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I: General Considerations

NOTE: Unless otherwise noted, all experiments were performed under an argon inert
atmosphere using standard Schlenk line, high-vacuum line, or glovebox techniques. Transfer
hydrogenation catalysis by many pincer-Ir complexes is known to be inhibited by N2.!

Materials:

Solvents for routine syntheses (pentane, toluene, diethyl ether, THF) were dried by
passage through activated alumina, degassed under vacuum by several freeze-pump-thaw
cycles, and stored over activated 4 A molecular sieves under an inert atmosphere. n-Heptane
for use in catalytic reactions (HPLC grade, >99%, Sigma-Aldrich) was pre-dried by stirring
~400 mL over CaHz (~10 g) for at least 48 hours. The solvent was then vacuum transferred
onto “titanocene”? (~1 g) and stirred overnight; the solution remained black-green
throughout. The n-heptane was collected from this titanocene solution by a final vacuum
transfer and stored under an argon atmosphere. n-Decane for use in kinetics experiments
(anhydrous, >99%, Sigma-Aldrich) was stored over activated 4 A molecular sieves under an
argon atmosphere, and aliquots were filtered through a small column of activated alumina
immediately prior to use in making standard solutions. 1-Hexene and 1-heptene were
distilled under argon from CaH: after stirring for several days, or vacuum-transferred from
LiAlH4 after sitting for several months. Styrene (>99.9%, 10-15 ppm 4-tert-butyl catechol as
inhibitor, Sigma-Aldrich) was stored under an argon atmosphere at -35 °C, and filtered
through a small column of alumina immediately prior to use in catalytic reactions in order to
remove the inhibitor and trace water. Precatalysts 13 and 24 are known compounds, and
were prepared according to published procedures.

NMR Spectroscopy:

Spectra were acquired on a Varian Mercury 300 MHz instrument at room temperature or
elevated temperature with a relaxation delay time of 2 seconds. Spectra were processed in
the following way using MestReNova: automatic baseline correction, automatic phase
correction, exponential apodization along t1 of 1.00 Hz, and automatic linear correction
applied to the integrals.

GC Analysis:

Gas chromatography was performed on an Agilent 6890N instrument using a flame
ionization detector and a DB-1 capillary column (10 m length, 0.10 mm diameter, 0.40 pm
film). Runs used the following program: hold at 35 °C for 2 minutes, ramp temperature at
2 °C min! to 50 °C, hold at 50 °C for 2 minutes, ramp temperature at 100 °C min-! to 290 °C,
hold at 290 °C for 5 minutes.

Response factors for linear hydrocarbons ranging from Cs to Cig versus adamantane were
determined by the following procedure. Two standard samples were prepared containing
known amounts of ten compounds (n-pentane, 1-hexene, n-heptane, n-octane, 1-dodecene, 1-
tridecene, 1-tetradecene, 1-hexadecene, n-octadecane, and adamantane) dissolved in
dichloromethane. Analysis of these two solutions by GC generated data used to calculate
individual response factors for each compound versus adamantane using the following
formula:

ReSp. factor = ([Areaanalyte] X [mm01adamantane])/([Areaadamantane] X [mmOIanalyte])
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The following response factors were obtained:

Run 1 Run 2
n-Pentane 0.3947 0.3979
1-Hexene 0.4970 0.5158
n-Heptane 0.6250 0.6320
n-Octane 0.7215 0.7364
1-Dodecene 1.1945 1.2061
1-Tridecene 1.3309 1.3274
1-Tetradecene 1.4134 1.3967
1-Hexadecene 1.6722 1.6639
n-Octadecane 1.8343 1.8544

These data were plotted versus carbon number, giving a linear correlation in the range
analyzed (Figure S1).
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Figure S1: Linear correlation of response factors versus carbon number.

The equation of the line was used to determine response factors for all of the non-

aromatic hydrocarbons analyzed (the branching in the Ci2-C14 dimers generated in catalytic
reactions is assumed to have negligible effect on the response).
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Ce 0.5121

Ci2 1.1919
C13 1.3052
C14 1.4185

The response factor for styrene versus adamantane was determined independently from
two separate runs, giving an average value of 0.8025. The response factor for the styrene
dimer versus adamantane was taken as twice this value (1.605), and that of the styrene-
heptane cross-products was assumed to be 1.5.

GC/MS analysis was performed on an HP Model 6890N instrument using an HP5-1 column
(30 m length, 25 mm diameter, 0.40 pum film) and an HP 5973 mass-selective EI detector.
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II: Mechanistic Analysis

Procedure for Monitoring Dimerization of 1-Hexene over Five Half Lives

(Figure 3, main text):

Precatalyst 1 (6.6 mg, 0.016 mmol) was dissolved in 2 mL of a standard solution of 1-hexene
(240.8 mM) and adamantane (25.4 mM) in n-heptane in a 4 mL screw-top vial. The vial
sealed with a Teflon-lined screw cap. The mixture was heated briefly with a heat gun to
dissolve the precatalyst and ensure a homogeneous solution. The solution was then split into
ten aliquots of 0.2 mL each in ten separate 4 mL vials containing stir bars. These vials were
sealed and stirred at 100 °C in an aluminum block heater (except for one vial representing
to). At specified time intervals, vials were removed from the heat block, immersed in a dry-
ice/acetone bath to rapidly cool the contents, and then diluted with dichloromethane to
quench the reaction. These solutions were passed through a short plug of silica gel into a GC
autosampler vial, and analyzed by GC. This procedure was repeated three times to generate
the time profile shown in Figure 3 (main text) and Figure S3.
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Figure S3. Time course plot of the dimerization of 1-hexene by 1 (overlay of three runs).
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Procedure for Determining Initial Rates of 1-Hexene Dimerization

Precatalyst 1 (10.0 mg, 0.0240 mmol) was dissolved in 3 mL of a standard solution of 1-
hexene (248, 252, 412, 699, 1010, 2000, or 4000 mM) and adamantane internal standard
(~25 mM) in n-decane in a 4 mL screw-top vial. The vial was sealed with a Teflon-lined
screw cap. The mixture was heated briefly with a heat gun and stirred vigorously to dissolve
the precatalyst and ensure a homogeneous solution. The solution was then split into fifteen
aliquots of 0.2 mL each in fifteen separate 4 mL vials containing stir bars. These vials were
sealed and stirred at 80, 90, 100, 110, or 125 °C in an aluminum block heater. At specified
time intervals, (1, 2, 3, or 4 minutes) vials were removed from the heat block, immersed in a
dry-ice/acetone bath to rapidly cool the contents, and then diluted with dichloromethane to
quench the reaction. These solutions were passed through a short plug of silica gel into a GC
autosampler vial, and analyzed by GC.

