic dependence on system
size, whereas for regular Euclidean lattices the dependence can be transcendental. These expressions are compared
with those derived in the continuum limit using classical diffusion theory. Our analysis and the numerical results
quantify the extent to which one paradigmatic class of spatial inhomogeneities can compromise the efficiency of
adatom diffusion on solid supports and of surface-assisted self-assembly in metal-organic materials.
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I. INTRODUCTION

Diffusion-reaction dynamics on substrates, heterogeneous
catalysis, and diffusive transport in porous and amorphous
media have been modeled by random walks (RWs) on fractal
lattices (see the representative references [1-7] and work
cited therein). There exists an extensive literature both on
disordered (random) fractals [8—10] and deterministic fractals
such as the Sierpinski gasket [11-17]. In this article, we
introduce a fractal-like geometry which yields analytic results
in two complementary cases: diffusion from satellite sites to a
centrosymmetric trap, and diffusion from a centrosymmetric
source to boundary sites. This fractal-like lattice is related
to the Euclidean d = 2 dimensional square-planar lattice as
shown in Fig. 1. The physical motivation for introducing this
fractal-like lattice is that the influence on reaction efficiency of
such lattice imperfections as terraces, ledges, and kinks or, in
minerals, grain boundaries can be studied systematically and
quantified (see the representative references [18—20] and work
cited therein).

In developing a lattice model to study diffusion-reaction
processes on surfaces having irregularities or a distributed set
of imperfections, the (restricted) geometry of the system is
specified by identifying sites on the host lattice inaccessible to
adiffusing particle. On the finite square-planar lattice shown in
Fig. 1(a), a randomly diffusing atom or molecule has, at each
interior site, access to four nearest-neighbor sites, and either
two or three nearest-neighbor sites if on the boundary. Except
for sites on the two C, axes of the lattice, i.e., the two axes
intersecting at the centrosymmetric site S, pathways to S are
restricted to d = 1 channels. Thus, for example, displacements
from site 2 are restricted to sites 1 only; explicitly excluded
are transitions to the two symmetry-equivalent sites 4.

In this article we mobilize the theory of finite Markov
processes (see Sec. II). An exact invariance relation derived
by Montroll and Weiss for random walks on a periodic lattice
of uniform coordination (or valence v) and a single deep
trap [21] can be used as an acid test to assess the accuracy
of the numerical results obtained in this article (Sec. III).
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For the lattices displayed in Fig. 1, this invariance relation
can be applied if the valence of all sites on each lattice is
specified to be v = 4. For the square-planar lattice shown in
Fig. 1(a), a random walker at an interior site has access to
four nearest-neighbor sites. If the RW is at a boundary site
of the lattice [Fig. 1(a)], possible transitions “off” the lattice
are regarded as “virtual” displacements, the random walker
returning to its point of departure. With this specification, a RW
at a corner site can migrate to either of two nearest-neighbor
lattice sites (with two possible “virtual” displacements) or, if at
any other boundary site, to three nearest-neighbor sites (with
one “virtual” displacement). All sites of the lattice [Fig. 1(a)]
can then be assigned a coordination number, v = 4; for the
special case of a centrosymmetric trap this assignment of v =
4 for all lattice sites amounts to imposing periodic boundary
conditions on the host lattice. As for the fractal-like lattice
[Fig. 1(b)] there are two possible “real” displacements of
a random walker at each boundary site (with two “virtual”
displacements); the same prescription applies to an atom or
molecule moving in a channel.

The following three sections describe the application of the
theory of finite Markov processes to the two diffusion-reaction
processes cited earlier. Sections V and VI present companion
results for the same scenarios derived using classical, Fickian
diffusion theory. The results are summarized and compared
in the concluding section (Sec. VII) where their relevance to
specific experimental problems is pointed out.

II. THEORETICAL BACKGROUND

In this article, we mobilize both the theory of finite Markov
processes, and classical diffusion theory. Formal aspects of the
Markovian lattice statistical theory are only summarized here;
a number of excellent reviews are available (see, for example,
Ref. [22] and references cited therein). To study the dynamics
and long-time behavior, we proceed from the probability
distribution function p, () describing the space-time evolution
of a random walker on an N-site lattice. If i denotes the initial
state of the system, and p,(¢) is the probability of the atom
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FIG. 1. (Color) Symmetry-equivalent sites on an 11 x 11 lattice
with a centrosymmetric sink or source S. Nearest-neighbor displace-
ments of the diffusing particle are permitted between spaces in white
but forbidden between spaces in gray. (a) Regular, square-planar
lattice; (b) fractal-like lattice. The level indices A corresponding to
the different rows in the lattice are displayed on the left-hand side of
each subfigure.

or molecule being in a specific, intermediate state n at time ¢,
then the stochastic master equation

dp, %
P0) 3 Gront) (1)
m=1

dt
is to be solved subject to the initial condition

Pm(t = 0) = 8 ;- 2

In Eq. (1), G, is the (probability) rate for a transition to
the state n from the state m. The G matrix is linked to the
N x N Markov transition probability matrix P with elements
Pnm defined via the relation

Gnm = 8n,m — P (3)

Here, p,, is the probability that the random walker, condi-
tional on being in state m at time ¢, will be in the state n in
the next step, until the terminal state is reached. The transition
probability is equal to one divided by the coordination number
of the starting site; here, p,,,, = 1/4 for both lattices (Fig. 1).

In what follows, we calculate the mean number (n)
of displacements before a diffusing atom (molecule, ion,
particle), initiating its motion from a given site in the host
lattice is irreversibly immobilized at a reaction site (trap,
sink). The mean (n) is the first moment of the probability
distribution function p,(t) which satisfies the underlying
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Markovian stochastic master equation [Eq. (1)] and is related
(in the infinite system limit) to the smallest eigenvalue of the
corresponding evolution operator (G). Except for the smallest
lattices, the mean time (¢) to absorption estimated using (n) is
numerically indistinguishable from the exact value, rigorously
defined as the reciprocal of the smallest eigenvalue in the
spectrum characterizing the evolution of the system.

In calculating the mean walk length from the fundamental
matrix of the theory, the matrix element n(i,i) designates the
number of times that a walker, starting from site i, revisits site i
in its passage through the lattice before being immobilized [see
Ref. 22(b)]. The number of times the particle starting from site
i will transit through site j before being trapped is the matrix
element n(i,j). The total number of times a diffusing particle
starting at site i will visit sites 7, j,k, . .. on a lattice of N sites,

(n@)) =nG, ) +n@,2) +---+n(@,i)+---+n(,N),

is the site-specific walk length to the trap. If one sums the
(n(i)) for the i = 1,...,N — 1 nontrapping sites and divides
by N—1, one obtains the overall mean walk length (n).

