A Caltech Library Service

Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid

Pullin, D. I. and Grimshaw, R. H. J. (1983) Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid. Physics of Fluids, 26 (4). pp. 897-905. ISSN 0031-9171. doi:10.1063/1.864239.

See Usage Policy.


Use this Persistent URL to link to this item:


The behavior of nonlinear progressive waves at the interface between two inviscid fluids in the presence of an upper free boundary is studied as a model of waves on the thermocline. A set of relationships between the integral properties of bounded waves in a general two-fluid model is first developed and the Stokes expansion to third order is derived. The exact free boundary problem for the wave profile is then formulated within the Boussinesq approximation as a nonlinear integral equation, which is solved numerically using two different numerical methods. For finite velocity difference across the two-fluid interface bifurcation of solutions into upper and lower branch wave profiles with quite different properties is obtained. Numerically calculated wave shapes and integral properties show good agreement with third-order Stokes expansion predictions in the weakly nonlinear regime for waves which are not too long. Very long waves were found to exhibit distinct solitary wave-like features.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:Copyright © 1983 American Institute of Physics (Received 4 May 1982; accepted 11 September 1982)
Subject Keywords:nonlinear problems; ideal flow; interfaces; fluids; surface waves; bound state; boundary layers; integral equations; numerical solution; shape
Issue or Number:4
Record Number:CaltechAUTHORS:PULpof83a
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4672
Deposited By: Archive Administrator
Deposited On:02 Sep 2006
Last Modified:08 Nov 2021 20:19

Repository Staff Only: item control page