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Abstract. We extend previous results obtained by Rosa (1998 Nonlinear Anal. 32 71-85) on
the existence of the global attractor for the two-dimensional Navier—-Stokes equations on some
unbounded domains. We show that if the forcing term is in the natural space H, then the global
attractor is compact not only in the L? norm but also in the H' norm, and it attracts all bounded sets
in H in the metric of V. The proof is based on the concept of asymptotic compactness and the use
of the enstrophy equation. As compared with the work of Rosa, which proved the compactness and
the attraction in the L? norm, the new difficulty comes from the fact that the nonlinear term of the
Navier—Stokes equations does not disappear from the enstrophy equation, while it does disappear
in the energy equation due to its antisymmetry property.

AMS classification scheme numbers: 76D05, 34D45, 35B41

1. Introduction

The global attractor for the two-dimensional (2D) Navier—Stokes equations was first obtained
in [L1, FT] for bounded domains. In [FT], the finite dimensionality of the attractor in the
sense of the Hausdorff dimension is also shown (see also [CF2, CFMT, T2]). For the case of
unbounded domains, [A1, Bb] worked on the problem with the forcing term being required to
be in some weighted space. However, their estimate of the dimension of the attractor in this
case was independent of the weighted norm of the forcing term, which suggested a natural
expectation of the existence of the global attractor for more general forces. For the unbounded
cases, see also [A2, BbV, FLST].

Recently, it was proved by [R] that for the 2D unbounded, non-smooth domain, provided
that the Poincaré inequality is verified, the semigroup generated by solutions of the Navier—
Stokes equations in the phase space H has a global attractor .A when the external forcing term
f isin V', the natural dual space of the theory of the Navier—Stokes equations (see the notation
given in section 2). The attractor is found to be bounded in V and compact in H, i.e. A attracts
all bounded sets in H, is a compact invariant set in H, is connected in H and is maximal for
the inclusion relation among all the functional invariant sets bounded in H. An estimate of
the dimensions of the attractor was also obtained.
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An interesting question naturally arises here, namely whether or not the semigroup
generated by solutions of the Navier—Stokes equations in the phase space V has a global
attractor A compact in V when f is in H. In this paper, we give a positive answer to this
question. We are able to show that the global attractor attracts all bounded sets in V. It is
connected in V and maximal for the inclusion relation among all the functional invariant sets
bounded in V. Due to the regularity effect, the attractor obtained here and the attractor obtained
in [R] in fact coincide (see remark 3.1). Thus the attractor is compact in V' and attracts all
bounded sets in H in the metric of V.

Note that the above result is known for the case of bounded domains if f isin H. This
can be obtained with the appropriate a priori estimate for |Au| using the time analyticity of
the solutions, which gives a bound on |u,| (see, e.g., [T2]). Thus, the only novelty here is for
the case of unbounded domains.

The requirement for the domains is such that D(A), the domain of the Stokes operator, can
be characterized as H%(€2) (] V and that the Poincaré inequality is satisfied. Hence it requires
some smoothness of the boundary of the domains, and that the domains be bounded in one
direction, e.g. the channel-like domains.

The results of [R] were obtained using an asymptotic compactness argument applied to the
energy equation. This idea was successfully implemented to some weakly damped hyperbolic
equations first by [BI] , and then by [G, W] (see also [MRW] and the references cited therein).
The concept of asymptotic compactness had already been used by [A1, A2,L2], and is implicit
in [T2], theorem I.1.1, (1.13). See also the concept of asymptotic smoothness in [Hal, Har].
[R] realized that these proofs do not make essential use of the compactness of the Sobolev
embeddings and thus can naturally be extended to equations on unbounded domains, provided
that the Poincaré inequality is verified. Here we apply the same argument to the enstrophy
equation instead of the energy equation. Note that the nonlinear term of the NSEs disappears in
the energy equation due to its antisymmetry, while the corresponding term does not disappear
in the enstrophy equation. This nonlinearity presents a new difficulty. In this paper we are
able to overcome this difficulty with a careful analysis.

The rest of the paper is organized as follows. In section 2, we first recall some notation
and preliminary results about the 2D NSEs with the no-slip boundary condition. In section 3,
we study the H'-compact global attractor and derive our main result.

2. The 2D NSEs in an unbounded domain

Suppose that @ C RY (d = 2) is an open bounded or unbounded set with the boundary 92
smooth enough such that (2.5) and (2.12) hold.

