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1 INTRODUCTION

SUMMARY

It has previously been shown that the Green’s function between two receivers can be retrieved
by cross-correlating time series of noise recorded at the two receivers. This property has been
derived assuming that the energy in normal modes is uncorrelated and perfectly equipartitioned,
or that the distribution of noise sources is uniform in space and the waves measured satisfy
a high frequency approximation. Although a number of authors have successfully extracted
travel-time information from seismic surface-wave noise, the reason for this success of noise
tomography remains unclear since the assumptions inherent in previous derivations do not hold
for dispersive surface waves on the Earth. Here, we present a simple ray-theory derivation that
facilitates an understanding of how cross correlations of seismic noise can be used to make
direct travel-time measurements, even if the conditions assumed by previous derivations do
not hold. Our new framework allows us to verify that cross-correlation measurements of
isotropic surface-wave noise give results in accord with ray-theory expectations, but that if
noise sources have an anisotropic distribution or if the velocity structure is non-uniform then
significant differences can sometimes exist. We quantify the degree to which the sensitivity
kernel is different from the geometric ray and find, for example, that the kernel width is period-
dependent and that the kernel generally has non-zero sensitivity away from the geometric
ray, even within our ray theoretical framework. These differences lead to usually small (but
sometimes large) biases in models of seismic-wave speed and we show how our theoretical
framework can be used to calculate the appropriate corrections. Even when these corrections
are small, calculating the errors within a theoretical framework would alleviate fears traditional
seismologists may have regarding the robustness of seismic noise tomography.

Key words: Surface waves and free oscillations; Seismic tomography; Theoretical seismol-
ogy; Wave propagation; Crustal structure.

also recently been pointed out by a number of authors (Chavez-
Garcia & Luzon 2005; Chavez-Garcia et al. 2005; Roux et al. 2005;

In 2001, Lobkis & Weaver (2001) showed that the cross-correlation
of signals from two receivers in a diffuse acoustic field yields the
Green’s function between the two receivers. They provided two plau-
sibility arguments and a complete derivation of this property, all
relying at least partially on the definition of a diffuse field as having
uncorrelated and random modal amplitudes with equal variances,
or alternatively that the energy in normal modes is uncorrelated
and perfectly equipartitioned. Since this initial derivation, other
derivations of the ‘noise-correlation’ property have been made un-
der different assumptions. Using a reciprocity theorem, Wapenaar
(2004) and Wapenaar et al. (2006) have shown that the same prop-
erty holds for a general elastodynamic, inhomogeneous medium
if the noise sources are numerous, well distributed and uncor-
related. Using a stationary-phase approximation, Snieder (2004)
and Snieder ez al. (2006) have also demonstrated that the property
holds for a uniform-velocity medium with locally isotropic noise,
and that equipartitioning of modal energy is not required. It has
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Nakahara 2006; Sanchez-Sesma & Campillo 2006; Sanchez-Sesma
et al. 2006) that the essential points of the noise correlation prop-
erty have been known since the seminal work of Eckart (1953), Aki
(1957), Claerbout (1968) and Cox (1973), and that the property has
simply been rediscovered in a new context. All derivations of the
‘noise correlation’ property find that under certain favourable con-
ditions, the Green’s function between two stations can be obtained
from the cross correlation of noise.

The existence of this noise-correlation property has led a num-
ber of authors to apply the idea to a variety of physical systems,
including the Earth. By cross-correlating time series of seismic
coda (Campillo & Paul 2003) or ambient seismic noise (Shapiro
& Campillo 2004), these initial applications demonstrated that a
time series resembling the Green’s function can be obtained from
real seismic noise and moreover that path-average seismic velocities
measured using noise-correlation techniques agree well with those
measured using traditional earthquake-based approaches. More
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recently, numerous studies have utilized multiple station—station
pairs to create regional models of Rayleigh-wave group and phase
velocity (e.g. Sabra et al. 2005; Shapiro ef al. 2005; Yao et al. 2006;
Benson et al. 2007; Cho et al. 2007; Yang et al. 2007). Whereas
noise-correlation tomography offers several advantages over tradi-
tional surface-wave techniques, most notably independence from
earthquake occurrence and the ability to use shorter period waves,
the Earth does not fully comply with the assumptions inherent in
the derivations described above and the implications of this fact
should be understood. Specifically, in the Earth, velocity is not
uniform, sources are not isotropically distributed and modal en-
ergy is not equipartitioned. In fact, strong directional dependence
(and hence anisotropic distribution) of ambient noise sources has
been partially characterized by Stehly et al. (2006) and Yang &
Ritzwoller (2008). Yang & Ritzwoller (2008) show (using numeri-
cal simulations) that the error due to this dependence is often small.
A number of authors (e.g. Derode et al. 2003; Larose et al. 2006;
Yang & Ritzwoller 2008) have also shown with numerical or exper-
imental simulations that a time series resembling the Green’s func-
tion is often obtained through cross-correlation. However, much of
the literature does not clearly distinguish between the ability to ob-
tain a Green’s function-like time series and the ability to make a
meaningful travel-time measurement on it; moreover, the literature
lacks a simple analytical approach to the problem of quantifying the
effects of non-uniformity of velocities and noise sources in tomo-
graphic travel-time measurements. This gap in the current literature
motivates this work.