Data for each time point was collected from 3 or 4 different vials, giving 12-15 data points for
each initial rate determination. The concentrations of both major and minor product isomers
were plotted versus time, and the kobs values calculated by linear regression analysis (Table
S1, Figures S4, S6, S8, S10, and S12). These data were used to generate double reciprocal
plots for each product isomer at each temperature (Figures S5, S7, S9, S11, and S13). These
plots were subject to linear regression analysis to generate slope/intercept values, which
were used to calculate k1, Keq, and k2Keq” according to equations 2-9 in the main text.
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Alkene Dimerization Kinetic Data

Table S1: Initial rate data (numbers in parentheses are
standard errors determined from regression analysis).
Entry Temp. [1-Hexene]o kobs Major kobs Minor

(°C) (mM) (105Ms1) (105Mst)
1 80 248 3.06(8) 0.73(3)
2 80 412 4.85(10) 1.19(3)
3 80 699 6.76(12) 1.59(4)
4 80 1010 7.28(25) 1.77(7)
5 80 2000 10.76(44) 2.54(13)
6 80 4000 12.42(55) 2.93(14)
7 90 248 4.35(10) 1.23(4)
8 90 412 7.52(15) 2.16(6)
9 90 699 10.21(21) 2.87(7)
10 90 1010 14.74(29) 4.10(8)
11 90 2000 18.58(58) 5.11(19)
12 90 4000 26.70(58) 7.44(17)
13 100 248 5.87(10) 1.85(4)
14 100 252 6.03(12) 2.00(5)
15 100 412 9.53(27) 2.98(10)
16 100 699 16.73(41) 5.56(15)
17 100 1010 21.37(52) 6.77(19)
18 100 2000 37.2(11) 12.24(38)
19 100 4000 42.9(14) 13.76(48)
20 110 248 6.66(18) 2.42(7)
21 110 412 10.75(22) 3.83(9)
22 110 699 18.22(35) 6.52(13)
23 110 1010 28.37(48)  10.17(19)
24 110 2000 41.7(13) 14.79(45)
25 110 4000 66.6(18) 23.78(71)
26 125 248 8.34(22) 3.62(11)
27 125 412 14.01(33) 6.08(14)
28 125 699 24.65(76)  10.84(32)
29 125 1010 33.4(16) 14.32(65)
30 125 2000 64.3(34) 28.3(16)
31 125 4000 102.1(64) 43.0(30)
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Figure S4. Initial rate measurements for 1-hexene dimerization at 80 °C.
Top: Major isomer product. Bottom: Minor isomer product.
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Figure S6. Initial rate measurements for 1-hexene dimerization at 90 °C.
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Figure S8. Initial rate measurements for 1-hexene dimerization at 100 °C.
Top: Major isomer product. Bottom: Minor isomer product.
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Figure S12. Initial rate measurements for 1-hexene dimerization at 125 °C.
Top: Major isomer product. Bottom: Minor isomer product.
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Kinetic Fitting using DynaFit

The full time course data represented in Figure 3 (main text) and Figure S3 was fitted
according to the mechanistic model from Scheme 2 (main text), as well as terms for alkene
isomerization to cis- and trans-2-hexene, using the freeware kinetics program DynaFit.>
Values for the rate and equilibrium constants ki, Keq, and k2Keq" determined at 100 °C were
used. All equilibria were assumed to be rapid. The values of Kot and Kotf were set at different
values (Kott = Kot = 1, 2.5, 5, 10, and 15) and the quality of the fit determined by inspection
(see Figures S14-18). Clearly, intermediate values of Kot = Kof = 2.5-5 gave the best
correlation. Refining Kot and Koff' gave values of 4.4(6) and 2.8(9) respectively (Figure S19).
Second order rate constants for alkene isomerization were determined by fitting according
to the equation:

Cp*TaClz(1-alkene) + 1-alkene — Cp*TaClz(1-alkene) + 2-alkene (notan elementary step)

These values are 3.6(2) x 103 M1 s'1 and 1.8(2) x 103 M1 s-1 for the formation of cis- and
trans-2-hexene respectively. Presumably this isomerization occurs via a m-allylic-type
mechanism,® since the major catalyst resting state is the [Ta](1-alkene) complex, rather than
an insertion/B-hydride elimination mechanism;® however, due to the low degree of
isomerization observed, the mechanism of this side-reaction was not experimentally tested.

MODEL ESTIMATE :

1
2
;
S

18668
time (=)

Figure S14. Data fit for dimerization of 1-hexene by 1 with Kofr = Koff = 1 (data from Fig. S3).
Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3 (blue): C12 minor; 4 (pink): cis-2-
hexene; 5 (red): trans-2-hexene.
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AND MODEL :
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Figure S15. Data fit for dimerization of 1-hexene by 1 with Kot = Ko’ = 2.5 (data from Fig.
S3). Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3 (blue): C12 minor; 4 (pink): cis-2-
hexene; 5 (red): trans-2-hexene.