In the present problem, flows from environmental sites to
a centrosymmetric trap are characterized by the overall, mean
walk length (n). A RW from a central source S to a target site
on the boundary B is characterized by the site-specific walk
length (n(S)). Values of the mean walk length (n) (as well
as higher-order moments) calculated using the theory of finite
Markov processes are numerically exact; see Ref. [23].

III. MARKOV THEORY: FLOWS FROM SATELLITE SITES
TO A CENTROSYMMETRIC TRAP

We consider first an atom or molecule undergoing equal
a priori, nearest-neighbor displacements on a lattice before
being immobilized (eventually) at a centrosymmetric reaction
center. Documented in Ref. [23(b)] are numerically exact, site-
specific walk lengths (n(i)) for a RW on d = 2, odd, periodic,
square-planar lattices of N = L x L sites (L =3,...,21)
and, for each lattice, the overall mean walk length (n). Listed
in Table A1 of the Supplemental Material [24] are the relevant
results for the square-planar lattices considered in this article.

The fractal-like lattice [Fig. 1(b)] is a planar network with
a distribution of sites inaccessible to a diffusing particle.
Perhaps the simplest lattice that accounts for the presence
of inaccessible sites is the Sierpinski “gasket,” a deterministic
fractal of fractal dimension dy = In8/In3 ~ 1.8928, but the
centrosymmetric “site”” of the gasket is a lacunary region, not
a physical site. The fractal-like lattice introduced here has
distributed, “inaccessible regions” but the centrosymmetric
site is a “real” lattice site. By design, both the square-planar
lattice and the fractal-like lattice have uniform coordination
(v = 4) so, for fixed N, the site-specific walk lengths for both
lattices can be compared and then studied as a function of
system size. See Table I and Table Al in the Supplemental
Material [24].

For the problem as formulated, we can take advantage of
classic results obtained by Montroll and Weiss [21] for random
walks on regular, periodic lattices of uniform valence. These
authors derived an asymptotic expression for the overall mean
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TABLE I. Diffusive flows from satellite sites to a centrosym-
metric trap. The first line in each lattice entry gives the mean walk
length for the regular, square-planar lattice [Fig. 1(a)] and the second
line is the result for the fractal-like lattice [Fig. 1(b)]. Here, S is the
centrosymmetric site, B(mp) a midpoint boundary site, and B(c) a
corner site. The quantity (n(avg)) is the overall mean walk length
from all satellite sites and (n(avg[B])) is the mean walk length from
boundary sites only.

N=LxL (n(S)) (n[Bmp)) (n[B(©)]) (n(avg)) (n(avg[B]))

3x3 0 8 10 9 9
5x5 0 32 36 31.7 34
0 40 48 38.3 45
7x7 0 74.5 81.1 71.6 71.7
0 112 130 101 123.7
9x9 0 136.9 147.0 130.6 141.7
0 240 272 209.8 261
11x11 0 220.56 235.0 209.9 227.5
0 440 490 371.5 473
13x13 0 326.5 346.2 310.6 336.0
0 728 800 617 775.7
15x 15 0 455.5 481.4 433.5 468.1
0 1120 1218 941 1185
17 x 17 0 637.1 639.3 579.4 624.5
0 1632 1760 1362.3 1717

walk length to a centrosymmetric trap, viz.,

N\ am AN + A + 28 4
(W—(m)[l nN + A,N + 3+Fi|, 4)
where, again, N = L x L is the total number of lattices sites
and the A; are coefficients determined by the lattice symme-
try. For the square-planar Euclidean lattice the coefficients
are [21,25] A} = 1/7 = 0.318309 886, A, = 0.195056 166,
Az = —0.116964779, and A4 = 0.484 065 704. Notice that
in the leading term the analytic dependence of (n) on the
system size is transcendental. These authors also derived a
fundamental invariance relation, viz., the mean number (1) of
steps required for trapping from the site’s nearest neighbor to
a single deep trap,

(n) =N —1, ®)

a relation valid for all d-dimensional and fractal lattices of
uniform valence. This relation provides a crucial check on
the numerical accuracy of the results reported here, since
the calculated value of (n) which satisfies Eq. (5) must be
an integer. Inspection of the data reported in Table Al (and
Table A2) of the Supplemental Material [24] confirms that the
Montroll invariance relation [Eq. (5)] is satisfied exactly in
every case.

Before commenting on the quantitative difference in be-
havior described by the two data sets in Table Al [24],
note that, qualitatively, results for the regular square-planar
lattice are integers or ratios of integers; the integer ratios
rapidly become unwieldy, so after the first few lattices, the
data recorded in Table A1 [24] for square-planar lattices are
represented in decimal format. In contrast, the data for the
fractal-like lattice are integers only. By analyzing the integer
data for the site-specific walk lengths (n(i)) for a random
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walker on fractal-like lattices of increasing spatial extent, and
using standard methods to sum sequences of integers (see
Ref. [26]), we have derived a general, analytic expression for
the (n(i)). We find

A
(n@) =41y +1)— 4Zi(i —D4+2ur —p), (6a)

i=1
4
(n (@) = 4y (y +1)— <§)m+ DO — 1) 42024 — ).
(6b)

Here, A is the level index specifying the row of a given
latticeof N = L x L sites with respect to the centrosymmetric
site, y is the maximum value of the integer A, and pu is the
nearest-neighbor distance from site i to the midpoint site of a
given row [e.g., sites 1, 3, 6, 10, and 15 for the N = 11 x 11
lattice diagramed in Fig. 1(b)].

Using Eq. (6), an expression for the overall mean walk
length (7)) corresponding to any generation y of the lattice
having the distribution of grain boundaries diagramed in
Fig. 1(b), follows at once. The resulting (n)) is the counterpart
to Eq. (4) for square-planar lattices of uniform valence. In
contrast to the asymptotic result derived by Montroll and
Weiss for random walks on infinite periodic lattices with a
centrosymmetric trap, the dependence of (n(i)) (and (n))
on the lattice size is algebraic, not transcendental. This
characteristic of the fractal-like lattice [Fig. 1(b)] will also
emerge in the following section when flows from satellite sites
to one or a set of traps on the boundary of the lattice diagramed
in Fig. 1(b) are considered.

Turning now to quantitative differences, summarized in
Table I for the problem of diffusion from (all) satellite sites
to a centrosymmetric trap are the data for the overall mean
walk length as a function of the total number N of lattice
sites. Results for the regular, square-planar lattice and for
the fractal-like lattice can be compared for each setting of
N. Clearly, the influence of distributed grain boundaries
compromises significantly the efficiency of the underlying
diffusion-reaction process, a difference which becomes more
pronounced with increasing lattice size.

