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Abstract—We consider the delay of network coding compared
to routing for a family of simple networks with parallel links. We
investigate the sub-linear term in the block delay required for
unicasting n packets and show that there is an unbounded gap
between network coding and routing. In particular, we show that
delay benefit of network coding is scaling at least as fast as

√

n.
The main technical contribution involves showing that the delay
function for the routing retransmission strategy is unbounded.
This problem is equivalent to computing the expected maximum
of two negative binomial random variables. This problem has
also been addressed previously and we derive the first exact
characterization which might be of independent interest.

I. INTRODUCTION

This paper considers the block delay for unicasting a file

consisting of n packets over a packet erasure network with

probabilistic erasures. Such networks have been extensively

studied from the standpoint of capacity. Various schemes

involving coding or retransmissions have been shown to be

capacity-achieving for unicasting in networks with packet

erasures [1], [2], [3], [4]. For a capacity-achieving strategy, the

expected block delay for transmitting n packets is n
C + D(n)

where C is the minimum cut capacity and the delay function

D(n) is sublinear in n but differs in general for different

strategies. In general networks, the optimal D(n) is achieved

by random linear network coding1, in that decoding succeeds

with high probability for any realization of packet erasure

events for which the corresponding minimum cut capacity is n.

However, the delay function D(n) has not been characterized

in general. Note that this term is going to be significant if

the number of packets communicated is not very large. In our

previous work [5] we showed that for multi-hop line networks,

D(n) is bounded and nondecreasing for both network coding

and routing.
In this paper, we consider networks with parallel paths and

compare the delay function D(n) for coding versus a retrans-

mission strategy where only one copy of each packet is kept

in intermediate node buffers. Schemes such as [6], [4] ensure

that there is only one copy of each packet in the network;

without substantial non-local coordination or feedback, it is

complicated for an uncoded topology-independent scheme to

keep track of multiple copies of packets at intermediate nodes.

Coding allows redundant packets to be transmitted efficiently

in a topology-independent manner, without feedback or coor-

dination, except for an acknowledgment from the destination

1Random linear network coding is capacity-achieving if the overhead of
specifying the random coding vectors can be neglected.

when it has received the entire file. This results in an advantage

in delay function D(n) which, as we show below, can be

unbounded with increasing n.

Note that the main technical difficulty involves showing

that the delay function for the routing retransmission strategy

is unbounded. This problem turns out to be equivalent to

computing the expected value of the maximum of two nega-

tive binomial random variables. This problem has also been

addressed in [7], where the authors explain in detail why it is

fairly complicated2 and derive an approximate solution to the

problem. Our analysis addresses this open problem by finding

an exact expression and showing that it grows to infinity at

least as fast as the square root of n.

The remainder of this paper is organized as follows:

Section II presents the precise model we use for packet

communication. Section III presents the analysis for the two

different transmission schemes considered in this paper, finally

Section IV contains a discussion of the results presented in this

paper along with comments for possible extensions.

II. MODEL

We define the two parallel multi-hop line network as the

network depicted in Fig. 1. This network consists of two

parallel multi-hop line networks with 2ℓ nodes and 2ℓ links,

i.e. ℓ links in each line (our results are readily extended to

networks with different number of links in each line). Nodes

S, T are the source and the destination respectively, whereas

nodes Nij , i ∈ {1, 2} and 0 < j < ℓ belong to the two line

networks. All nodes Ni(j−1) are connected to the node Nij

on their right by link Lij , for i ∈ {1, 2} and 1 ≤ j ≤ ℓ
(for consistency we will assume that the source S and the

destination T are defined as nodes Ni0 and Niℓ,i ∈ {1, 2},

respectively).

Source S wishes to transmit n packets to destination T and

we assume a discrete time model. At each time step, node

Ni(j−1) can transmit one packet through link Lij to node Nij ,

i ∈ {1, 2} and 1 ≤ j ≤ ℓ. The transmission succeeds with

probability 1 − pij or the packet gets erased with probability

pij . Erasures across different links and time steps are assumed

to be independent.

For reasons that will become evident later, we assume

that both line networks have a single worst link with the

2Authors in [7] deal with the expected maximum of any number of
negative binomial distributions but the difficulty remains even for two negative
binomial distributions.
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Fig. 1. Two parallel multi-hop line networks having links with different
erasure probabilities

same probability of erasure. As shown in [5], [8], without

loss of generality, we can regard that in both line networks

the worst link is the first link, i.e., p = p11 = p21 =
max{p11, . . . , p1ℓ} = max{p21, . . . , p2ℓ} and pij < p for

i ∈ {1, 2} and 2 ≤ j ≤ ℓ. We also assume that no links

fail with probability 1 (pij < 1) or else the problem becomes

trivial since no packets can be transmitted from source S to

the destination T .