DATA AND MODEL :
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Figure S16. Data fit for dimerization of 1-hexene by 1 with Koff = Koff = 5 (data from Fig. S3).
Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3 (blue): C12 minor; 4 (pink): cis-2-
hexene; 5 (red): trans-2-hexene.
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AND MODEL :

186608
time (=

Figure S17. Data fit for dimerization of 1-hexene by 1 with Koff = Koff = 10 (data from Fig. S3).
Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3 (blue): C12 minor; 4 (pink): cis-2-
hexene; 5 (red): trans-2-hexene.

DATA AND MODEL :
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Figure S18. Data fit for dimerization of 1-hexene by 1 with Koff = Koff = 15 (data from Fig. S3).
Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3 (blue): C12 minor; 4 (pink): cis-2-
hexene; 5 (red): trans-2-hexene.
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DATA AND MODEL :

1
2
4
S

Figure S19. Data fit for dimerization of 1-hexene by 1 with Ko and Koff' refined to 4.4(6) and
2.8(9) respectively (data from Fig. S3). Legend: 1 (yellow): 1-hexene; 2 (green): C12 major; 3
(blue): C12 minor; 4 (pink): cis-2-hexene; 5 (red): trans-2-hexene.

Estimation of K.q by 'H NMR Spectroscopy
The equilibrium between Cp*TaClz(1-hexene) and Cp*TaCl;(metallacycle) was observed by
variable temperature 'H NMR spectroscopy (300 MHz, CsDe). Standard solutions of
precatalyst 2 (solution A: 41.3 mg, 0.0995 mmol; solution B: 41.8 mg, 0.101 mmol) and 1-
hexene (solution A: 170.1 mg, 2.02 mmol; solution B: 343.3 mg, 4.08 mmol) in CsDe (2.00 mL
total solution volume) were prepared and split into four aliquots of ~0.5 mL each. These
aliquots were transferred to J. Young NMR tubes.
Concentrations: Solution A: [Ta] = 49.8 mmol; [1-hexene] = 1.01 M

Solution B: [Ta] = 50.5 mmol; [1-hexene] = 2.04 M
The singlet corresponding to the methyl protons of the Cp* ligand are diagnostic for
Cp*TaClz(alkene) (~1.6-1.7 ppm) and Cp*TaClz(metallacycle) (~1.8-1.9 ppm) based on
reference spectra for precatalyst 1 (alkene complex, 1.58 ppm, 22 °C) and 1 treated with a
large excess of 1-hexene (metallacycle, 1.81 ppm, 22 °C).
Spectra of the 1/1-hexene mixtures were acquired at 72, 82, and 93 °C (calibrated using neat
ethylene glycol standard). Because the amount of 1-hexene bound to Ta is negligible relative
to the total amount of 1-hexene, Keq can be estimated by the following equation:

Keq = Area(metallacycle) / Area(alkene complex) / [1-hexene]
Unfortunately, at these temperatures catalysis is rapid enough that the concentration of 1-
hexene changes during the course of temperature equilibration and sample shimming. As a

result, the observed concentration of 1-hexene was estimated by determining the %
conversion of 1-hexene to C12 product from the peak areas of the signals for the =CH> groups.
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Table S2: K.q data obtained by VT NMR spectroscopy

Entry Temp. [1-Hexene]  Ametallacycle/ Keq
(°C)2 (M)b Aalkene complex (M)

1 72 1.96 (2.04) 5.26 2.68
2 72 1.92 (2.04) 4.55 2.37
3 72 0.94 (1.02) 2.27 2.43
4 72 0.92 (1.02) 2.00 2.19
5 82 1.83 (2.04) 1.85 1.01
6 82 1.69 (2.04) 1.59 0.94
7 82 1.61 (2.04) 1.41 0.88
8 82 0.78 (1.02) 0.68 0.88
9 93 1.57 (2.04) 0.82 0.52
10 93 1.38 (2.04) 0.58 0.42
11 93 0.81 (1.02) 0.47 0.58
12 93 0.74 (1.02) 0.35 0.47

a +/-1°C.PNumbers in parentheses are [1-hexene]o
Averaging the obtained data gives estimated Keq values of 2.4(3) (72 °C), 0.93(8) (82 °C), and
0.50(8) (93 °C); these are in excellent agreement with the values obtained at 80 °C (1.00) and
90 °C (0.49) from the kinetic data described in the main text.

Representative 1H NMR spectra:
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Figure S20. 'H NMR spectrum of precatalyst 1 at 22 °C.

S22



w -
~ ©
~ -
| |
|
Ta-.
cr C4Hog
Cl C4H 9
| |

| | |

| | L

| l h | ‘ ) 4

[ | S | S | V. NP i S
75 70 &5 60 55 50 45 40 35 30 25 20 15 10 05
f1 (ppm)

Figure $21.'H NMR spectrum of precatalyst 1 + excess 1-hexene at 22 °C.

© o —~
= © N
~ — -
| (I
)
|
J
|
_-‘ I
Tl
a.
CIv ! CqHg
of CaHg
NN \
|
\ I CaHo
w I‘, ;ﬁ)k/v { o
| |‘ u b
Bl Bl L.;_‘ o o ) __)‘ W L LN
T
w0 © o
a & 3
m o -
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1(ppm)

Figure S22. 1H NMR spectrum of precatalyst 1 + excess 1-hexene (2.04 M initial) at 72 °C.
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Figure $23. 'H NMR spectrum of precatalyst 1 + excess 1-hexene (2.04 M initial) at 82 °C.
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Figure S24. 'H NMR spectrum of precatalyst 1 + excess 1-hexene (2.04 M initial) at 93 °C.
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Procedure for Determining Initial Rates of 1-Hexene/n-Decane Transfer
Hydrogenation

Precatalyst 2 (8.8 mg, 0.0150 mmol) was dissolved in 3 mL of a standard solution of 1-
hexene (248, 412, 699, or 1010 mM) and adamantane internal standard (~25 mM) in n-
decane in a 4 mL screw-top vial. The solution was stirred to dissolve the precatalyst and
ensure a homogeneous solution. The solution was then split into fifteen aliquots of 0.2 mL
each in fifteen separate 4 mL vials containing stir bars. These vials were sealed and stirred at
either 100 or 125 °C in an aluminum block heater. At specified time intervals, (10, 20, 30, or
40 minutes) vials were removed from the heat block, immersed in a dry-ice/acetone bath to
rapidly cool the contents, and then diluted with dichloromethane to quench the reaction.
These solutions were passed through a short plug of silica gel into a GC autosampler vial, and
analyzed by GC.