It is also instructive to study diffusion to a centrosymmetric
trap from boundary sites only. For example, for the N =
11 x 11 lattices displayed in Fig. 1, the difference in values
of (n) for the square-planar versus the fractal-like lattice is a
factor of 1.8 when all satellite sites are considered. When only
sites farthest removed from the trap (i.e., boundary sites) are
taken into account, the difference is a factor ~15% larger.

IV. MARKOV THEORY: FLOWS FROM SATELLITE SITES
TO A BOUNDARY TRAP

We turn now to the “inverse” problem, viz., characterizing
the history of a particle emitted from a centrosymmetric
“source” site S, subsequently undergoing random displace-
ments on the lattice, and immobilized, eventually, at one or
more target sites on the boundary. In Sec. III, advantage was
taken of the fact that, in specifying the position of the trap, the
centrosymmetric site on an odd N = L x L lattice is unique.
In the “inverse” problem, there are 4(L — 1) boundary sites at
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(b)
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FIG. 2. (Color online) Symmetry-equivalent sites on a 17 x 17 fractal-like lattice with a sink at the upper-right-hand corner site. The
companion regular, square-planar lattice has the same site specifications. Shown are (a) the upper-right-hand quadrant (I), (b) the upper-left-hand
quadrant (II), (c) the lower-left-hand quadrant (III), and (d) the lower-right-hand quadrant (IV). The corner trap locations are site 2 ona 3 x 3
lattice, site 5 on a 5 x 5 lattice, site 9 on a 7 x 7 lattice, site 14 on a 9 x 9 lattice, site 20 on a 11 x 11 lattice, site 27 on a 13 x 13 lattice, site
35 on a 15 x 15 lattice, and site 44 on the 17 x 17 lattice displayed in this figure.

which one can position a trap. In this study, we first place a trap
at the lattice site farthest removed from the centrosymmetic
one, viz., at the upper-right-hand corner of the regular or
fractal-like lattice. We calculate the mean walk length (n(S))
to that site of a particle initiating its motion at (emitted from)
a centrosymmetric source S. Analytic results will also be
presented for random walks initiated at the nearest boundary
midpoint site B(mp) to the trap (n[B(mp)]) and at the nearest
corner site B(c) to the trap (n[B(c)]).

A lattice with a corner trap can be parsed into symmetry-
distinct quadrants: upper right (I), upper left (II), lower left
(I1I), and lower right (IV) (see Fig. 2). The sites in the upper-
right-hand quadrant (I) are labeled as in Fig. 1(b). Sites in the
upper-left-hand quadrant (II) and lower-right-hand quadrant

(IV) are symmetry related; the long diagonal from the upper
right to the lower left is a C, symmetry axis. Sites in the
lower-left-hand quadrant (IIT) are also symmetry related with
respect to this C; axis.

As noted previously, accuracy of the numerical results
obtained can be checked by using Eq. (5). For example, on the
17 x 17 fractal-like lattice, sites 43 are nearest-neighbor sites
to the trap at site 44 (see Fig. 2); we calculate (n(43)) = 576.
Virtual transitions to “off lattice” nearest-neighbor sites are set
to zero. Then [576+5764-04+0]/4 =288 = N—1.

The calculated site-specific walk lengths for a RW on a
square-planar lattice with a corner trap are integers or ratios
of integers. As for the case of a centrosymmetric trap (see the
previous section), these ratios rapidly become unwieldy, so
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TABLE II. Diffusive flows from satellite sites to boundary traps.
The first line in each lattice entry gives the result for the regular,
square-planar lattice and the second line for the fractal-like lattice
(Fig. 2). The entry (n(S)) gives the mean walk length from the
centrosymmetric source S to the boundary, where all boundary sites
are deep traps.

N=LxL (n(S) (n[Bmp)) (n[B()]) (navg) (n(Se))
3x3 21.5 16 225 21.9 1

5x5 90.7 74.1 95.1 88.7 4.5
123.4 92 121.4 116.9 10

7x7 218.9 186.0 228.5 212.4 10.4
367.2 276 350.2 343.1 35

9%x9 413.1 358.6 429.7 400.1 18.6
813.2 616 761.2 757.7 84

11x11 678.5 597.0 703.9 657.1 29.2
1521.1 1160 1406.1 14172 165

13x 13 1019.1 905.4 1055.1 981.7 42.2
2550.2 1956 2336.2 2377.6 286

15x 15 1438.5 1287.2 1486.8 1379.8 57.5
3959.7 3052 3602.7 36949 455

17 x 17 1939.5 1745.2 2002.0 1865.5 75.2
5808.4 4496 5256.4 54248 680

the data for the square-planar lattice are presented in decimal
format (Table II and Table A2 in the Supplemental Material
[24]). For the fractal-like lattice, the site-specific walk lengths
are also integers or ratios of integers, and these, as well,
become more and more cumbersome with increase in lattice
size (Table A2 [24]). However, it is only by tabulating the
data in integer format that one notices unexpected, and rather
surprising, integer relationships between the site-specific walk
lengths for certain pairs of sites. We will show below that these
relationships can be used to determine analytic solutions to the
RW problem in two specific cases.

A random walker emitted from a centrosymmetric source
S will transit through the lattice, visiting other sites (cycling
back to revisit site S is not excluded) before hitting the (deep)
trap and being immobilized there irreversibly; for the 17 x 17
fractal-like lattice, the average number of displacements is
equal to (n(S)) = 8374 133440/1441729 =~ 5808.4.

Random walks initiated at either of the two boundary
midpoint sites B(mp) closest to the corner trap site on the
17 x 17 fractal-like lattice (viz., sites 36) can also be calcu-
lated. Once initialized at the site B(mp), a random walker will,
with nonzero probability, subsequently visit all nontrapping
sites of the lattice [including B(mp)] before the random walk
terminates at the target site; on the 17 x 17 fractal-like lattice,
calculation gives (n[B(mp)]) = (n(36)) = 4496, which is an
integer. Examining the complete body of data on fractal-like
lattices (Table A2 [24]), one finds that a// the (n[B(mp)]) are
integers, and the methods described in Ref. [26] for analyzing
sequences of integers can again be invoked, yielding the
following exact, analytic result for (n[B(mp)]):

(n[B(mp)]) = 16 + 76(m — 1) + 54(m — 1)(m — 2)

+8(m — 1)(m — 2)(m — 3), (7a)

PHYSICAL REVIEW E 89, 032147 (2014)

where

m=(L—1)/2, (7b)

which reduces to
(n[B(mp)]) = (L — D[L* — (3)L = D). ()

We draw attention to the algebraic dependence of (n[ B(mp)])
on L, noting that in the large-system limit (n[ B(mp)]) behaves
as L3, that is, of order O(N /N).