We want to compare the expected time taken to send the n
packets through the network from source S to the destination

T using two different transmission schemes. On the first

scheme all nodes perform coding and transmit random linear

combinations of all previously received packets. Source S in

particular combines all the packets together and keeps sending

to both N11 and N21 random linear combinations of the initial

n packets (for a large field the random combinations will be

linearly independent with high probability). The destination T
will decode once it receives n independent linear combinations

of the initial packets. On the second transmission scheme all

nodes perform routing and source S in particular sends some

of the n packets using only the upper part of the network (links

L1j) and the rest of the packets using only the lower part of

the network (links L2j). The destination T will decode the

initial information when it receives all the packets both from

the upper part and the lower part of the network.

Since the two line networks have the same capacity due to

the fact that their worst links have identical erasure probabili-

ties it would only make sense for the source S to send the same

number of packets from the upper and the lower line network.

If source S sends a different number of packets through the

upper and lower line networks, it will only perform worse (in

expectation). Therefore from now on, source S is assumed to

send half of the n packets from the upper part and the half

from the lower part of the network. To simplify the notation

and without loss of generality we will assume that n is an

even number so that it can get divided into half.3

In our model, in case of a successful transmission, the

packet is assumed to be transmitted to the next node instanta-

neously, i.e. we ignore the transmission delay along the links.

Moreover there is no restriction on the number of packets n,

and there is no requirement for the network to reach the steady

state.

3Our results hold even in the case that n is odd.

Fig. 2. Two parallel erasure links with erasure probabilities q connecting
the source N1 to the destination N2.

III. TWO PARALLEL MULTI-HOP LINE NETWORK

A. Coding Strategy

Before we analyze the expected time ET c
n taken to send

n packets through the network in Fig.1 using coding (where

the c superscript stands for coding), we need to prove the

following proposition that holds for the simplified network

of two parallel erasure links connecting the source to the

destination like in Fig. 2.

Proposition 1. The expected time ET̂ c
n taken to send by coding

n packets from the source to the destination through two

parallel erasure links is

ET̂ c
n =

n

2 − 2q
+ Bn

where Bn is a bounded term (non-monotonic) and q is the

erasure probability at the two links connecting the source and

the destination.

Proof: Omitted due to space constraints, see [9].

Now we are ready to prove the following theorem:

Theorem 1. The expected time ET c
n taken to send by coding

n packets through a two parallel multi-hop line network is

ET c
n =

n

2 − 2p
+ Dc

n

where p is the erasure probability of the two worst links in the

network and the delay function Dc
n depends on all the erasure

probabilities pij , for i ∈ {1, 2}, 1 ≤ j ≤ n and is bounded.

Proof: Omitted due to space constraints, see [9].

B. Routing Strategy

Before we analyze the expected time ET r
n taken to send

n packets through the network in Fig.1 using routing (where

the r superscript stands for routing), we need to prove the

following two propositions

Proposition 2. For a, b, n ∈ N
+ with a < b the sum

b
∑

k=a

n − k

n + k
is equal to:

b
∑

k=a

n − k

n + k
= a − b − 1 + 2n (Hb+n − Ha+n−1) (1)



where Hn is the nth Harmonic number, i.e. Hn =

n
∑

i=1

1

i
.

Proof: Omitted due to space constraints, see [9].

Proposition 3. The expected time ET̂ r
2k taken to send by

routing 2k packets from the source to the destination through

two parallel erasure links (k packets from the upper link and

k packets from the lower link) is

ET̂ r
2k =

k

1 − q
+ U2k

where U2k is an unbounded term that grows at least as square

root of k and q is the erasure probabilities at the two links

connecting the source and the destination.

Proof: We will denote as Ai,j the expected time to send

i packets from the upper link and j packets from the lower

link of Fig. 2. Clearly ET̂ r
2k = Ak,k and Ai,j satisfies the

following two dimensional recursion formula:






Ai,j = q2(Ai,j + 1) + q(1 − q)(Ai−1,j + 1)+
+q(1 − q)(Ai,j−1 + 1) + (1 − q)2(Ai−1,j−1 + 1)

A0,j = j
1−q , Ai,0 = i

1−q , A0,0 = 0







or equivalently
{

Ai,j = q
1+q (Ai−1,j + Ai,j−1) + 1−q

1+q Ai−1,j−1 + 1
1−q2

A0,j = j
1−q , Ai,0 = i

1−q , A0,0 = 0

}

.