Data for each time point was collected from 3 or 4 different vials, giving 12-15 data points for
each initial rate determination. The concentrations of n-hexane and the 2-hexenes
(combined) were plotted versus time, and the kops values calculated by linear regression
analysis (Figures S25-S26). These rate data were then plotted versus [1-hexene]o (Figure
S27).
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Figure S25. Initial rate measurements for 1-hexene/n-decane transfer hydrogenation at 100
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III: Full Table of Temperature/Concentration Effects on 1-Hexene/
n-Heptane Coupling

Table S3. Expanded version of Table 4 (main text)

Observed products

12 Eg mm; AN C122 R=R'= H-C4Hg
m Cy3: R=n-C4Hg, R' = n-CsHy; or
S T e e\ 518 hours P R - + R 4/_/(,4. R = n-CgHy1, R' = n-C4Hg
solvent SN Cia: R =R' = n-CsHyy
Entry [1-Hexene]o Temp. n-Hexane t-2-Hexene + Ci2 Ci3/ Ce Mass TON TON Coop.
mMa? °C mM (%) c-2-Hexene mM (%) Cis Balance 1c 2¢ (%)
(Final Conc.) mM (%) mM (%) mMP
la 250 100 50.2 19.3 81.3 12.6 (10.3) / 245.2 13 (3) 10 (6) 63.5
(0.4) (20.5) (7.7) (66.3) 9.6 (7.8)
1b 250 100 54.7 16.0 78.6 13.8 (11.4) / 242.5 13 (3) 11 (7) 61.7
0.7) (22.6) (6.4) (64.9) 10.0 (8.2)
1c 250 100 51.9 15.6 81.7 12.6 (10.3) / 2444 13 (3) 10 (6) 62.4
(0.9) (21.2) (6.2) (66.9) 9.9(8.1)
2a 500 100 88.2 11.0 192.7 14.5(5.8) / 499.0 27 (3) 18 (7) 40.7
(~0) (17.7) (2.2) (77.2) 10.7 (4.3)
2b 500 100 87.1 11.1 193.7 14.8 (5.9) / 500.3 27 (3) 17 (7) 39.4
(~0) (17.4) (2.2) (77.4) 9.7 (3.9)
3a 1000 100 86.3 27.0 432.8 18.7 (3.7) / 1000.9 58 (4) 17 (8) 45.3
(34) (8.6) (2.7) (86.5) 10.2 (2.0)
3b 1000 100 87.2 28.5 431.1 18.8(3.8) / 1002.0 58 (4) 17 (8) 45.0
(34) (8.7) (2.8) (86.2) 10.2 (2.0)
4a 250 125 108.4 10.8 57.7 15.4 (12.3) / 250.9 11 (4) 22 (8) 38.2
(0.8) (43.2) (4.3) (46.0) 13.0 (10.3)
4b 250 125 103.3 11.5 59.1 15.2 (12.2) / 248.7 11 (4) 21(8) 39.9
0.7) (41.5) (4.6) (47.5) 13.0 (10.4)
5a 500 125 145.0 18.1 160.1 23.9(9.4)/ 507.3 25(5) 29(11) 36.4
(0.8) (28.6) (3.6) (63.1) 14.4 (5.7)
5b 500 125 135.4 17.3 163.8 23.3(9.3)/ 503.6 25(5) 27(10) 38.1
0.7) (26.9) (3.4) (65.0) 14.1 (5.6)
6a 960 125 157.3 38.5 362.7 32.0(6.7) / 953.2 51(6) 31(12) 39.1
(~0) (16.5) (4.0) (76.1) 14.8 (3.1)
6b 1040 125 164.5 40.0 408.6 32.2(6.1)/ 1054.0 57(6) 33(12) 35.9
(~0) (15.6) (3.8) (77.5) 13.4 (2.5)
7ac 250 150 145.6 14.6 374 11.9(9.6) / 247.4 8(3) 29 (7) 24.3
(0.6) (58.8) (5.9) (30.2) 11.7 (9.5)
7be 250 150 147.3 15.1 40.3 11.3(8.9)/ 254.3 8(3) 29 (7) 24.5
(~0) (57.9) (14.8) (31.7) 12.4 (9.8)
8ae 500 150 198.6 42.0 118.2 243(09.7)/ 501.4 20(5) 40(11) 26.5
(~0) (39.6) (8.4) (47.2) 14.2 (5.6)
8be 500 150 193.6 36.0 122.4 219 (8.8)/ 498.6 20(4) 39(10) 25.4
(2.3) (38.8) (7.2) 49.1) 13.6 (5.5)
et 1000 150 295.6 97.8 276.2 41.8 (8.4)/ 993.7 42(7) 59(14) 24.4
(6.2) (29.7) (9.8) (55.6) 15.2 (3.1)

aDetermined from concentration of standard solution.b[1-hexene] + [n-hexane] + [t-2-hexene] + [c-2-hexene] + 2[C12] + [C13]
¢TONSs in parentheses are for production of C13/C14. 4See Ref. 17 in the main text. eReactions performed in thick-walled glass
pressure tubes with screw-down Teflon plugs sealed with an O-ring. The tubes were immersed in a 150 °C oil bath up to the
bottom of the plug. fRepeat attempts of this reaction resulted in O-ring seal failure and evaporation of the contents;
therefore, only one run was performed.
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IV: Styrene/n-Heptane Coupling Reactions