For a deep trap positioned at one corner of the
fractal-like lattice, we denote by B(c) either of the two
corner boundary sites closest to the trap; on the
17 x 17 fractal-like lattice, the two symmetry-equivalent
sites are labeled 145. In this case, one finds
(see Table A2 [24]) (n(S)) — (n(145)) = 8374133440/
1441729 —7578299032/1441729 = 552. The difference
is an integer, a remarkable result, since the only prime
common to the numerators is 2, and the denominator,
1441729, is a prime number. On analyzing the full data set
for the fractal-like lattices considered here (3 x 3to 17 x 17),
one finds that all the differences, (n(S)) — (n[B(c)]), are
integers and the methods of Ref. [26] lead to the following
exact, analytic result:

14

(n(S) — (nlB@))) = Y 2i* — 1),

i=0

(9a)

2
(n(S)) — (n[Blc]]) = (g)y(y -D@Qy =D -y, (b)

where the generation index y = (L — 1)/2. Once again,
the functional dependence is algebraic not transcendental and,
as for the limiting behavior of (n[B(mp)]) [Eq. (8)], for a
large-system size, the right-hand side of Eq. (9) increases as
L3, that is, of order O(N/N).

Less surprising, but also of interest, is the difference
in site-specific walk lengths between adjacent sites on the
boundary of each fractal-like lattice. Owing to the symmetry
breaking introduced by displacing the target site from the
centrosymmetric site to a corner site, results here are best
presented sequentially for each quadrant (see Fig. 2).

To illustrate, for the 11 x 11 fractal-like lattice, the deep
trap is positioned at the (corner) site (labeled 20) in quadrant
I. From the Montroll-Weiss invariance relation [Eq. (5)], the
difference in mean walk lengths between the trap and one of
its nearest-neighbor sites is n(19) — n(T) = 240. Inspection
of the data in Table A2 [24] shows n(18)—n(19) = 236,
n(17)—n(18) = 232, n(16)—n(17) = 228, and n(15)—n(16)
= 224. The site-specific walk lengths are integers, and the
differences are, uniformly, equal to 4.

Less obvious is that the differences between adjacent sites
on the boundary of quadrant III also reduce to integers with a
uniform separation of 4:

n(63) — n(62) = 1236889/773 — 1232251/773 = 6,

n(62) —n(61) = 1232251/773 — 1224 521/773 = 10,
n(61) —n(60) = 1224521/773 — 1213699/773 = 14,
n(60) —n(59) = 1213699/773 — 1199785/773 = 18.
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Given the design of the fractal-like lattice, and the options
available to a RW on the boundary (two possible displacements
to a nearest-neighbor site, and two virtual transitions), the
uniform difference of 4 necessarily follows. In quadrant III,
the difference in mean walk length between the corner site
64 on the 11 x 11 fractal-like lattice and either of the two
symmetry-equivalent sites (63) immediately adjacent to site
64 is

n(64) — n(63) = 1238435/773 — 1236889/773 = 2.

A similar result is found for the corner site in quadrant I1I for
all the fractal-like lattices. This result may be compared with
the one derived for odd, periodic, square-planar lattices with
a centrosymmetric trap, where it can be proved this integer
difference of 2 is valid for any corner site [see Ref. 23(b)].
More generally, this result is valid for any corner site on a
lattice of uniform coordination v = 4.

Apart from the corner sites, differences between adjacent
border sites in quadrants I and IV are separated, uniformly, by
the integer 4 plus a constant “shift” A. The relation “4 + A”
holds for all fractal-like lattices of the design introduced
here, but the “shift” A turns out to be lattice specific, with
a different (constant) value for each lattice; in the present
example, A = 327/1546. We have not, as yet, been able to
derive a general expression that predicts the value of A for
each fractal-like lattice; were that possible, a general analytic
solution to the RW problem for a single corner trap could
be written down at once and compared with the analytic
result reported in the previous section for ergodic flows to a
single, centrosymmetric trap. More generally, it is probable
that the difference in values of the “shift” A (in quadrants
I and III, A = 0; in quadrants II and IV, A # 0) is linked to
the somewhat different algebraic structure of Eqs. (9) and (8);
in the large-system limit, for example, Eq. (9) behaves as
(2/3)N /N whereas Eq. (8) behaves as N./N.

Notice that the design of the fractal-like geometry ensures
that a random walker proceeding, eventually, to the corner
trap from any site of the lattice must pass through one of
the boundary midpoint sites B(mp) closest to the corner trap.
Assuming a characteristic “jump time,” a lower bound on the
time required for a particle to encounter the “gateway” site on
the boundary B(mp) would be a “straight line” trajectory from
S to B(mp). The difference in walk lengths,

(n(8)) — (n[B(mp)]) = 1312.4,

or, more generally, the difference (n(S)) — (n[B(mp)]), with
(n[B(mp)]) given by the analytic expression Eq. (8), gives
one estimate of the time required for a particle emitted at the
source S to wander through the 17 x 17 fractal-like lattice
before encountering a midpoint boundary site nearest the trap.

Similarly, the difference (n(S)) — (n[B(C)]), with
(n[B(C)]) given by Eq. (9), translates into an estimate of
the time required for a particle emitted from site S on an
L x L fractal-like lattice, visiting subsequently with nonzero
probability all nontrapping sites of the lattice (including site
S), to reach either of the two corner sites nearest the trap.

In this section, we considered first the case of a single
corner trap to provide a comparison with results obtained in
the classical RW problem analyzed in the previous section,
viz., a single trap at the centrosymmetric site of the lattice. It is
also of interest to study the lattice statistical counterpart to an
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absorbing boundary; this can be done by placing a deep trap
at all 4(L—1) boundary sites of a given N = L x L lattice.
We discuss first the case where a particle emitted from
a centrosymmetric source undergoes random displacements,
visiting all possible lattice sites on the fractal-like lattice,
and then is trapped irreversibly upon reaching any site on the
boundary. Values of (n(S})) for this case are listed in Table II,
and analysis of the results (using the methods noted previously)
leads to the following, closed-form, analytic expression:

(n(Sp)) = (1/6)(L — DI(L — 1)* —1]. (10)

In the limit of large-system size, (n(S;)) behaves as
(n(Sp)) ~ N/N. By contrast, a plot of the companion data
in Table II for the square-planar Euclidean lattice shows a
strictly linear dependence of (n(S,)) on N (with R? =0.9995),
thus providing further (analytic) evidence that breaking the
symmetry of the host lattice by introducing inhomogeneities
leads to a deterioration in reaction efficiency.