(2)

The two dimensional recursion formula in (2) has a specific

solution i+j
2(1−q) and a general solution Bi,j where

{

Bi,j = q
1+q (Bi−1,j + Bi,j−1) + 1−q

1+q Bi−1,j−1, i, j ≥ 1

B0,j = j
2(1−q) , Bi,0 = i

2(1−q) , B0,0 = 0

}

.

(3)
In order to solve equation (3) we will use the Z–transform

with respect to i. More specifically we define the Z–transform

as:

B̂z,j =

∞
∑

i=0

Bi,j · zi (4)

and by multiplying all terms in equation (3) by zi and

summing everything we get:
∞
∑

i=1

Bi,j · zi =
q

1 + q

∞
∑

i=1

Bi−1,j · zi +
q

1 + q

∞
∑

i=1

Bi,j−1 · zi

+
1 − q

1 + q

∞
∑

i=1

Bi−1,j−1 · zi

⇔ B̂z,j − B0,j = z · q

1 + q
B̂z,j +

q

1 + q

(

B̂z,j−1 − B0,j−1

)

+z · 1 − q

1 + q
B̂z,j−1

Since B0,j = j
1−q the above equation becomes:















B̂z,j ·
(

1 − z · q
1+q

)

− B̂z,j−1 ·
(

q
1+q + z · 1−q

1+q

)

=

= j+q
2(1−q2)

B̂z,0 =
∑∞

i=0 Bi,0z
i =

∑∞
i=0

i
2(1−q)z

i ≡ z
2(1−q)(1−z)2















(5)

TABLE I
SOME PAIRS OF FUNCTIONS ALONG WITH THEIR Z–TRANSFORMS

Sequence Z–transform

1
1

1 − z

i
z

(1 − z)2
“

i+j−t−1
j−1

”

bi+j−t

zt

(b − z)j
, for t ≤ j

where equation (5) is an one dimensional recursion formula

with the following general solution:

B̂z,j =
z

(1 − q)(1 − z)2
·
(

q + z(1 − q)

1 + q(1 − z)

)j

+

+
j

2(1 − q)(1 − z)
− z

2(1 − q)(1 − z)2
. (6)

and equation (6) can be written in a compact form

B̂z,j = â(z) · b̂(j, z) + d̂(j, z) (7)

by defining the functions â(z), b̂(z, j) and d̂(z, j) as follows:

â(z) =
z

(1 − q) · (1 − z)2

b̂(z, j) =

(

q + (1 − q) · z
1 + q · (1 − z)

)j

d̂(z, j) =
j

2(1 − q)(1 − z)
− z

2(1 − q)(1 − z)2
.

Now we are ready to compute the inverse Z–transform of

B̂z,j . Clearly from Table I along with equation (7):

Bi,j = Z−1
{

â(z) · b̂(z, j)
}

+ Z−1
{

d̂(z, j)
}

⇔ Bi,j =

i
∑

m=0

a(i − m) · b(m, j) +
j − i

2(1 − p)
(8)

where a(i) and b(i, j) are the inverse Z–transforms of â(z)
and b̂(z, j) respectively. It is clear from Table I that a(i) = i

1−q

so the missing step is to evaluate b(i, j):

b(i, j) = Z−1

{

(

q + (1 − q) · z
1 + q · (1 − z)

)j
}

⇔ b(i, j) =
1

qj
· Z−1











∑j
t=0

(

j
t

)

(1 − q)t · zt · qj−t

(

1+q
q − z

)j











⇔ b(i, j) =

j
∑

t=0

(

j

t

)

·
(

1 − q

q

)t

· Z−1











zt

(

1+q
q − z

)j











⇔ b(i, j) = Ci+j ·
j

∑

t=0

(

j

t

)

·
(

i + j − t − 1

j − 1

)

F t



where C = q
1+q and F = 1−q2

q2 . Therefore equation (8)

becomes

Bi,j =

i
∑

m=0

j
∑

t=0

i−m

1−q
Cm+j

(

j

t

)(

m+j−t−1

j−1

)

F t+
j−i

2(1−q)

(9)

We are interested in evaluating ET̂ r
2k = Ak,k and since

Ai,j = Bi,j + i+j
2(1−q) equation (9) gives:

ET̂ r
2k =

k

1 − q
+ U2k (10)

where

U2k =
Ck

1−q

k
∑

m,t=0

(k−m)

(

k

t

)(

k−1+m−t

k−1

)

CmF t (11)

with
(

m
w

)

= 0 if m < w.