Procedure for Styrene Dimerization using 1 (Equation 12, main text)

Precatalyst 1 (10.4 mg, 0.025 mmol), styrene (53.5 mg, 0.514 mmol), and mesitylene
(internal standard, 10.8 mg, 0.0898 mmol) were dissolved in CsD¢ (1 mL). This solution was
then transferred into two ]. Young NMR tubes. Initial 1H NMR spectra were recorded (Figure
S29), and then the tubes were heated to 110 °C in an oil bath. After set time intervals, the
tubes were removed from the oil baths and new spectra acquired, until ~95% conversion
was reached (72 h, Figure S30). NMR yields were determined in the following manner: The
area of the signal for the three aromatic protons of the mesitylene internal standard (~6.75
ppm) was set at 25.00. The areas of the peaks for the two terminal alkene protons of styrene
were determined in the initial spectra, as well as the areas of the two peaks for the vinylidene
protons of the major product’ at 72 hours. The ratios of these values were determined, giving
four measurements of the yield. These values were averaged for each run, and then these two
values were averaged again to give a final NMR yield of ~88%. The peaks for the minor
regioisomer® (d, 3H, 1.23 ppm, CH3; m, 1H, 3.25 ppm, -CH(CH3)Ph) were also integrated in
the 72 h spectra, giving an average NMR yield of ~2%.

NMR yields: Run 1: 82.8%; 89.3%; 85.6%; 92.3%. Average: 87.5% (Minor isomer: 2.3%)
Run 2: 84.4%; 86.3%; 90.9%; 92.9%. Average: 88.6% (Minor isomer: 2.3%)

Once NMR yields were established, the two samples were combined and diluted with
dichloromethane to a total volume of ~4 mL. Adamantane (16.2 mg, GC standard) was added,
and the mixture analyzed by GC (Figure S28). The yield of both major and minor styrene
dimers was determined to be 81% (major) and 2% (minor).
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Figure S28: GC trace of styrene (500 mM) dirﬁerization by 1 (25 mM), 110 °C, 72 h.
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Procedure for Monitoring Dimerization of Styrene over Four Half Lives

(Figure 8, main text):

Precatalyst 1 (6.6 mg, 0.016 mmol), styrene (53.0 mg, 0.509 mmol), and 1,3,5-
trimethoxybenzene (internal standard, 1.6 mg) were dissolved in CsDes (2 mL). This solution
was then split evenly into four ]J. Young NMR tubes. Initial 'TH NMR spectra were recorded,
and then the tubes were heated to either 100 °C (two tubes) or 125 °C (two tubes) in an oil
bath. After set time intervals, the tubes were removed from the oil baths and new spectra
acquired, until ~4 half lives had passed. The three aromatic protons of the 1,3,5-
trimethoxybenzene internal standard (~6.25 ppm) were integrated versus the terminal
vinylic proton of styrene that is cis relative to the phenyl group (~5.6 ppm), with the former
area set at 25.00. The concentration of styrene at each time point was determined by the
following formula:

[Styrene] = [Styrene]o x (I/]o) [Styrene]o = 0.255 M
[ = area of vinylic signal @ 5.6 ppm
lo = initial area of vinylic signal @ 5.6 ppm
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Figure S31: 'H NMR spectrum of the dimerization of styrene with 1 (t = 0 h, initial, 300 MHz,
CeDs).
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Figure S32: 1H NMR spectrum of the dimerization of styrene with 1 (t = 42 h, ~50%, 300
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Figure S33: IH NMR spectrum of the dimerization of styrene with 1 (t = 160 h, final point,
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Figure S34: Stack plot of TH NMR spectra (2.5-6.7 ppm, 300 MHz, C¢D¢) for styrene
dimerization catalyzed by 1 at 100 °C. Nineteen spectra were taken at the following time
points: 0, 1, 2, 4,7, 10, 18, 24, 32, 42, 52, 64, 72, 88, 97, 109, 119, 134, and 160 hours (t=0h
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Initial Rates of Styrene/1-Heptene Coupling using 1:

Precatalyst 1 (10.1 mg, 0.0243 mmol), styrene (97.7 mg, 0.938 mmol), 1-heptene (76.0 mg,
0.774 mmol), and adamantane (internal standard, 12.0 mg, 0.088 mmol) were dissolved in
2.8 mL of n-decane in a 4 mL screw-top vial containing a Teflon-coated stir bar. The vial was
sealed with a Teflon-lined screw cap and the contents stirred vigorously to ensure complete
dissolution of 1. The solution was then split into fifteen aliquots of 0.2 mL each in fifteen
separate 4 mL vials containing stir bars. These vials were sealed and stirred at 100 °C in an
aluminum block heater. At specified time intervals, (1, 2, 3, or 4 minutes) vials were removed
from the heat block, immersed in a dry-ice/acetone bath to rapidly cool the contents, and
then diluted with dichloromethane to quench the reaction. These solutions were passed
through a short plug of silica gel into a GC autosampler vial, and analyzed by GC.