V. CONTINUUM THEORY: FLOWS FROM
ENVIRONMENTAL SITES TO A
CENTROSYMMETRIC TRAP

We now take up sequentially the two problems described
in Secs. III and IV, and derive, using classical diffusion theory
(see Ref. [27]), analytic results to complement those obtained
previously for aregular, square-planar lattice. In this section we
consider the continuum analog of the lattice problem discussed
in Sec. III, whereas the continuum counterpart of the problem
addressed in Sec. IV is dealt with in the next section.

Consider first a square with reflecting sides of length A and
a small interior square with absorbing sides of length £ (see
Fig. 3). We wish to determine the mean absorption time (f)
for a particle that starts off from a given position (xo, o) in the
region between the boundaries of both squares.

. - x

FIG. 3. Set of two concentric squares of respective side lengths
A and ¢. The boundary of the outer square is assumed to be
reflecting, whereas the boundary of the inner square is assumed to
be fully absorbing. The respective incircles and excircles used for
the construction of a lower bound and an upper bound to the exact
solution for the absorption time (¢) of a Brownian particle starting
from a hypothetical initial position (xo,yo) are shown in dashed lines.
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The solution of this problem in Cartesian coordinates can
be obtained by the method of images, but the calculations
are fairly cumbersome. Since we are mainly interested in the
system size dependence of the solution, a quick estimate for
the behavior of (#) can be obtained by considering a spherically
symmetric problem: the computation of (¢),, for a particle that
starts diffusing at a distance ry from the common center of
a small, fully absorbing circle of radius r < ry and a large
circle of radius R > r( with a reflecting boundary (see Fig. 3).
This problem can be solved via Laplace transform methods;
see Ref. [27(b)] for details (Secs. 6.4.2 and 6.4.3). There,
an explicit expression for F(u) = fooo dte " F(t), defined as
the Laplace transform of the (negative) time derivative of the
absorption probability density F(t) = —%, can be obtained,
viz.,

Py = 2B KAVER) + Kol 5r0) L1 (VER)
Io(y5r) K1 (VB R) + Ko(V5r) -1 (V5 R)
Here, I,(-) and K,(-) are, respectively, modified Bessel func-
tions of the first and second kind. From the above expression,
it is possible to extract an exact expression for (z).

The Laplace transform of the probability density is related
to the Laplace transform of the survival probability as follows:

Fw) = S0)—uSw) =1—uS®w).

That is,

One also has
(t), = foodtt F@t)=—-tS®I° + /oodt S@). (11)
0 0

In the present case, S(¢) vanishes faster than t~last — oo;
therefore,

1— Fu)
—

u—0

), = / oodt S@t) = 1ir% S(u) = lim
0 u—

Using the small-u expansion for the Bessel functions in the
expression for F(u), we get

(1), = %[mzln(%) — (2 - rZ)]

Note that (t) — 0 as ro — r, as should be the case. Note also
that the absorption time diverges logarithmically as we let the
inner circle shrink to a point (r — 0) (see Fig. 3).

Returning to the original problem, a domain with two
concentric squares, in order to obtain a lower and an upper
bound for the absorption time we assume that the particle is

initially at a location (xg,yp) with ro = 1/)cg + yg. To get a
lower bound (¢)* for (), we take the incircle of the outer
square and the excircle of the inner square, that is, we take
R = A/2and r = £/+/2. The result is

12)

()"

Xy + Yo )

1| A2 2065+ 50) , o, 2
= — —1[1 —_— — _—
aD | 2 ;

(13a)
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To obtain an upper bound, we need to take the excircle
of the outer square and the incircle of the inner square, i.e.,

R=A/v/2andr = £/2. We find
g2
<x0 +y0 4>

(13b)

o [ (x5 + ¥0)

U—_
() 4D [

For large A, the term proportional to A% becomes dominant,
both for the upper bound and for the lower bound. Thus, up toa
multiplicative constant, the absorption time (#)’ < (t) < (1)V

behaves as
(1) o A%In [‘/(xg i yg)] ,

where we have assumed that v/ (xg + yé) is sufficiently large,
so that the remaining terms in the expression for (#)V and (z)*
become subdominant in the joint limit A,7y — oo. This is in
agreement with the result obtained by Montroll [see Ref. 21(b)]
for the site-specific walk length on a d = 2 dimensional regular
N-site lattice, namely,

(14)

(n)(j) o< Nlnljl, 5)

where j is the coordinate vector of the walker’s initial position
measured from the absorbing site, which is taken to be the
origin of the coordinate system.

Finally, we construct an upper and a lower bound for
() uniform» 1-€., the mean absorption time for a homogeneous
initial condition (global absorption time). Here, we average
(t)r, over all the volume elements of the region between the
two circles:

. 1 R
le  _
<t)fllrficfoerm - 7T(R2 _ rz) /’: 27 ([),OV()d}"()

L (2R R 3., 1
= —_— —In— — — _
4D\ R2—7r2 r

2 2
(one can easily check as a consistency test that the limit of the
above expression as 7 — R goes to zero). Proceeding as in the
case of a delta initial condition, we find the following lower
and upper bounds for the absorption time in a double square
domain. The lower bound reads

L _ circle
<t)unif0rm - <t)unif0rm|r:[/\/§,R:A/2

1 A* A 3A2+£2 (162)
=—|———Ih—— - — 1, a
8D \ A2 —202" J24 4 2
whereas the upper bound reads

U _ circle
<t>uniform - (t>uniform r=0/2,R=A/\2

1 4A4 V2N 3 22
SR (N T ey C IE BT
8D (21\2—@2“ ¢ 2 +4> (16b)

We conclude that, up to a multiplicative constant for which
bounds can be obtained, for large L the absorption time {¢)* <
(t) < ()Y behaves as (t) oc A%In(A?), in agreement with the

NInN behavior established in Ref. [21(b)] in the large N limit

032147-7



KOZAK, GARZA-LOPEZ, AND ABAD

for the mean walk length on a d = 2 dimensional Euclidean
lattice [cf. Eq. (4)].

VI. CONTINUUM THEORY: FLOWS FROM A
CENTROSYMMETRIC SOURCE TO THE BOUNDARY

To develop a continuum theory to complement the lattice
statistical one elaborated on in Sec. IV, we need to compute
the absorption time of a diffusing point particle enclosed in
a square with a fully absorbing boundary of side length A
(we assume that the origin of our coordinate system is placed
at the left bottom corner of the square). In other words, we
need to solve the following boundary value problem for the
distribution function (“concentration”) P(x,y,t):

w0 _p[Er 2]
ot ax2  o9y? |’

P(x =0,y,t) = P(x = A,y,t) =0, a7
P(x,y=0,t) = P(x,y =A,t) =0.