In this work, we focus on understanding why it is possible to make
travel-time measurements on direct arrivals of correlated noise even
with a non-uniform distribution of noise sources, a non-uniform
velocity structure and potentially dispersive waves. To achieve
this goal, in Section 2.1, we first present a simple ray-theoretical
derivation that explains the relationship between a standard cross-
correlation measurement of noise and the ray-theoretical travel time
between the pair of stations. Using this new approach, we can then
evaluate the success of a travel-time measurement without resorting
to numerical simulations. We are, thus, able to easily explore a vari-
ety of situations in which the success of these measurements is not
clear a priori and furthermore give a quantitative assessment of the
errors accrued. In Section 2.3, we then show that when noise sources
are uniformly (isotropically) distributed and the medium has uni-
form velocities, our approach becomes approximately equivalent to
astationary-phase approach like that of Snieder (2004) and we there-
fore recover similar conclusions regarding the success of noise to-
mography applications. Under an infinite-frequency approximation,
our results simplify considerably, allowing one to assess the validity
of a travel-time measurement with virtually no computation. Finally,
in Section 3, taking advantage of the new approach, we present a
few examples that exemplify the types of issues that commonly arise
and suggest a method of correcting for these (typically small but
occasionally large) errors between the actual station—station travel
time and the time measured by standard correlation measurements.

2 THEORETICAL DEVELOPMENT
FOR NOISE CORRELATION
MEASUREMENTS

2.1 An analytic description of the travel-time
measurement of distributed noise

In this section, we provide a simple analysis of how the cross-
correlation of noise recorded at two seismic stations can be used to

make a meaningful travel-time measurement. In this analysis, we
do not make the common assumptions of a uniform noise distri-
bution, a uniform velocity medium, or equipartition of energy, but
instead make assumptions that are perhaps more reasonable for the
Earth. Specifically, we assume that there exist potentially frequency-
dependent noise sources distributed in space with density pgs(x, w)
(as a function of position x and at each frequency w) that send waves
along straight ray paths through a potentially dispersive medium and
these sources are observed at each station x with travel time given
by Aty = AXg/Vavg—sx Where Axyy is the source—station distance
and vg,,—sx is the average velocity along that path (at the given
frequency). Whereas this ray-theoretical description is quite simpli-
fied, it follows similar assumptions of many traditional tomographic
studies (e.g. Ritsema et al. 2004; Kustowski et al. 2008) that obtain
very realistic velocity structures. All shortcomings of these studies,
such as the lack of finite-frequency kernels (Montelli et al. 2004),
lack of mode coupling (Li & Romanowicz 1995) and lack of ray
curvature around velocity anomalies are also shortcomings of this
work. The intention of this work is to highlight differences between
noise tomography and traditional tomography, not to address issues
common to both approaches. Since all comparisons are also done
with respect to ray theory (e.g. in Section 3), errors due to known
deficiencies of ray theory should be added to the errors discussed
here (possibly resulting in a smaller net error).

‘We make the further assumption that, as in all other derivations of
a noise-correlation property (e.g. Lobkis & Weaver 2001; Snieder
2004; Wapenaar 2004), the cross-correlation is performed over a
sufficiently long time series that the cross-correlation is simply the
sum of individual sinusoidal source terms, with all cross-terms can-
celling out. A simple example of this is as follows. Let C,y(Af)
be the normalized cross-correlation between displacement seismo-
grams D(¢) at points x and y as a function of traveltime delay At
(This analysis applies to any component of the seismogram as long
as the same component is used at both stations.). First, we consider
the simple case of a deterministic wave source observed at point x
with response given by D(x, t) = cos(wt + ¢), where ¢ is a con-
stant phase delay and the same source observed with relative time
delay Az, aty such that D(y, t) = cos[w (t — Aty) + ¢]. For this
single-source situation, then

1 (7
Ciy(At, w) ?/ D(x,t)D(y,t + At)dt
-7

cos[w(At — Aty)]
sin[2wT]

20T

cos[w(At — Aty)], (D)

cos[w(At — Aty) + 2¢]

%

where the last approximation is valid as long as 7' >> 1 /w, that is the
correlation time 7 is sufficiently long, and holds for arbitrary phase
shift ¢. If ¢ is allowed to vary only over timescales longer than
At, we observe that the same result holds by breaking the integral
into shorter pieces. Thus, we find that a ‘noise source’ (with ¢
varying stochastically over long timescales) observed through cross
correlation is identical to a deterministic source of the same w and
At,. We further observe that adding stochastic terms N(¢) and
N(t) to D(x, t) and D(y, t), respectively, so that the displacement
responses are given by D(x, t) = cos(wt) + N,(¢) and D(y, t) =
cos[w(t — Aty)] + N,(t), does not affect the cross-correlation
response as long as N; and N, are uncorrelated with each other and
uncorrelated with cos(wt). As stated earlier, these facts have been
shown by many previous authors and we refer the reader to those
works for further discussion of the assumptions. It should be noted
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that Az, should be interpreted as the travel-time delay between
when the noise source is observed at point x and point y and can be
expressed as

Axg, AXxg,

Aty = Aty — Aty = ©)

Vavg—sy Vavg—sx ’
When D(x, t) and D(y, t) are given by a sum of sinusoids at varying
Aty, then eq. (1) immediately generalizes to a sum. For example,
if there are two equal cosine source terms, with travel-time delay
of Aty and At,,, respectively, then the assumption of cancelling
cross-terms leads to

Cyy(At, w) = cos[w(At — Aty)] + cos[w(At — Aty)]. 3)

If sources are distributed with a distribution of travel-time delays
and have unequal amplitude or prevalence, then cross-terms still
cancel and this generalizes further to give

Cyy(At, ) = / p(Aty, w)cos[w(At — Aty)]d Aty, 4)

where p(Aty, w) is the ‘density’ of noise sources with travel-time
delay At, and frequency w. Considering the effects of a source hav-
ing a given amplitude and non-infinite duration in eq. (1) shows that
this density function should weight source amplitude variations by
a factor of amplitude squared whereas weighting source prevalence
linearly with total source duration. For example, if one noise source
had an amplitude three times that of a second source, the second
source would need to contribute over a duration nine times longer
to have an equal contribution to p(¢, w) = p(At,, ). Eq. (4) has
a very simple interpretation. The cross-correlation response (at a
given frequency) is simply the weighted sum of individual noise
source terms that accounts for the prevalence of each source. In
this analysis, attenuation is not explicitly considered but could be
accounted for by a suitable re-definition of p(¢, ).