Data for each time point was collected from 3 different vials, giving 12 data points for each
initial rate determination. The concentrations of the 1-heptene dimers (both regioisomers
combined), and the cross-products (all isomers combined) were plotted versus time, and the
kovs values calculated by linear regression analysis (Figure S37). In order to normalize for the
different concentrations of 1-heptene and styrene used, the initial rate for styrene
dimerization was multiplied by a factor of 0.825 (the ratio of [1-heptene]o/[styrene]o), giving
an initial rate ratio of 4.05:1 for 1-heptene dimerization versus styrene/1-heptene coupling.
Styrene dimers were not observed under these conditions.
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Figure S37. Initial rates of styrene/1-heptene coupling with 1.
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Procedure for Styrene/1-Heptene Coupling using 1 (Equation 13, main text):
Precatalyst 1 (20.4 mg, 0.050 mmol), styrene (52.1 mg, 0.500 mmol), 1-heptene
0.499 mmol), and adamantane (internal standard, 10.2 mg, 0.075 mmol) were diss

(49.0 mg,
olved in 2

mL of n-heptane in a 4 mL screw-top vial containing a Teflon-coated stir bar. The vial was
sealed with a Teflon-lined screw cap and the contents stirred at 100 °C in an aluminum block

heater. After 18 hours, the vial was removed, and the contents diluted with dichlor
to a total volume of ~4 mL. This solution was passed through a short plug of silica
analysis by GC and GC/MS (Figures S38 and S39-544).
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Figure S38: GC trace of the coupling of styrene (250 mM) and 1-heptene (250 mM) with 1
(25 mM) to produce cross-products. The C14 products (1-heptene dimers) are assigned based
on previous work;? the cross-products are assigned based on GC/MS and comparison to
authentic samples of three of the proposed compounds (vide infra). The styrene/1-nonane
cross-product (peak at 11.102 min) is assigned based on GC/MS, and its regiochemistry by
analogy to the major isomer of the styrene/1-heptene cross-products. The 1-nonane is

presumably generated from coupling 1-heptene and ethylene (from 1).
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Figure S39: GC/MS trace of the coupllng of styrene (250 mM) and 1-heptene (250 mM) with
1 (25 mM) to produce cross-products. Mass spectrum corresponds to indicated peak.
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Figure S42: GC/MS trace of the coupling of styrene (250 mM) and 1-heptene (250 mM) with
1 (25 mM) to produce cross-products. Mass spectrum corresponds to indicated peak.
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Figure $S43: GC/MS trace of the coupling of styrene (250 mM) and 1-heptene (250 mM) with
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Synthesis of Authentic Cross-Products:

Ph
\HLCsHﬂ

This compound was prepared by Ni-catalyzed coupling of 1-heptene and styrene according
to a published procedure.8 Briefly: Under an N2 atmosphere, Ni[COD]2 (27.5 mg, 0.10 mmol)
and 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IPr, 38.9 mg, 0.10
mmol) were dissolved in toluene (4 mL) in a reaction tube and stirred for ~1 hour. An
aliquot of 1-heptene (~28 pL) was added, followed by the addition of triethylamine (60.7 mg,
0.60 mmol), p-anisaldehyde (13.6 mg, 0.10 mmol), and TESOTf (52.9 mg, 0.20 mmol). The
solution was stirred for ~15 minutes. Finally, styrene (208.3 mg, 2.00 mmol) and 1-heptene
(589.1 mg, 6.00 mmol) were added, and the solution was stirred for ~24 hours at room
temperature under N»2. The contents were then exposed to air and diluted with hexanes (~10
mL). The mixture was filtered through a short silica plug, followed by elution of the solid
with 20% EtOAc in hexanes (~25 mL). The solvent was evaporated, and the residue
dissolved in dichloromethane. The product solution was analyzed by GC and GC/MS (Figures
S45 and S46-S48). The regiochemistry of the major cross-product was definitively
established by the original authors, as was the regiochemistry of styrene homodimerization.8
This cross-product solution was co-injected with the cross-product mixture generated by 1
(Figure S49).
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Figure S45: GC trace of the nickel-catalyzed coupling of styrene and 1-heptene to generate
the major product shown. The 1-heptene dimers and styrene dimer are assigned based on
GC/MS (vide infra). The regiochemistry of the styrene dimer was established previously for
this Ni-catalyst.8
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Figure S49: Top: Reproduction of Figure S45 (bottom). Middle

: Reproduction of Figure S38

(bottom). Bottom: GC trace of the co-injection of styrene/1-heptene coupling reactions
effected by 1 and the in situ generated Ni-catalyst. The peaks marked with “Ta” are from the
tantalum-catalyzed reaction, and those marked with “Ni” are from the nickel-catalyzed
reaction. The red arrow highlights that the cross-product peak at 10.29 min (middle trace)

corresponds to the 2-phenyl-3-methylene-octane product.
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2-(Phenethyl)-hex-1-ene

Ph CeHyq
This compound was prepared from 1-phenyl-octan-3-onel® via Wittig olefination. Briefly,
methyltriphenylphosphonium bromide (2.62 g, 7.34 mmol) was added as a solid portionwise
over a period of ~1 hour to a stirring solution of n-butyllithium (7.34 mmol) in
hexanes/diethyl ether (4.6/10 mL). 1-Phenyl-octan-3-one (1.50 g, 10.0 mmol) in diethyl
ether (10 mL) was added via syringe. The mixture was heated to reflux for ~3 hours, and
then stirred at room temperature overnight. The suspension was filtered, and the solid
washed with diethyl ether. The organic phase was washed with water, and then dried over
NazS04. The solvent was removed. The resulting residue was extracted with hexanes and
filtered to remove the remaining triphenylphosphine oxide. The crude alkene was purified by
flash chromatography on silica gel with hexanes as the eluent. The solvent was removed to
give 0.82 g (55% yield) of 2-(phenethyl)-hex-1-ene. 1H NMR (300 MHz, CDCI3) 6 7.35 (2H, m,
2x Ar-H), 7.26 (3H, m, 3x Ar-H), 4.83 (2H, s, C=CH>), 2.82 (2H, m, -CH>-), 2.39 (2H, m, -CH>-),
2.13 (2H, m, -CH>-), 1.52 (2H, m, -CH-), 1.37 (4H, m, -CHz-), 0.93 (3H, t, ] = 6 Hz, -CH3). 13C
NMR (300 MHz, CDCI3) & 149.5, 142.4,128.4, 128.3, 125.8, 109.05, 37.9, 36.4, 34.5, 31.7, 27.6,
22.7,14.1. MS (EI) 202.3 (M*).
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Figure S50: 'H NMR spectrum of 2-(phenethyl)-hex-1-ene (300 MHz, CDCl3).
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Figure S51: 13C NMR spectrum of of 2-(phenethyl)-hex-1-ene (300 MHz, CDCl3).
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Figure S53: GC/MS trace of 2-(phenethyl)-hex-1-ene (MS for indicated peak). Compare to
fragmentation pattern in Figures S39 and S47.
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Figure S55: Top: Reproduction of Figure S52 (bottom). Middle: Reproduction of Figure S38
(bottom). Bottom: GC trace of the co-injection of styrene/1-heptene coupling effected by 1
and authentic 2-(phenethyl)-hex-1-ene. The increase in intensity of the peak at ~10.57 min
clearly shows that the major product of styrene/1-heptene coupling effected by 1 is 2-
(phenethyl)-hex-1-ene.
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2-Phenyl-non-1-ene