In order to prove that function U2k is unbounded we will

prove that U2k is larger than another simpler to analyze

function that goes to infinity and therefore U2k also increases

to infinity. Indeed equation (11) can be written as:

U2k =
Ck

1 − q

k
∑

m,t=0

(

k

t

)(

k + m − t

k

)

k(k − m)

k + m − t
CmF t

⇒ U2k >
kCk

1 − q

k
∑

m,t=0

(

k

t

)(

k + m − t

k

)

k − m

k + m
CmF t

and since all terms in the above double sum are non-negative

we can disregard as many terms as we wish without violating

direction of the inequality, specifically:

U2k >
kCk

1 − q

∑

m∈E,t∈G

(

k

t

)(

k + m − t

k

)

k − m

k + m
CmF t

(12)

where E = {⌈k −
√

k⌉, . . . , k}, G = {⌈(1 − q)k −√
k⌉, . . . , ⌊(1−p)k⌋} and ⌊x⌋, ⌈x⌉ are the floor and the ceiling

functions respectively.

By using the lower and upper Stirling-based bound [10]:

√
2πn

(n

e

)n

< n! <
√

2πn
(n

e

)n

e
1

12n , n ≥ 1

one can find that
(

n

βn

)

>
1

√

2πβ(1 − β)n
· 2nH(β) · e−

1
12nβ(1−β) , β ∈ (0, 1)

where H(β) = −β log2(β)−(1−β) log2(1−β) is the entropy

function and therefore using inequality (12) we can derive:

U2k>
1

2π(1−q)

∑

m∈E,t∈G

k−m

k+m
f

(

m

k
,
t

k

)

e−
1

12k
h
(

m
k ,

t
k

)

2n·g
(

m
k ,

t
k

)

(13)

where f(α, β) =
√

1+α−β
β(1−β)(α−β) , h(α, β) = 1+α−β

α−β + 1
β(1−β)

and

g(α, β) = (1+α) log2 (C) + H(β)+

+ (1+α−β)H

(

1

1+α−β

)

+ β log2(F ) . (14)

Fig. 3. The region K where function g(α, β) is defined on.

Since 1 − 1√
n
≤ m

k ≤ 1 and (1 − q) − 1√
n
≤ t

k ≤ (1 − q)

we define functions f(α, β), h(α, β) and g(α, β) within the

region K =
[

1 − 1√
k
, 1

]

×
[

1 − q − 1√
k
, 1 − q

]

. Moreover we

are only concerned with large enough k so that 0 < β < α
and region K looks like the one in Fig. 3. For large values of

k, f(α, β) >
√

1+q
q and g(α, β) < 1 + 4−2q

q(1−q) within region

K and therefore from inequality (13) we get:

U2k >

√
1 + q

2π(1 − q)
√

q
e−

1
12k (1+ 4−2q

q(1−q) )
∑

m∈E,t∈G

k − m

k + m
2ng(m

k
, t

k )

U2k >

√
1 + q

2π(1 − q)
√

q
e−1

∑

m∈E,t∈G

k − m

k + m
2ng(m

k
, t

k ) (15)

for large enough k.

Function g(α, β) satisfies the following three conditions:

1) ∂g
∂α = log2

(

C(1+α−β)
(α−β)

)

and ∂g
∂β = log2

(

F (1−β)(α−β)
β(1+α−β)

)

2) ∂2g
∂α2 = − 1

(α−β)(1+α−β) ln 2 < 0

3) ∂2g
∂α2 · ∂2g

∂β2 − ∂2g
∂α∂β · ∂2g

∂β∂α = 1
β(1−β)(α−β)(α−β+1) ln 2 > 0

It’s very easy to see from condition 1, that
∂g(α,β)

∂α

∣

∣

∣

(1,1−q)
=

0 and
∂g(α,β)

∂β

∣

∣

∣

(1,1−q)
= 0. Moreover conditions 2 and 3

show the concavity of g(α, β) within region K and along

with condition 1 it is proved that function g(α, β) achieves a

maximum at point (α, β) = (1, 1−q), where that maximum is

equal to 0. Since region K is compact (closed and convex) and

function g(α, β) is concave, it will achieve its minimum on the

boundary of K. It’s not difficult to show that
∂g(α,1−q)

∂α ≥ 0
for α ≤ 1 and therefore function g(α, 1−q) decreases in value

from point A to point D. Similarly
∂g(1,β)

∂β ≥ 0 for β ≤ 1− q
and therefore function g(1, β) decreases in value from point

A to point B. Since
∂g(α,1−q−1/

√
n)

∂α ≥ 0 for a ≤ 1 and
∂g(1−1/

√
n,β)

∂β ≥ 0 for β ≤ 1 − q with similar arguments as

above we show that the minimum value for g(α, β) within K
is achieved at point C ≡ (αm, βm) = (1 − 1√

n
, 1 − q − 1√

n
).