Before turning to the issue of how to determine p(¢, @), we discuss
one final point regarding a time-windowed response. One is often in-
terested only in a small segment of the cross-correlation (e.g. around
a packet of waves near the group velocity) rather than the whole
cross-correlation function. In these cases, it is standard practice to
zero the data outside of the time window expected to contribute.
This windowing procedure is exactly equivalent to down-weighting
the sources contributing at these travel-time delays and we therefore
express a windowed cross-correlation measurement as

Coy(At, 0, W)

= / W(Aty)p(Aty, w)cos[w(At — Aty)]d Aty

= Re [e'“’A’/ W(t)p(t, w)e ' dt] , 5)

where W () is the chosen time window function.

If one knows p(¢, w) then one can calculate the windowed cross-
correlation response using eq. (5), so it only remains to determine
the relationship between the density of noise sources as a function
of traveltime delay, p(¢, w), and the density of noise sources in
physical space, ps(x, ). One can abstractly define this relationship
as

Aty
[ oanwani= [ ps(e, )] dxl. (©)
A X, An <AI<Aln

1
That is, the density of sources in a certain travel-time delay interval
is simply the density of sources in space integrated over all spatial
points with a travel-time delay within the given range. In certain
important cases that will be discussed in Sections 2.2 and 2.5, the

© 2009 The Author, GJI, 178, 15551564
Journal compilation © 2009 RAS

On the accuracy of noise tomography 1557
spatial density can be parametrized simply with a single scalar
variable, &, such that one can explicitly write £(x) as a scalar field

and a constant value of & implies constant Az. In this case, we
similarly define

&
f ps(E., w) dE = / ps(x, )] dx| ™
& X, £ <t<b

and one can then explicitly solve for p(¢, w) by noting

Aty §(An)
/ p(At, w)dAt = / ps(&, w)|dE]|
A

g £(An)
_ [ ds(An)
= /Atl ps(E(AD), w) - l oA |dA ®)
so that
d d =1
p(t’w):pS(g(t)’w)' ‘% :,OS(‘S;CU)' %S) (9)

Ineq. (9), 1(§) is the travel-time delay and is thus given by eq. (2) for
each source point. In some instances, eq. (9) can be multi-valued,
in which case one should sum the multi-valued contributions to p
at each value of 7.

We have now described an analytic procedure (eq. 5) for mea-
suring a windowed cross-correlation response for a given source
distribution ps(&, w) and a given velocity distribution, through the
dependence of eq. (2). A standard travel-time measurement (e.g.
Ekstrom ef al. 1997) of this cross-correlation is the phase lag of the
cross-correlation peak and is therefore given by

() = é{d)[ [ wwpu. e dt] + 27N } (10)

where ¢ is the phase (defined from 0 to 2 i) of the complex signal
and 277 N is the well-known phase ambiguity. This phase delay 7(w)
(which has units of time) is the one measured by seismic noise
tomography applications (irrespective of whether phase velocity
or group velocity measurements are initially made). Differences
between this quantity and the desired phase travel time are addressed
later.

2.2 Application to far-field surface waves

When this new framework is applied to far-field surface waves, the
description is especially simple. For surface waves, depth structure
is integrated out so that the noise sources are effectively distributed
in two dimensions (e.g. parametrized as a function of distance and
azimuth). With the additional far-field assumption, sources are as-
sumed to be along a circle infinitely far away and an obvious natural
scalar-variable parametrization is to set £ = 0 where 0 is the az-
imuth of the source relative to the station—station line (see Fig. 1).
The density of sources is therefore described as pgs(6, w) and its
variation represents the variation in the strength of surface-wave
noise sources at different azimuths. The travel-time delay, At =
At,, for a source at a given azimuth is given by eq. (2), which can
be rewritten as

Axcosd  Ax, Ax,
ALB) = 1(E) = xzos e B 2 (1)

Vavg—sy—sx Vavg—sx

where Ax is the station—station distance, v is the average velocity
on the path to station y in excess of the distance to station x (see
Fig. 1), vag—sy—sx 18 the average velocity along the path shown in
Fig. 1, and Axg and vg,—s are as defined in Section 2.1. All ve-
locities are potentially dispersive, with implicit dependence on w. If
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Figure 1. Schematic of the geometry considered. Stations x and y are sep-
arated by distance Ax, the long dotted line represents the great-circle path
connecting the stations, 6 is the azimuth of the noise source relative to the
station—station path and the difference in distance from the source to the two
stations is given by Ax cos6 for a source located infinitely far away. The
average velocity along the Ax cos6 path is given by v and the remaining
paths have average velocities vVgyg—sy—sx and vgyg—sx as shown.

velocity perturbations are relatively small and well distributed, or if
Ax is relatively small compared to the length-scale over which large
velocity changes occur, then the second and third terms of eq. (11)
will tend to cancel out, leaving the first term as the dominant contri-
bution. These assumptions can fail to be achieved in many realistic
situations. (They would fail if the path Ax,, samples a medium with
a very different average velocity compared with that sampled by the
path Ax,,.) However, based on typical station—station spacing used
in noise tomography studies and typical velocity variations in the
frequency range of interest (e.g. Lin et al. 2008), both of these
assumption are somewhat reasonable and will be assumed for the
remainder of Section 2. Thus, here, we take

A 0
ALO) ~ axcost (12)
v

Note that if velocity structure is non-uniform, v will have a depen-
dence on 6 and could more appropriately be written v = v(0) (but
will be assumed to be spatially uniform for the rest of this section).
Rearranging eq. (12) yields