We shall obtain the solution for a general initial condition

P(x,y,t =0) = Py(x,y) and subsequently consider specific

cases, e.g., the case of a point source located at some point
()150, o) and the case of a uniform initial distribution Py(x,y) =

The solution for the above problem can be obtained by
the method of separation of variables [27]. To this end, we
make the ansatz P(x,y,r) = X(x)Y(y)T(¢) and solve the
corresponding eigenvalue problems for each of the func-
tions X(x), Y(y), and T(¢). This leads to the following
expression:

oo [o¢]
b4 b4
P(x,y,t) = Z Z Ay, 8in (nxXx) sin (nyKy>

ny=1 ny=1

2
X exp (—D(nf + n%)%t) . (18)

From the form of this solution it is clear that for sufficiently

long times ¢ > %2 the exponential decay of the solution
will be governed by the smallest eigenvalue of the temporal
part T(¢). Thus, the solution (which is no longer normalized

J

An, = {(%) sin (m5) sin (n,5) = (=D (3),

Oa

If the diffusing particle is initially located with equal
probability anywhere inside the square (homogeneous initial
state), one finds

if both n,,n, odd,
otherwise.

16
m2L2ncn,’

Anxny = O,

[This result could also have been obtained by taking a uniform
average the result for a specific (xg, yg) over all possible values
of x¢ and yy.]
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for + > 0) reduces to a single, exponentially decaying mode:
~ . (T . (T 72
P(x,y,t) & Aysin (Xx) sin (Xy) exp —2Dﬁt .

This is in contrast with the ¢+~' decay displayed by the
propagator (free diffusion).

In the long-time limit the boundaries significantly modify
the time behavior of the solution. The coefficients A, , are
related to the initial condition and can be obtained as follows.
Using the fact that the sine functions constitute a set of
orthonormal eigenfunctions, viz.,

L . T . T A
du sin (n—u) sin (m—u) = —bum, nLm=1,2,...,
0 A A 2

(19)
in the generic expression for the initial condition
oo [e ] . T ) T
Py(x,y) = nZ:l nZ:l Ay,n,Sin (nx Xx) sin (nyKy) ,
(20)

we obtain a general expression for the coefficients A, , in
terms of the initial condition, viz.,

A 4 /L/Ld 4 Po ) . ( T ) . ( T )
nony — A X X, y)smi\n,—x)smi\n,— .
xMy A2 0 0 y 0 y A \Ay

21

We now evaluate these coefficients for specific initial
conditions. Assuming that a point particle is initially released
at a given interior point (xo,yp) with 0 < xg,y0 < A, i.e.,

Po(x,y) = 8(x — x0)8(y — yo),

one obtains

4\ . b4 . i
An_xny = e sin (nx Xxo) sin (nyxyo> .

In particular, when the source is initially at the center of the
square xg = yo = %, then

(nx+ny)

if both n,,n, odd,
otherwise.

In order to obtain the survival probability of the particle S(¢)
up to time ¢ we must take the spatial integral of the distribution
P(x,y,t) over the region with nonzero particle concentration
[see Ref. 22(b)],

L pL
S(t) = / / dxdy P (x,y,t). (22)
o Jo

This leads to the following expression,

e8] 00 2
S =Y > Bunexp (—D (n; +n3) %t) . (23)

ny=1 n,=1
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with Bnm)‘ = %Anxny. Both for a delta-peaked initial
condition and for a uniform initial condition the sums run
only over odd values of n,,n,. The mean trapping time (¢) at
the boundaries (which is the analog of the mean walk length
multiplied by the time scale of a single hopping event in the

lattice problem) is given by the formula [see Ref. 22(b)]
o ds
(t) = — dtt—, (24)
0 dt

which, in the present problem, takes the form

S I I R

ny=1 n\—l

The terms of the series are expected to decrease rapidly as
the odd-valued n, and n, become large, hence we make the
approximation

B A? 2A°4
2 nzD 74D

11

(1) ~

which becomes

0 8A2,<n )(rr )
~ sin | —xq ) sin [ —yo ) .
B R VN RV
(In particular, one has (t)center & % =0.082 13%2 when the
particle starts off at the center of the square, where the trapping

time reaches its maximum as a function of xy and yy.)
However, if the initial condition is homogeneous, one
obtains the (smaller) value

(26a)

(t) ~ 324° = 0.03328 A (26b)
uniform ™~ 7T6D — Y. D .

Albeit fairly accurate, these results are slightly different
from the exact ones. The exact results are obtained upon
numerical evaluation of the corresponding double series, and
read as follows:

16A2 o ( 1)(n c+ny)/2+1
(t center — Z Z ) )
ny=1 ny=1 }’l +n )
n: odd ny odd
16 x 0.4485 A? A?
=—F—F = 0.07367 — (27a)
T D D
and
64A2 >
(t>uni orm —
=5 2 X
n; 0dd n,, odd
64 x 0.5279 A2 A?
= T 003514, (27b)
b D D

In order to compare the results for (f)center and (Z)uniform
with the site-specific and the global mean walk length for the
square lattice problem, we need to take into account that the
typical time scale for nearest-neighbor hopping for the random
walk model is At = (AL)? /(4D), where the lattice constant is
AL~ A and (n) ~ 2,
Important discrepancies are expected for small N or when

the particle starts off near the boundary, since the difference
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TABLE III. Values of (n)cener for increasing lattice size.

N=LXxL <n)center
3x3 1.1782
5x5 4.7149
7x7 10.6085
9%x9 18.8595
11 x 11 29.4680
13x13 42.4339
15 x 15 57.7573
17 x 17 75.4381

between continuum diffusion and on-lattice hopping becomes
most pronounced when the number of jumps is small.

Finally, to make contact with the site-specific walk lengths,
the “physical coordinates” for the origin of the random walk
in terms of lattice coordinates are xo = (i — 1)A€ and yy =
(j — )AL, where i, j both run from 2 to L — 1 (the values 1
and L — 1 are excluded, since they correspond to boundary
lattice sites). In particular, when the particle starts from the
center of the square one, obtains

< t > center

At
=4 x0.07367(L — 1)*> = 0.2947(L — 1)*>. (28)

(I’l > center ~

(1) center can be regarded as the analog of (n(Sp)) provided
by the continuum approach. Note that Eq. (28) confirms the
linear behavior in N obtained for a square-planar lattice in
the large-system limit (cf. the last paragraph in Sec. IV).
Displayed in Table III are the results obtained for (n)center by
evaluating Eq. (28) for different values of L. Comparison with
the numerically exact Markov results for (n(S;)) displayed
in the last column of Table II shows that the continuum
approach slightly overestimates the actual walk length, but
the relative error [(nceneer) — (n(Sp))]/(n(Sp)) made by the
continuum approximation is seen to decrease rapidly with
increasing system size.