CgHy1 Ph

This known compound was prepared from octanophenone (Sigma-Aldrich) via Wittig
olefination according to a literature procedure.!l Briefly, methyltriphenylphosphonium
bromide (3.57 g, 10.0 mmol) was added as a solid portionwise over a period of ~1 hour to a
stirring solution of n-butyllithium (10.0 mmol) in hexanes/diethyl ether (6.25/10 mL).
Octanophenone (2.04 g, 2.20 mL, 10.0 mmol) in diethyl ether (10 mL) was added via cannula.
The mixture was heated to reflux for ~3 hours, and then stirred at room temperature
overnight. The suspension was filtered, and the solid washed with diethyl ether. The organic
phase was washed with water, and then dried over Na;S04. The solvent was removed. The
resulting residue was extracted with hexanes and filtered through a short plug of silica gel to
remove the remaining triphenylphosphine oxide. The solvent was removed, and the crude
product was purified by flash chromatography on silica gel with hexanes eluent to give 1.10 g
(54% yield) of the desired alkene.
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Figure $56: TH NMR spectrum of 2-phenyl-non-1-ene (300 MHz, CDCls).
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Figure S57: GC trace of 2-phenyl-non-1-ene.
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Figure S58: GC/MS trace of 2-phenyl-non-1-ene. Compare fragmentation pattern to that in
Figure S42.
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Figure S59: Top: Reproduction of Figure S57 (bottom). Middle: Reproduction of Figure S38
(bottom). Bottom: GC trace of the co-injection of styrene/1-heptene coupling effected by 1
and authentic 2-phenyl-non-1-ene. The doubling of the peak at ~10.57 min clearly shows
that the major product of styrene/1-heptene coupling effected by 1 is not 2-phenyl-non-1-
ene.
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Procedure for Styrene/n-Heptane Coupling

NOTE: This is a representative procedure, corresponding to Entry 7a in Table S3 (vide infra).
1 (3.3 mg, 0.0080 mmol) and 2 (8.8 mg, 0.015 mmol) were dissolved in 1 mL of a standard
solution of styrene (250 mM) and adamantane (25.3 mM) in n-heptane in a 4 mL screw top
vial containing a Teflon-coated stir bar. The vial was sealed with a Teflon-lined screw cap.
The mixture was heated with stirring at 100 °C in an aluminum block heater for 18 hours.
Upon completion, the vial was removed from the heat block, cooled to room temperature,
and then diluted with dichloromethane. This solution was passed through a short plug of
silica gel into a GC autosampler vial, and analyzed by GC (Figure S46).
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Figure S60. GC trace of styrene/n- heptane couphng, correspondlng to Entry 7a, Table S4.
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Full Table of Results for Styrene/n-Heptane Coupling

Table S4. Expanded version of Table 5 (main text)

1and 2 /\)L
R NN, —/———— S /\)L CsHyq /\)L
PR * Ph * Ph Ph TP C)SH” * CsHir ¥ CgHy; CsH1y

solvent EB (+ isomers
s,_;},-',':;,e Cross-Products Cu

Entry [Styrene]o [1]1/[2] Time Temp. % EB Styrene Cross- Cis TON TON Coop.

mM? mM h °C Conv. mM Dimer products mM 1b 2b %¢
(Final Conc.) (%) mM (%) mM (%) (%)

1z 250 8/5 18 100 60.7 71.1 23.1 233 10.8 7 (4) 14 (9) 63.1
(91.2) (28.4) (18.5) (18.7) (8.6)

1b 250 8/5 18 100 58.8 65.6 239 221 9.2 7(4) 13 (8) 61.8
(95.0) (26.2) (19.1) 17.7) (7.4)

1c 250 8/5 18 100 65.1 74.0 22.8 23.9 11.7 7 (4) 15 (9) 63.9
(77.1) (29.6) (18.2) (19.1) (94)

2a 250 8/5 48 100 77.2 74.8 34.3 28.7 12.8 9(5) 15 (11) 72.6
(50.9) (29.9) (27.4) (23.0) (10.2)

2b 250 8/5 48 100 72.4 66.3 36.0 26.9 10.3 9(5) 13 (9) 71.6
(62.9) (26.5) (28.8) (21.5) (8.2)

3a 250 5/8 18 100 81.4 138.3 10.6 271 284 13 (11) 17 (10) 60.7
(42.5) (55.3) (8.4) (21.6) (22.8)

3b 250 5/8 18 100 75.3 126.2 10.5 26.2 241 12 (10) 16 (9) 58.9
(56.9) (50.5) (8.4) (21.0) (19.3)

4a 250 5/10 18 100 88.6 161.6 7.8 25.9 34.6 14 (12) 16 (10) 58.9
(26.0) (64.6) (6.2) (20.8) (27.7)

4b 250 5/10 18 100 88.7 161.7 8.1 26.4 35.7 14 (12) 16 (10) 60.5
(25.9) (64.7) (6.5) (21.1) (28.6)