VAt
E(At) = 0(At) = arccos (—) . (13)
Ax
Substituting eq. (13) into eq. (9) for p(At) yields
(A1) = ps(B(AL)) - ___vAx
PRAD= Ps ST — (vAt/Axy
v/Ax
psO) - — (14)
| sin @]

p(At) is the quantity that determines how different noise sources
are weighted in their contribution to the travel-time measurement
of eq. (10). It therefore represents the sensitivity to a given physical
distribution of sources ps. Substituting eq. (14) into eq. (10) thus
yields the desired result

() = lidb[ W(®)ps(O@)v/Ax
® V1= (vt/Ax)?

that is the traveltime measured from a cross-correlation measure-
ment of an arbitrary distribution of far-field surface-wave noise
sources in a medium with a given velocity structure. (Note the de-
pendence of pg, p and v on w is left implicit in eq. (14) and hence-
forth. The meaning of infinite density points will be discussed in
Section 2.4.) See Fig. 2 for examples of various p(Af).

el dt:| + ZnN}, (15)

/4w

b)

p)]

L g o —

- > €=

-100 -50

—
o
o

Ot(s) 50

Figure 2. Density function versus travel-time delay, p(t) = p(Atq, w),
plotted for different situations, all with a station spacing of 400 km and a
uniform background velocity of 4 kms~!. Since only phases are measured,
absolute amplitudes shown are arbitrary. The coloured arrows along the
zero-line denote the travel-time measurement (eq. 10) of the respective p(¢)
ata period of 40 s and with a broad windowing function around the expected
(positive) travel-time. (a) The blue solid line is for the 2-D isotropic case
(‘2-D Is0’); the red dashed line is for 2-D isotropic but sources a finite
distance away (‘Non-00’); and the cyan dotted line is for the 3-D isotropic
case (‘3-D Iso”). The ‘Non-oco’ case is plotted using the approximation of
eq. (17) with » /Ax ~ 0.7 and is re-normalized to make comparison easier.
For r/Ax > 3, the ‘Non-o0o’ line would be indistinguishable from the blue
line. The actual measured travel times are 94.8 s for ‘2-D Iso,” 95.0 s for
‘Non-oo and 0.0 s for ‘3-D Iso.” As expected from eq. (21), both ‘2-D Iso’
and ‘Non-oo’ are shifted by close to w7 /4w = 5 s from the station—station
travel time of 100 s. (b) The blue solid line, again, is the 2-D isotropic case
for comparison; the red dashed line is for the —1 kms~! perturbation case
of the first example of Section 3 (‘Ex1’); and the cyan dotted line is for the
second example of Section 3 (‘Ex2”). When the red and cyan lines cannot be
seen, it is because they are indistinguishable from the blue line. The actual
measured travel times are 96.8 s for ‘Ex1” and 92.3 s for ‘Ex2.’

When sources are not located infinitely far away from the stations
but are instead at distance r, we can modify our results as follows.
Treating Ax /r as a small parameter and v as constant, we expand
eg. (2) to include one higher-order term, yielding

2
AL, r) ~ Ax cos(f) - [1 _1 (ﬁ) sin20i| ) (16)
v 8§\ r
Itis clear from eq. (16) thatas long as 7 > 5 Ax, the error introduced
by using eq. (12) will be relatively minor, with an error to At of
less than 1/(8 - 5%) & 0.5 per cent. Since velocity perturbations of
interest are also small, this approximation error may be important
for sources very close to the stations (e.g. at /Ax = 2 the error
is as large as 3.1 per cent) and the effect can be accounted for
indirectly by modifying the true density ps(6, r) so that it represents
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an effective ‘infinite distance’ density ps(0) = M0, r) - ps(0, r).
For this transformation

30(AL, )
FIN]

dAt0, 00) [IALO, r)
do 30

- 5 -1
o1 (g) (2 — sin® 9)} , 17

dO(At, oo
M@®,r) = (dAt )‘

&

8

with A#(60, r) being the travel-time delay at azimuth 6 and distance r.
Eq. (17) further shows that the effect of the multiplicative correction
M0, r) is to enhance density in the vicinity of the station—station
path (6 ~ 0), which slightly helps to localize the cross-correlation
peak (compare the solid blue and dashed red curves in Fig. 2a).
If multiple distances 7 are represented, as is likely the case in the
Earth, then the correction factor can be averaged over the distance
range of interest,

ps(6) = / M. F)ps(6. r) dr. (18)

2.3 Derivation of the noise correlation property for
isotropic surface-wave noise

Previous three-dimensional (3-D) results like those of Lobkis &
Weaver (2001) and Roux et al. (2005) imply that the cross correla-
tion Cyy(¢) is related to the (displacement) Green’s function G,y (?)
by

Cuy(1)
dt

and take a time derivative of the cross-correlation to arrive at an
acausal Green’s function. Since a time derivative is equal to mul-
tiplication by iw in the frequency domain, this effectively results
in a phase shift of —m /2 at each period. To obtain G,,() from the
acausal Green’s function, the result is then either averaged or (more
commonly) the larger of the positive and negative signals is taken
as representative. To go from the (e.g. vertical-vertical) Green’s
function G,y(?) to a surface-wave phase travel time, one performs
a phase shift /4 toward zero (a negative shift at positive ¢ and
vice versa) to account for the asymptotic far-field representation of
the (2-D) surface-wave Green’s function (Dahlen & Tromp 1998).
The phase travel time is then given by the time delay at the peak of
the narrow-band filtered signal at a given period (up to a phase shift
of 2 m). The multiple phase shifts (including a shift of & for the
negative sign) result in a net —s /4 shift for negative ¢ and + /4 for
positive ¢ in going from the original cross-correlation to the phase
travel time.