VII. CONCLUSIONS

Since the pioneering work of Smoluchowski [28], the
study of diffusion-controlled reactions has played a seminal
role in understanding the dynamics of reactive processes.
Several excellent reviews of the field have been presented
(see Refs. [29,30]). The results reported in Refs. [29,30] were
derived assuming, for the most part, that the reaction space
is spatially homogeneous and classical diffusion theory was
invoked. When this theory is augmented by incorporating
a nonlinear functional dependence on the concentration of
reactants, diverse new phenomena can arise, e.g., “dissipative
structures” [31] or “chaotic attractors” [32]. Efforts to under-
stand such processes in spatially inhomogeneous systems have
typically proceeded by assuming discrete (lattice) geometries
with distributed imperfections, e.g., lacunary regions inacces-
sible to the diffusing reactant(s). Prominent in this genre of
studies have been models based on random or deterministic
fractals. By taking advantage of the self-similar properties
of the latter class of fractals, the implementation of lattice
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statistical theories has led to a number of exact, analytic results
(see the references cited earlier and the discussion below).

The main focus of the present article has been to quantify
diffusion-controlled reactive events on a lattice designed to
have a fractal-like structure, and to compare the results
obtained with processes on a ‘“companion” lattice system
free of imperfections or lacunary regions. For both discrete
geometries, we consider two scenarios, viz., immobilization
of a randomly diffusing reactant at a centrosymmetric reaction
center and, second, immobilization of a particle emitted from
a centrosymmetric (or other) site at one or more target sites
on the boundary of the defined lattice. These studies were
complemented by analytic results derived in the continuum
limit using classical diffusion theory. A comparison of the
results obtained in the lattice and continuum approaches will
be given below.

We implemented first the theory of finite Markov processes
and calculated one signature of a diffusion-reaction process,
the mean walk length of the diffusing particle before being
immobilized (trapped) at a reaction center. The numerically
exact results obtained using Markov theory are either integers
or ratios of integers. The full body of results calculated for the
lattices studied here is presented in the Supplemental Material
[24].

Displayed in the summary (Table I) are the site-specific
walk lengths for diffusive flows from satellite sites to a
centrosymmetric trap. Signatures of interest are the mean walk
length from all satellite sites to the trap, (n(avg)), the mean
walk length from satellite sites on the boundary (only) to the
trap, (n[avg(B)]), the mean walk length of a random walker
from any midpoint site on the boundary to the trap, (n[ B(mp)]),
and from any corner site on the boundary to the trap, (n[B(c)]).

In Table II, site-specific walk lengths are given for arandom
walker from selected satellite sites to a corner trap on the
boundary. Here, we specifically restrict B(mp) to be either of
the two midpoint sites on the boundary nearest the corner trap,
and B(c) to be either of the two corner sites on the boundary
nearest the corner trap. The mean walk length to the corner
trap for a RW emitted at the source site S is designated (n(S)),
and the overall average walk length from all satellite sites is
(n(avg)). Also presented in Table II are RW results calculated
for a particle emitted at S but for the limiting case where all
4(L—1) sites on the boundary are specified to be deep traps,
(n(Sp)).

Qualitatively, one anticipates that lowering the symmetry
of the host lattice should result in an increase in the magnitude
of all calculated walk lengths. The data recorded in Tables I
and II provide a quantitative measure of the consequences
of breaking the symmetry of a translationally invariant lattice
to one having defined (but not self-similar) lacunary regions.
As is evident from the data in Tables I, II, and Tables Al
and A2 in the Supplemental Material [24], the disparity in
mean walk lengths becomes more pronounced with increasing
spatial extent of the two lattices.

The analytic results presented in this article for random
walks on the fractal-like lattice [see Eq. (6) for RWs to a
central trap, and Egs. (7) and (8) and Egs. (9) and (10) for
RWs to the boundary] can be compared with analytic solutions
obtained previously for random walks on two deterministic
fractals, the Sierpinski “gasket” [11,14] with fractal dimension
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dy =1n3/In2 ~ 1.584, and the Sierpinski “tower” with dy =
2 [12]. The analytic solution for the mean walk length of a
particle performing a RW on a finite, planar Sierpinski gasket
with a single trap at one vertex is given by

(n)(}/) — [3y5y+1 +4(57) — 37/]/(3y+1 + 1), 29)

where y denotes the generation index of the gasket. Embed-
ding the gasket in an arbitrary number d of Euclidean dimen-
sions [12] results in an analytic solution that is structurally
similar to Eq. (29), viz.,

()" = d’[(d + 1(d + 3" +(d +2)(d +3)
—d+D1{d+2d+ D' +d—11). (30)

Comparison of the results obtained for the fractal-like
lattice and those obtained for the deterministic fractals,
the Sierpinski gasket, and tower shows that the functional
dependence is consistently algebraic.

The algebraic dependence on system size for the fractal-
like lattice stands in contrast to the transcendental NInN
dependence found by Montroll and Weiss for regular, periodic
d = 2 dimensional lattices of uniform coordination with a
centrosymmetric trap [Eq. (4)]. We showed in Sec. V that
this functional dependence of trapping on system size for
translationally invariant, discrete lattices is also found if one
passes to the continuum limit and mobilizes classical diffusion
theory [see Eqs. (16)].

For the second scenario considered in this article, the con-
tinuum theory presented in Sec. VIresulted in an expression for
the trapping time for a particle initialized in a centrosymmetric
region and immobilized eventually at the system’s boundary.
It was proved that the trapping time grows linearly with
the system size N [see Eq. (28)]. As for the Markovian
theory, we showed in Sec. IV that for a particle emitted at
the centrosymmetric site S, undergoing a random walk until
immobilized at (any site of) the boundary, the trapping time
(as gauged by the overall mean walk length; see Sec. II) also
behaves as (n(S,)) ~ N, a result which stands in contrast to
the behavior found for the fractal-like lattice where, in the limit
of large-system size, (n(Sy)) ~ N /N [see Eq. (10)].

Further insight on the analytic structure of the results
obtained for the fractal-like lattice follows from the result
obtained in Ref. [21] for RWs on a d=1 dimensional
Euclidean lattice of N =L sites; there it was proved that the
mean walk length to a single deep trap is given exactly by
(n) = (1/6)L(L + 1).

The fractal-like lattice introduced here is of Euclidean
dimension d = 2, but pathways through the lattice to one or
more deep traps are restricted by (effectively) d = 1 channels,
so in hindsight it is perhaps not surprising that the dependence
of the mean walk length on system size for both trapping
scenarios is algebraic.

