GellMann, Murray (1962) Symmetries of baryons and mesons. Physical Review, 125 (3). pp. 10671084. ISSN 0031899X. doi:10.1103/PhysRev.125.1067. https://resolver.caltech.edu/CaltechAUTHORS:GELpr63

PDF
See Usage Policy. 3MB 
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:GELpr63
Abstract
The system of strongly interacting particles is discussed, with electromagnetism, weak interactions, and gravitation considered as perturbations. The electric current jα, the weak current Jα, and the gravitational tensor θαβ are all welldefined operators, with finite matrix elements obeying dispersion relations. To the extent that the dispersion relations for matrix elements of these operators between the vacuum and other states are highly convergent and dominated by contributions from intermediate onemeson states, we have relations like the GoldbergerTreiman formula and universality principles like that of Sakurai according to which the ρ meson is coupled approximately to the isotopic spin. Homogeneous linear dispersion relations, even without subtractions, do not suffice to fix the scale of these matrix elements; in particular, for the nonconserved currents, the renormalization factors cannot be calculated, and the universality of strength of the weak interactions is undefined. More information than just the dispersion relations must be supplied, for example, by fieldtheoretic models; we consider, in fact, the equaltime commutation relations of the various parts of j4 and J4. These nonlinear relations define an algebraic system (or a group) that underlies the structure of baryons and mesons. It is suggested that the group is in fact U(3)×U(3), exemplified by the symmetrical Sakata model. The Hamiltonian density θ44 is not completely invariant under the group; the noninvariant part transforms according to a particular representation of the group; it is possible that this information also is given correctly by the symmetrical Sakata model. Various exact relations among form factors follow from the algebraic structure. In addition, it may be worthwhile to consider the approximate situation in which the strangenesschanging vector currents are conserved and the Hamiltonian is invariant under U(3); we refer to this limiting case as "unitary symmetry." In the limit, the baryons and mesons form degenerate supermultiplets, which break up into isotopic multiplets when the symmetrybreaking term in the Hamiltonian is "turned on." The mesons are expected to form unitary singlets and octets; each octet breaks up into a triplet, a singlet, and a pair of strange doublets. The known pseudoscalar and vector mesons fit this pattern if there exists also an isotopic singlet pseudoscalar meson χ0. If we consider unitary symmetry in the abstract rather than in connection with a field theory, then we find, as an attractive alternative to the Sakata model, the scheme of Ne'eman and GellMann, which we call the "eightfold way"; the baryons N, Λ, Σ, and Ξ form an octet, like the vector and pseudoscalar meson octets, in the limit of unitary symmetry. Although the violations of unitary symmetry must be quite large, there is some hope of relating certain violations to others. As an example of the methods advocated, we present a rough calculation of the rate of K+→μ++ν in terms of that of π+→μ++ν.
Item Type:  Article  

Related URLs: 
 
Additional Information:  ©1962 The American Physical Society. Received 27 March 1961; revised 20 September 1961. It is a pleasure to thank R. P. Feynman, S. L. Glashow, and R. Block for many stimulating discussions of symmetry, and to acknowledge the great value of conversations with G. F. Chew, S. Frautschi, R. Haag, R. Schroer, and F. Zachariasen about the explanation of approximate universality in terms of highly convergent dispersion relations.  
Issue or Number:  3  
DOI:  10.1103/PhysRev.125.1067  
Record Number:  CaltechAUTHORS:GELpr63  
Persistent URL:  https://resolver.caltech.edu/CaltechAUTHORS:GELpr63  
Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided.  
ID Code:  4650  
Collection:  CaltechAUTHORS  
Deposited By:  Tony Diaz  
Deposited On:  01 Sep 2006  
Last Modified:  08 Nov 2021 20:18 
Repository Staff Only: item control page