We now show that this net phase shift is approximately correct
but that the theoretical motivations for this result within the lit-
erature (Sabra et al. 2005; Yao et al. 2006; Benson et al. 2007,
Lin et al. 2008), whether based on eq. (19) or otherwise, are mis-
leading. The essential reason that many previous derivations do not
strictly apply to the travel-time measurement of surface waves is
that they assume an isotropic incidence of the measured waves in
3-D, whereas surface waves are waves that inherently travel in 2-D
since the third dimension (depth) is integrated out (and are waves
due to sources primarily near the free surface). Since isotropic in-
cidence of waves in 3-D does not imply the same noise correlation
properties as isotropic incidence of waves in 2-D (see Section 2.5),

=C (1)~ =Gu(1) + Giy(—1) (19)
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derivations assuming 3-D isotropic noise do not apply to measure-
ments of isotropic surface-wave noise. The surface-wave results of
Snieder (2004) do not share this same problem but instead only
apply in the infinite frequency limit and therefore cannot easily be
interpreted when measuring waves with a given finite frequency, w.

To properly understand why previous surface-wave studies have
been able to obtain reasonable travel-time measurements, we apply
the results of Section 2.2. Assuming v is spatially uniform, eq. (14)
allows the distribution of noise sources in space to be mapped
into a distribution of sources in travel-time delay. If the sources
are randomly (isotropically) distributed in azimuth, then pg(6) is
constant. Choosing for convenience a normalization of 1 over the
interval 0 < 6 < m, that is fon ps(0)d0 = 1, then ps = 1/m and
eq. (14) yields

v/Ax v/Ax
p(Al) = ———— = : (20)
w|sinf|  7./1— (vAt/Ax)?
As shown in Appendix A, substituting eq. (20) into eq. (10) for ()
gives

Ax T 2 N

(W)~ — — —+ (21)
v 4w 1)
for positive time delay and similarly
Ax b4 2n N
T(w) ~ — |:— - 7] +—, (22)
v 4o 1)

for negative time delay (also see Fig. 2). Thus, we obtain approxi-
mately the same 7 /4 w phase shift as previously found, but without
the problems inherent in applying those results to travel-time mea-
surements of surface waves. Eqs (21) and (22) apply strictly only in
the same infinite frequency limit as in Snieder (2004), but eq. (A4)
of the Appendix applies at all w and one can easily compute the
error accrued from the infinite frequency approximation, as plot-
ted in Fig. 3(a) for a positive windowing function (see Appendix).
This error, which is due to the errors in using the asymptotic ap-
proximations to the Bessel and Struve functions, is similar but not
identical to the error in using a far-field approximation for tradi-
tional source—station tomography. As shown in Fig. 3(a), this error
is significant for relatively long period (low frequency) waves and
small station—station spacing (but depends on the windowing func-
tion used). For example, choosing Ax = 100 km, v =4 km s~! and
T =2n/w =10 s, would yield w/(v/Ax) = 15.71 and therefore
a 0.9 per cent error in the travel-time measurement if the infinite
frequency approximation were used. To our knowledge, no papers
in the existing noise tomography literature account for this error,
which can be comparable to the few percent variations in velocities
that typically occur in the Earth. Most authors (e.g. Yao et al. 2006)
simply throw away data for which station—station spacing is small
rather than account for the correction suggested here. Including this
data may improve tomographic resolution.

One may note that it has been pointed out by Nakahara (2006)
that a Hilbert transform should be applied to the cross-correlation to
obtain the (displacement) Green’s function, but that step is unneces-
sary since the phase information has already been obtained without
needing to calculate the Green’s function as an intermediate step.
One should also note that although group velocity studies (Shapiro
et al. 2005; Benson et al. 2007; Cho et al. 2007; Yang et al. 2007)
do not initially arrive at the phase travel time, they make group
velocity measurements based on this same phase travel time and are
therefore affected in the same way. In general, the group travel time
can be expressed in terms of the phase travel time as

To(w) = 1(w) + @ - (dt/dw). (23)
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Figure 3. (a) Travel-time measurement 7(w) normalized by Ax/v as a
function of frequency w normalized by v/Ax. The blue solid line is the
exact result as given by eq. (A4) for a strictly positive (boxcar) windowing
function. The red dotted line is the high frequency approximation given
by eq. (21) that is equivalent to a phase shift of —m /4w (for positive time
delay). For both curves, it has been assumed that the 27r N /w phase ambiguity
has been properly accounted for. (b) Group travel-time measurement 74(w)
normalized by Ax /v, (where vg is group velocity) as a function of frequency
w normalized by v/Ax. The blue solid line is the exact result calculated
by substituting eq. (A4) (with the same positive windowing function) into
eq. (23). The red dotted line is the high frequency approximation calculated
by substituting egs (21) into (23).

Interestingly, in the high frequency approximation (substituting
eq. 21), the group travel time is then given by

T(w) = Ax/v- (1 —w/v - (dv/dw)) = Ax /v, (24)

(for positive time delay), where v, is group velocity and therefore
does not have an apparent time shift due to the cross-correlation
measurement. However, this lack of apparent time shift is not a
feature of the general expression (using eq. A4 rather than eq. 21 to
calculate t,), which has large deviations from Ax/v, as shown
in Fig. 3b even when w/(v/Ax) is relatively large. For exam-
ple, choosing Ax = 100 km, v = 4 kms™! and T = 5 s then
w/(v/Ax) =~ 31.4 but there is still a ~10 per cent error in assum-
ing T, = Ax/v,. As for phase travel-time measurements, this error
depends on the windowing function used.