Therefore g
(

k
n , i

n

)

≥ g (αm, βm) or else from equation (15):

U2k >
e−1

√

k(1 + q)

2π(1 − q)
√

q
2ng(αm,βm)

∑

m∈E

k − m

k + m

Using the Taylor expansion of function r(x) =
g(1−x, 1−p−x) around x = 0 we get the following expres-



sion:

f(x) = − x2

(1 − q)q
+ O(x3)

or else for x = 1√
k

we have n · g (αm, βm) = − 1
(1−q)q +

O
(

1√
k

)

along with Proposition 2 we get for k = ρ2:

U2ρ2 >
e−1ρ

√

(1 + q)

2π(1 − q)
√

q
2
− 1

(1−q)q +
c
ρ t(ρ) (16)

where t(ρ) = 2ρ2
(

H2ρ2 − H2ρ2−ρ−1

)

− ρ − 1. The above

expression can be simplified by using the bounds proved by

Young in [11]:

lnn + γ +
1

2(n + 1)
< Hn < lnn + γ +

1

2n

where γ is the Euler’s constant and finally get from (16):

U2ρ2 >
e−1ρ

√

(1 + q)

2π(1 − q)
√

q
2
− 1

(1−q)q +
c
ρ φ(ρ)

where φ(ρ) = 2ρ2 ln
(

2ρ2

2ρ2−ρ−1

)

− ρ − 1 − ρ2(ρ+2)
(2ρ2+1)(2ρ2−ρ−1) .

It’s proved in [9] that function 2ρ2 ln
(

2ρ2

2ρ2−ρ−1

)

− ρ − 1 is

greater than 1
4 and therefore the last equation becomes

U2ρ2 >
e−1ρ

√

(1+q)

2π(1−q)
√

q
2−

1
(1−q)q

+ c
ρ

(

1

4
− ρ2(ρ+2)

(2ρ2+1)(2ρ2−ρ−1)

)

Clearly the above function is unbounded and U2ρ2 increases

at least linearly with ρ or U2k increases at list as
√

k.
Now we have all the necessary tools to prove the following

theorem.

Theorem 2. The expected time ET r
n taken to send by routing

n packets through a two parallel multi-hop line network is

ET r
n =

n

2 − 2p
+ Dr

n (17)

where p is the erasure probability of the two worst links in the

network and the delay function Dr
n depends on all the erasure

probabilities pij , for i ∈ {1, 2}, 1 ≤ j ≤ n and is unbounded.

Proof: The first term in equation (17) is due to the

capacity of the two parallel multi-hop line network. Term Dr
n

is clearly sublinear in n since if function Dr
n was growing

faster than n then the capacity of the parallel multi-hop line

network would have been equal to 0. Therefore what is left

to prove is that term Dr
n is not bounded. This is given by

Proposition 3. Indeed, time T r
n is always greater than the time

T̂ r
n
2

taken for half of the packets (n/2) to reach node N11 and

the other half packets to reach node N21. Therefore

ET r
n > ET̂ r

n
2

⇒ ET r
n >

n

2 − 2p
+ Un.

And since Un is unbounded Dr
n is also unbounded and this

concludes our proof.

IV. CONCLUSIONS

In this paper we compared the expected time it takes to

communicate n packets over a network of two parallel multi-

hop paths. In our previous work we had shown that for a

multi-hop line network, the delay function of both routing and

network coding are bounded by absolute constants. Therefore

the two-parallel path network seems to be the simplest case

where there is a gap between the routing and network coding

delay. This is intuitive because when there are parallel paths,

decisions have to be made on which path to select for each

packet. If the random erasures happen to be atypically bad for

some paths and atypically good for others, network coding can

opportunistically exploit these deviations, contrary to routing

when only a single copy of each packet is present in the

network. This gives an intuitive explanation of the derived gap,

since a random walk typically has deviations of O(
√

n) from

expectation. Our results can be generalized to multiple parallel

paths and when the worst links are different. More generally

we conjecture that as the number of possible routing choices

increases, the delay gap between network coding and routing

becomes larger.
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