5a 250 10/10 18 100 99.0 164.4 15.6 31.7 41.1 9(7) 16 (11) 69.3
(2.2) (65.8) (12.5) (25.3) (32.9)

5b 250 10/10 18 100 98.9 162.0 17.4 30.0 42.2 9(7) 16 (11) 70.6
(2.6) (64.8) (13.9) (24.0) (33.8)

6a 250 10/15 18 100 98.8 192.0 5.8 22.8 45.3 7(7) 13 (8) 59.1
(2.7) (76.8) 4.7) (18.2) (36.3)

6b 250 10/15 18 100 98.8 191.8 6.6 24.2 45.8 8(7) 13 (8) 60.4
(2.8) (76.7) (5.3) (19.4) (36.6)

7a 250 8/15 18 100 99.2 203.5 2.2 18.0 43.5 8(8) 14 (7) 51.6
(1.8) (81.4) 1.7) (14.4) (34.8)

7b 250 8/15 18 100 99.5 199.5 4.5 20.7 443 9(8) 13 (7) 54.8
(1.1) (79.8) (3.6) (16.6) (35.4)

7c 250 8/15 18 100 99.5 200.5 4.3 20.1 43.0 8(8) 13 (7) 53.0
(1.2) (80.2) (34) (16.1) (34.4)

8a 1000 10/15 72 100 63.6 100.3 206.1 42.5 3.8 25 (5) 7(3) 49.9
(317.0) (10.3) (41.2) (8.5) (0.8)

8b 1000 10/15 72 100 70.1 97.0 252.2 41.8 3.4 30 (5) 6(3) 50.1
(273.9) 9.7) (50.4) (8.4) (0.7)

9a 250 10/15 18 125 99.0 217.9 1.9 14.4 38.0 5(5) 15 (6) 41.4
(2.5) (87.2) (1.5) (11.5) (30.4)

9b 250 10/15 18 125 98.9 211.6 2.3 14.9 38.2 6 (5) 14 (6) 43.1
(2.8) (84.6) (1.8) (11.9) (30.5)

10a 250 10/15 18 1504 >99 205.5 2.2 15.3 35.6 5(5) 14 (6) 42.1
(~0) (82.2) 1.7) (12.3) (28.5)

10b 250 10/15 18 1504 >99 212.2 1.9 13.2 35.4 5(5) 14 (6) 39.6
(~0) (84.9) (1.5) (10.6) (28.3)

aDetermined from concentration of standard solution.»TONs in parentheses are for production of tandem products. <See Ref.
17 in the main text. dReactions performed in thick-walled glass pressure tubes with screw-down Teflon plugs sealed with an
O-ring. The tubes were immersed in a 150 °C oil bath up to the bottom of the plug.
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Procedure for Monitoring Styrene /n-Heptane Coupling Reactions over Time:

NOTE: This procedure was performed in duplicate.

1 (6.6 mg, 0.016 mmol) and 2 (17.7 mg, 0.030 mmol) were dissolved in 2 mL of a standard
solution of styrene (250 mM) and adamantane (25.3 mM) in n-heptane in a 4 mL screw top
vial containing a Teflon-coated stir bar. The vial was sealed with a Teflon-lined screw cap.
The mixture was heated to 100 °C for ~30 seconds in an aluminum block heater inside an
argon-filled glovebox to dissolve the precatalysts and ensure a homogeneous solution, and
then immediately cooled to -35 °C in the freezer. An aliquot (~0.1 mL, representing to) was
removed and placed into a GC autosampler vial; this aliquot was then diluted with
dichloromethane to a total volume of ~1 mL before analysis by GC.

The reaction mixture was heated to 100 °C in the aluminum block heater, and at specified
times (1, 2, 3,4, 5, 6,7, 8,10, 12, and 18 hours) the vial was removed and cooled to -35 °C in
the freezer before taking an aliquot for analysis by GC. The concentrations of all major
species were then plotted versus time to give time course profiles of the tandem reaction
(Figure S61).
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Figure S61: Plots of reaction progress over time for entries 7b and 7c in Table S4. Top:
Overlay of both data sets. Bottom: Expansion of product concentration range. Lines are
drawn as visual guides.
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Procedure for Monitoring Styrene/n-Heptane Transfer Hydrogenation over Time:
NOTE: This procedure was performed in duplicate.

2 (17.7 mg, 0.030 mmol) was dissolved in 2 mL of a standard solution of styrene (250 mM)
and adamantane (25.3 mM) in n-heptane in a 4 mL screw top vial containing a Teflon-coated
stir bar. The vial was sealed with a Teflon-lined screw cap. The mixture was heated to 100 °C
for ~30 seconds in an aluminum block heater inside an argon-filled glovebox to dissolve the
precatalysts and ensure a homogeneous solution, and then immediately cooled to -35 °C in
the freezer. An aliquot (~0.1 mL, representing to) was removed and placed into a GC
autosampler vial; this aliquot was then diluted with dichloromethane to a total volume of ~1
mL before analysis by GC.

The reaction mixture was heated to 100 °C in the aluminum block heater, and at specified
times (1, 2, 3,4, 5, 6,7, 8,10, 12, and 18 hours) the vial was removed and cooled to -35 °C in
the freezer before taking an aliquot for analysis by GC. The concentrations of styrene and
ethylbenzene were then plotted versus time to give time course profiles of the transfer
hydrogenation reaction. These data were overlaid on the styrene/ethylbenzene
concentrations from the tandem reaction (Figure S62).
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Figure S62: Overlay of reaction progress for runs from Entries 7b and 7c in Table S3 (filled
points), and styrene/n-heptane transfer hydrogenation catalyzed by only 2 (hollow points).
Only styrene and ethylbenzene concentrations are shown for clarity. The styrene
concentration for the tandem reactions was corrected by compensating for the amount of
styrene consumed in dimerization reactions to form either styrene dimers or styrene/n-
heptane cross-products.
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