2.4 An infinite frequency description

So far, we have discussed how noise correlation measurements can
be made on waves of a given frequency. It is often useful from
both a practical and pedagogical standpoint to consider the infi-
nite frequency limit since the description is considerably simpler

in this limit. Taking the limit as @ — oo of eq. (10) for t(w), one
immediately recognizes that if there exist infinite-density points of
p(At) in eq. (14) then these points completely determine the cross-
correlation response of eq. (10) as these points effectively act as
delta functions in picking out travel times. These infinite-density
points correspond to stationary travel-time delay points, making
this description analogous to a stationary-phase approximation de-
scription like that utilized by Snieder (2004). However, the relative
simplicity of our approach allows quantitative examination of the
conditions under which noise-correlation measurements give rea-
sonable traveltime measurements. A few simple examples of this
are now given.

When noise is isotropically distributed in 2-D, then pg is constant
and eq. (14) has infinite density points at & = 0, 7 or equivalently
At = £ Ax/v, consistent with the limit as @ — oo of eqs (21)
and (22). Thus, we immediately recover the result that the cross-
correlation has a response at the (positive and negative) travel-time
delay between the two stations.

In the framework of our formulation, the infinite-frequency cross-
correlation measurement can fail to retrieve the expected station—
station travel-time delay either because p(Afr) achieves an infinite
response at time delays other than Az = +Ax /v or because p(At)
achieves a less-than-infinite response at Af = +Ax /v. These fail-
ures can occur due to a non-uniform source distribution ps(0) or
due to a non-uniform velocity distribution v(6, r). For example, if
ps(0) drops to zero at & = 0 and 0 = 7 then At = £Ax /v may
not have infinite p(A¢) and the traveltime measurement will instead
yield a value near the average At of p(At) (or of W(At) p(At) ifa
windowing function is used as well). On the other hand, the velocity
distribution v(0, ) can easily be such that Az(#) has multiple sta-
tionary points, thus giving additional A¢ for which p(A¢) is infinite.
In these cases, one must take a limit of eq. (10) to determine which
infinite values are most important.

2.5 Noise correlation for 3-D isotropic noise

Many previous authors have discussed the relationship between the
cross correlation and the Green’s function when noise is distributed
isotropically in 3-D (Lobkis & Weaver 2001; Snieder 2004; Roux
et al. 2005; Nakahara 2006). However, none of these descriptions
addresses the case when this 3-D distributed noise is dispersive in
nature (with different frequency waves travelling at different veloc-
ities) and more importantly they do not discuss whether meaningful
travel times can be measured in this case. Although the dispersion
of (3-D) body waves is less important than for (2-D) surface waves,
at least a small amount of physical dispersion exists through the
dispersive effects of attenuation and this fact makes it of interest
to consider the case of dispersive 3-D distributed sources. Due to
the different dimensionality, it will be shown that a very different
conclusion must be made about the possibility of measuring travel
times from standard noise correlation measurements when sources
are distributed isotropically in 3-D (Unlike previous work, we only
discuss implications for travel-time measurements and do not dis-
cuss implications for the related but different problem of Green’s
function reconstruction.).

Before continuing, the applicability of this 3-D isotropic descrip-
tion should perhaps be commented upon. Most sources of seismic
energy occur near the surface (e.g. Snieder 2004; Kedar et al. 2008);
scattering of seismic energy is thought to be more efficient in the
near-surface heterogeneous lithosphere (e.g. Campillo & Paul 2003;
Larose et al. 2006); and the increase of seismic velocities with depth
effectively confines most seismic energy to (2-D) surface waves.
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Thus, it is evident that most applications of seismic noise tomog-
raphy are not well described by sources being evenly distributed
in 3-D and these sources also do not excite the Earth’s normal
modes equally. The bulk of current noise tomography applications,
including all applications that explicitly measure travel times of sur-
face waves, are therefore much better approximated with the 2-D
surface-wave description of Sections 2.2-2.4. However, there may
be important applications in which noise sources are uniformly dis-
tributed in 3-D, especially in smaller-scale industrial applications
where noise sources could potentially be placed in such a configu-
ration.

For 3-D distributed far-field sources in a uniform velocity 3-D
medium, the spatial density function pg(x, w) can be written as
ps(@, ¢, w) where 0 is the polar angle and ¢ is the azimuth with
respect to the station—station line. If, as in Section 2.2, we assume
that eq. (12) applies, then the parametrization £ = 6 still works and
we can again consider ps parametrized as ps(0, w). For isotropic
noise in this 3-D case, ps(0, ¢, w) is constant so that performing
an integration over ¢ yields pg(f, w) = [sinf|. Substituting this
into eq. (14) then shows that p(¢) = p(¢, w) is constant between
+Ax /v (see Fig. 2). Putting this p(¢) into eq. (10) shows that t(w)
= 0 4+ 27 N/w, that is the standard noise-correlation traveltime
measurement yields a travel time of zero and is therefore indepen-
dent of any useful travel-time information (No window is used since
all delay times between £Ax /v contribute equally.). A group ve-
locity measurement would similarly give a group time-lag of zero.
If sources were not exactly isotropically distributed, then the region
with slightly higher p(#) would contribute more to the phasing and
would result in a phase shift centred at this travel-time delay ¢,
(up to a 2t N phase shift). The travel time resulting from a phase
velocity measurement would be ¢, ; a group velocity measurement
would yield the associated time delay ¢, + w - (dt,/dw). Thus,
the travel-time curve resulting from both phase and group veloc-
ity measurements would have no relation to the velocity structure
between the stations but would instead give information about the
anisotropy of the source distribution. This analysis should caution
the potential user of 3-D isotropic noise that if one wants to extract
useful travel-time information, non-standard techniques for measur-
ing phase or group travel times will be necessary. Again, it should
be kept in mind that this section’s analysis is for a uniform velocity
3-D medium in which surface waves are not important, a situation
that does not obviously apply to the Earth.