Finally, we survey problems to which the results reported
in this article can be applied in future work. Clearly, the
vast literature on diffusion of atoms on metal surfaces and,
especially, cross-channel diffusion [33], provides a wealth
of problems to consider. The synthesis of novel organic
molecules, and subsequent studies of surface-assisted self-
assembly of these molecules on metal surfaces, has led to
the design of nanostructures with remarkable functionalities
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FIG. 4. (Color) Boundary of a 5 x5 square-planar lattice (in
blue) with a centrosymmetric trap. Boundary of four 3 x 3 quadrilat-
eral (“rhombus shaped”) lattices (in red), each with a corner trap.

and aggregation kinetics [34]. In both cases, the supporting
templates are likely to have imperfections, e.g., terraces,
ledges, kinks, etc., suggesting that a quantitative assessment of
the influence on the dynamics owing to, for example, the class
of spatial inhomogeneities considered in the present article
would be of value.

Two quite different problems for which intuition suggests a
plausible, qualitative interpretation but for which (exact) quan-
titative estimates are as yet unavailable will be discussed here.
The first problem pertains to pattern formation in morphogen-
esis, and the second to radio-halo formation in minerals.

Consider the geometries displayed in Fig. 4. The figure in
blue represents the boundary of a 5 x 5 square-planar lattice
with a centrosymmetric trap. If a nutrient is injected into the
5 x 5 lattice, and engages in a random walk before being
trapped at the target site, the overall mean walk length for
the random walker before trapping is (n(avg)) = 31.67. See
Table I.

J
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The 5 x 5 square-planar lattice can be parsed into four quad-
rants defined by the intersection at the centrosymmetric site of
one horizontal and one vertical C; axis; each quadrantisa3 x 3
square-planar lattice. If the vertical axis and the horizontal
axis in the upper-right quadrant are rotated infinitesimally to
the right and left, respectively, keeping the centrosymmetric
trap fixed, the resulting, slightly distorted, 3 x 3 lattice forms
a thombus; the figure in red in the upper-right-hand quadrant
shows the boundary of the rhombus.

Considering all four quadrants, each undergoing a similar,
(essentially) area-preserving diffeomorphic distortion, the
resultant antenna geometry of four rhombuses, each sharing a
common corner trap (the origin of the original 5 x 5 lattice) is
shown in Fig. 3. In this case, a nutrient injected into any one
of the lattice quadrants reaches the target site after a total of
(n(avg)) = 21.94 steps. See Table II.

Taking the mean walk length as a measure of reaction
efficiency, a nutrient injected into a (5 x 5) square-planar
antenna at any receptor site will be trapped at the cen-
trosymmetric target site in 31.7 steps, whereas if injected into
any one of the four thombuses defining a new antenna, the
mean walk length before trapping at the corner site is 21.9
steps. Since the transformation disconnects the four quadrants,
effectively reducing the unit lattice size, one anticipates that
this morphology will lead to a more efficient diffusion-reaction
process. The calculations reported here put this qualitative
understanding on a quantitative footing.

A similar program can be carried out starting from a 9 x 9
square-planar lattice with a centrosymmetric trap to generate
four 5 x 5 rhombuses sharing a common corner trap; starting
from a 13 x 13 square-planar lattice to generate four 7 x 7
rhombuses sharing a common corner trap; and starting from a
17 x 17 square-planar lattice to generate four 9 x 9 rhombuses
sharing acommon corner trap. From the mean walk-length data
given in the tables, we can compare quantitatively the reaction
efficiency in each new morphology relative to the precursor
morphology. In the example given above, we define the ratio

Ratio (3/5) = (n(avg))(3 x 3 rhombus with a corner trap)/(n(avg))(5 x 5 square — planar lattice with a centrosymmetric trap)

= 21.9375/31.6667 = 0.693.

Similar constructions give

Ratio (5/9) = 88.6900/130.6045 = 0.679,
Ratio (7/13) = 212.3538/310.6494 = 0.684,
Ratio (9/17) = 400.0071/579.5265 = 0.690.

Surprisingly, the gain in efficiency owing to morphogenetic
growth (foliation of template geometry [35]) is found to be
essentially a constant, in the range 0.68-0.69. For the fractal-
like lattice, the range is 0.56-0.57, the difference in estimates
(~15%) reflecting the designed, penniveined pattern.

Successive stages of foliation can be envisioned starting
with the 17 x 17 square-planar template. In the first stage, one
would generate four 9 x 9 leaves; in the second stage, each
9 x 9 leaf would generate four 5 x 5 leaves, and in the third
stage, each 5 x 5 leaf would generate four 3 x 3 leaves. At

(

each stage of foliation there would be an essentially constant
gain in reaction efficiency. This gain in “signal processing”
is similar to that found in electrical antenna networks, except
that in the latter there is a dependence on the wavelength of
the incoming signal.

A second problem that can be addressed using the approach
taken in this article is the occurrence of pleochroic halos in
brown micas, first reported by Joly in 1907, corroborated
shortly thereafter by Rutherford, and analyzed in a joint
publication in 1913 [36]. The phenomenon is described in
the first sentence of [36]: “It is now well established that the
minute circular marks seen in sections of certain coloured
rock minerals—notably the coloured micas—are due to the
effects produced by the alpha radiation of a central radioactive
particle.” And, “the halo is in every case the result of the
integral actions of rays emitted since a very remote period.”
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The lacunary regions in the fractal-like lattice displayed in
Fig. 1(b) can be regarded as mineral grain boundaries which
obstruct the trajectory of an « particle emitted at the source
S in its passage through the lattice. To make contact with the
temporal estimate of Joly and Rutherford on the age of radio
halos, one needs to specify in our lattice statistical model
a reliable estimate of the mean time between displacements
of the o particle. Whatever the estimate, once established, a
glance at the data for (n(S)) and (n(Sp)) in Table II for a
defect-free lattice versus the fractal-like one shows that any
estimate of the time required before localization of the «
particle at a distant site based on a lattice statistical theory
[or molecular dynamics (MD) simulation] of trapping on a
defect-free lattice or based on a Fickian continuum theory in
which all structural details are suppressed, will underestimate
the integrated trapping time (and “age” of the radio halo) by
(at least) an order of magnitude.

Finally, it is worth pointing out the generic interest of
studying other random walk properties of the fractal-like
lattice, such as the behavior of higher-order moments of
the walk length or simply the mean square displacement of
a random walker undergoing obstructed diffusion. A priori
one would expect the onset of anomalous subdiffusion due
to the stalling events induced by the lattice. The underlying

PHYSICAL REVIEW E 89, 032147 (2014)

question is to what extent such effects could be captured in the
framework of an effective description in terms of a continuous
time random walk (CTRW)/fractional diffusion equation [37]
or a generalized Langevin equation [38], and, if answered in
the affirmative, what the relation between the lattice geom-
etry and the characteristic exponents in those models looks
like.
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