3 EXAMPLES OF APPLYING
THE NEW APPROACH

Perhaps the most important conclusion of Section 2 is that most
of the sensitivity to phase travel time occurs close to the station—
station line in the 2-D isotropic case, unlike the 3-D isotropic case
where the sensitivity is strong away from the station—station line.
Yet simply using the ray theory approximation, as done here, it is
already the case that sensitivity to velocity structure is non-zero
away from the station—station line (see Fig. 2) and this sensitivity
accounts for the approximate /4 phase shift toward zero in the
2-D isotropic case. Whereas some of this has been demonstrated in
some recent numerical experiments (e.g. Lin et al. 2008; Yang &
Ritzwoller 2008), no existing work demonstrates how to calculate
this sensitivity without performing numerical experiments. It would
be useful, for example, to calculate a phase sensitivity kernel as in
traditional surface-wave tomography (e.g. Dahlen & Tromp 1998;
Zhou et al. 2004). Unfortunately, since p(¢) is a function of the
derivative of travel-time delay with azimuth and not the travel-
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time delay itself (see eq. 9), our approach shows that one cannot
describe a phase travel-time perturbation as an integral over a kernel
multiplied by velocity perturbations. However, since p(¢) gives the
travel-time delay through eq. 10), p(¢) itself can be thought of as a
sensitivity kernel. So, given a velocity distribution, one can express
the travel-time delay # as a function of azimuth as in eq. (11), take
the derivative, and arrive at p(¢) directly which then yields the phase
travel time as described by eq. (10). For a noise source distribution
far from 2-D isotropic, one must also perform analysis like that of
Stehly et al. (2006) or Yao & van der Hilst (2008) to determine
the distribution of sources to arrive at p(¢) as described by eq. (9).
Using this forward modelling of the phase travel time iteratively
with noise tomography results has the potential to enhance the
accuracy and reproducibility of tomographic images derived from
noise tomography. Even if the calculated corrections are small,
quantifying the errors arising from a noise tomography approach
would assuage concerns over the robustness of the derived images.
Furthermore, the shapes of noise-tomography sensitivity kernels
are different than standard finite-frequency kernels (e.g. Zhou et al.
2004) regardless of whether corrections are needed.

A simple example of this sensitivity slightly away from the
station—station line is shown in Fig. 4. In this example, the sta-
tions are 400 km apart and the source distribution pgs(0) is taken as
constant. The velocity is uniformly 4 kms~! except for a roughly
Gaussian velocity perturbation, centred three quarters of the way
from station 1 to station 2, with a maximum of Avy,, = —1, 0 and
+1 kms™! (respectively) and length scale of 50 km (see Fig. 4a).
Eq. (9) for p(¢) can be evaluated for this given velocity distribu-
tion by explicitly calculating #(§) = A¢#(0) with eq. (2). Doing this
numerically and substituting the result into eq. (10) with a broad
(130 s) windowing function centred at positive delay time gives
the phase travel time. Accounting for the approximate /4 phase
shift of eq. (21) expected of the isotropic case and then dividing the
station—station distance by this phase-corrected travel time gives the
average phase velocity between the stations (see Fig. 2b). If only
the ray between the stations contributed to determining the phase
velocity, the three cases would have average velocities of 3.79, 4.00
and 4.23 kms~!, respectively and would be independent of period.
Instead, as shown in Fig. 4(b), whereas the uniform velocity case
(Avmax = 0) yields approximately the correct result (with small er-
rors due to choice of windowing function, finite discretization of the
time series, and the 77/4 approximation), both non-uniform velocity
cases yield phase velocities closer to 4 kms™! than is predicted for
sensitivity strictly on the station—station line and both cases have a
significant period dependence even though the velocity structure in
the example is non-dispersive. One should note that the discrepancy
is worse for lower frequencies (longer periods) since these frequen-
cies are more sensitive to a wider range of delay times, and thus
more sensitive to structure away from the station—station line.

Another simple example is given that illustrates the sensitivity to
an anisotropic noise source distribution. In this example, we again
take the stations to be 400 km apart and the velocity is assumed to
be uniformly 4 kms~!. The source distribution is taken as pg(6) =
1 4+ 2 cos*°[(6 — 40°)/2] to represent a narrow, roughly Gaussian
peak of sources around 6 = 40° superimposed on an isotropic
distribution with half the strength (see Fig. 5a). As expected, the
(phase-corrected) velocity measured is close to the expected result
(4 kms™!) for periods much shorter than the time delay Aty ~
Ax (1 —cos40°)/v~23 s, butis sensitive to the anisotropy at longer
periods (see Fig. 5b). The increase in measured phase velocity at the
long-period end is also expected since Aty is still comparable to
the periods considered (27 /w). (At even longer periods than shown,
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Figure 4. Example of phase and group velocities recovered in a non-
uniform velocity medium. Panel (a) describes the geometry: the stations
are triangles and the shading denotes the velocity perturbation away from
4 kms~!. The coloured rings surrounding station 1 denotes the azimuthal
sensitivity p(#(0)) for the positive time delay window for the three cases
considered, with colours ranging from light red (not sensitive, low p) to
dark blue (sensitive, high p). Panel (b) describes the average phase ve-
locity measured from station 2 to station 1, for Avm,x = —1, 0 and +1
(dotted blue, solid green and dashed red, respectively). The average phase
velocity along the station—station path is 3.79, 4.00 and 4.23 kms™!, re-
spectively (as shown in matching faded lines). Whereas the average phase
velocity for the uniform velocity closely approximates the expected value of
4.00 kms~!, for both non-uniform velocity cases the velocities are different
than the station—station path average. Panel (c) describes the average group
velocity for the same configuration. Line colours and styles are as in panel
(b). Since the example medium given is non-dispersive, the average group
velocity along the station—station path is also 3.79, 4.00 and 4.23 kms™!,
respectively.

when 27 /w 3> Aty, there is a small decrease in measured phase
velocity due to the excess of sources within |Af| > Ax/v — 7 /w
but this sensitivity drops as more unaffected regions are averaged
over.) The decrease in measured phase velocity for intermediate
period waves is perhaps a little counterintuitive, but is due to the
excess of sources being at a time delay slightly less than 97 /4w (or
[1+ 27 N]/4w for any integer N) from Ax /v and therefore shifting
the measured phase travel time toward higher values.

It should be noted that the two examples were chosen to illus-
trate differences between ray-theoretical expectations and actual
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Figure 5. Example of phase and group velocities recovered when the source
distribution is anisotropic. Inset (a) describes the noise source anisotropy,
with ps(0) plotted in polar coordinates (with 6 in degrees). Main panel
(b) describes the average phase and group velocity measured around the
expected (positive) travel time. Since the example medium is non-dispersive,
the ray theory expectation is 4.0 kms~!, independent of period.
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Figure 6. Example of 20 and 40-s phase and group velocities recovered
when the source distribution is anisotropic like in Fig. 5 but with the addi-
tional sources at different azimuths, ranging from 6 = 0° to 80°. As in Fig. 5,
the example medium is non-dispersive and the ray-theory expectation is
4.0 kms~!, independent of period and source distribution.

ray-theoretical measurement for cases that have significant differ-
ences. For many arbitrary distributions of noise sources and/or ve-
locity structures, the differences are much smaller and therefore
unimportant compared to other uncertainties in the measurements.
For example, plotted in Fig. 6 are 20 and 40-s phase and group ve-
locity measurements for the same anisotropic source distribution of
the previous paragraph, except with anisotropy centred at different
azimuths 6. Comparison of these curves shows that measurements
for & = 80° are much closer to the expected 4 kms™' compared
to measurements for 6 = 30° or 40° and so would be unlikely to
cause significant problems. However, the fact that the azimuth of
the source anisotropy changes the measured travel times (at a given
period) means that if source anisotropy is not correctly accounted
for then it will be improperly mapped into anisotropic velocity
structure.

The above conclusions apply equally well to group velocity stud-
ies as to phase velocity studies. The primary difference is that
group velocity studies do not need to apply the ~m /4 phase shift
(see eq. 24). In spite of this, it is important to recognize that group
velocities are just as much affected by the energy arriving (slightly)
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away from the station—station line (see Figs 4c and 5b) that accounts
for the ~m /4 phase shift in phase travel time. When the calculated
travel times are significantly different than expected, group velocity
tomographic images should also be corrected for this sensitivity to
velocity structure away from the station—station line.

4 CONCLUSIONS

We have presented a new, simple ray-theoretical derivation that de-
scribes the relationship between cross-correlations of seismic noise
and the direct travel time measured between two stations. This new
framework allows us to understand the travel-time measurement
even when noise sources are potentially frequency-dependent, non-
uniformly distributed and within a dispersive, non-uniform velocity
medium. Applying this new framework is relatively straightforward
and shows why noise tomography has been generally successful but
also allows for quantification of the errors that arise in assuming
isotropic noise sources, a uniform-velocity medium and infinite fre-
quency waves. Using our approach, it is possible to correct for these
factors. Since these corrections are not particularly computationally
intensive, we suggest that future researchers should compute the
corrections and implement them in areas where the corrections are
significant. Doing this may, for example, allow a larger percentage
of data to be useful than is currently used in most applications. Ad-
ditionally, calculating these corrections, even if mostly negligible,
would give seismic noise tomography results a more theoretically
sound basis and alleviate fears traditional seismologists may have
regarding the robustness of noise tomography-derived images.
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APPENDIX A: PROOF OF THE
APPROXIMATE #n/40o PHASE SHIFT
APPLICABLE TO SURFACE-WAVE
NOISE TOMOGRAPHY

We take v to be spatially uniform but potentially dispersive, #(6) =
Ax cos 6 /v and rewrite eq. (20) as

v/Ax v/Ax
p(1(9)) = (AD

JT= (WAt/Ax2  Isinf]|’

For a positive windowing function

W) 1, t>0 (A2)
t)= .

0, t<0
Eq. (10) thus simplifies to

Ax/v U/Ax it
wt(w)+ 27N = ¢ [/0 sin@(t)e dt]

/2
— ¢ [/ ¢ cosfwAx /v d@] ) (A3)
0

The integral in eq. (A3) is identified as a Bessel integral,
giving
wt(w) 4 27N = ¢[oi[Jo(wAx /v) + i Hy(wAx /v)]] (A4)

where J is a Bessel function of the first kind of order zero, H, is a
Struve function of order zero and «; is a constant. Taking wAx /v >
1, eq. (A4) can be approximated as

wt(w) 4+ 27N ~ ¢ [Jo(wAx /v) + i Yo(wAx /v)]]

N [ o [ wAx 7 :|]
~e JoAx /v Rk (T Z)
~ wAx 1 (AS)

v 4

where Y is a Bessel function of the second kind of order zero and
oy is a constant. Thus, for positive time delay

Ax T 2 N

(W)~ — — — (A6)
v 4o 1)
and similarly, for negative time delay
Ax T 2n N
T(w) ~ — |:— - —:| + —. (A7)
v 4w w

We therefore derive the approximate 7 /4w phase shift between 7(w)
(the phase delay as measured by noise-correlation techniques) and
Ax /v (the phase travel time in a homogeneous velocity medium)
without calculation of the surface-wave Green’s function. It may be
noted that the 2-D surface-wave Green’s function can be expressed
in terms of Jy and Y so that comparison with eq. (A4) would result
in an explicit relationship between noise-correlation measurements
and the Green’s function response, as in other works.
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