Consider the following non-stationary Navier—Stokes equations describing the flow of a
viscous incompressible fluid confined in 2:

9 49
8—?—vAu+;u,~a—Z+Vp=f for >0 @.1)
Vou=0 for t>0 2.2)

which are supplemented with the no-slip boundary condition
ipo =0 (2.3)
and the initial condition

ul—o = g 24
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where u(x, 1) € R%, x € R* and p(x, 1) € R'. Assume that there exists a A; > 0 such that

f $*dx < i/ |Ve|* dx Vé € Hy (). (2.5)
Q A Ja

It is well known that for Lipschitz domains bounded in one direction, the above Poincaré
inequality holds.

Let L2(Q) := (L*())? and H(l)(SZ) = (HOI(Q))2 with the inner products (-, -) and (-, -))
and the norms | - | := (-, ~)% and || - || := (-, ~))% where

(u, v) :=/ u-vdx for u,vel?*(Q)
Q

2
(u,v) == / ZVuj - Vv, dx for u,v € H)(RQ).
Q j=l1

Thanks to the Poincaré inequality, || - || is a norm of H(l)(SZ). Set
V:={ve D)V v=0inQ}
H = VH‘I)(Q) V= VLZ(Q).
Define A : V — V' (the dual of V) as
(Au, v) == (u, v)) Yu,veV
where (-, -) is the duality product between V' and V. We identify H' = H.
Using integration by parts,
|Vv|2=—/QAv~vdx=—/QAv-Pvdx Yv € D(A)

where P is the Stokes projector. So,

1
[vlI* = (v, v) = (Av, v) < |Av] - |v] < WlAvlllvll Vv € D(A).
1
Hence
1
o] < W|Av| Yv € D(A). (2.6)
Ay

The bilinear operator B : V x V + V' is defined as

2
v
(B(u, v), w) :=b(u, v, w) = Z /Qu,-a—:wj dx Yu,v,w e V.

i,j=1
Denote B(u) := B(u, u). It is well known that
b(u, v, w) = —b(u, w, v) Yu e V,v, w e H)(Q). (2.7)
By [T1], lemma III1.3.4, we also have
bGu, v, w)| < V2ulul 2 ollwlzwl> Ve vow e HQ). (2.8
Therefore,

I B) ||y < v/2[ulful YueV. (2.9)
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Moreover, if |A - | is anorm on V ((H?(£2))?, which is equivalent to the norm induced
by (H*(R2))?, then

IB)| < clul?ull|Aul>  Vu € D(A). (2.10)

See, for example, [T1], chapter III, section 3.7.1, for the idea of the proof, though the discussion
there is for the bounded domains of class C2. Similarly, one can also show that

1B, v, w)| < clul?ull? v V% Av]? | w) YueV veD(A) weH (2.11)

where c is a positive constant independent of «, v and w.
Using (2.5) and (2.6), it can be shown that for 2 unbounded with <2 being uniformly of
C? there is a constant ¢ > 0 independent of v such that

|D?v| < c|Av] Yv € D(A). (2.12)

See [H] for details. Thus, in this case, |A - | is a norm on V ((H?(2))?, which is equivalent
to the norm induced by (H?(2))?, and therefore (2.10) and (2.11) hold.

Consider the following weak formulation. Find u € L*°(0,T; H) () L*(0,T; V) for
T > 0, such that in the sense of distribution on (0, T'),

%(u,v)+v((u,v))+b(u,u,v) = (f,v) YveV (2.13)

with initial condition (2.4). This is equivalent to the following functional equation:
u' +vAu+ Bu) = f u(0) =ug (2.14)

in V/, where u’ = %u.
Now we have the following existence and regularity results.

Theorem 2.1. Assume that Q is such that (2.5) holds. Given that f € V' and uy € H,
there exists a unique u solving (2.14) (hence (2.13) and (2.4) and (2.1)—(2.3)). Moreover,
ue€ L®Ry, HY(L*(0,T; V), u € C(Ry, Hyandu' € L>(0,T; V') forall T > 0.

Further, assume that Q2 is such that (2.12) also holds. Then f € H and uy € V, then
u€C(Ry; V), ueL®R,,V)(L*O0,T; D(A)) andu’ € L*0, T; H) for T > 0.

The proof of the first part of the above theorem can be found in [T1] along with the
following important a priori estimates (2.15) and (2.16).
Let v = u in (2.13). Then, by (2.7),

1d 2 2 ”f”z/ v 2
_— + o g + —
2dz|”| vijull® = (f, u) o 2IIuII
that is
d 2
—|u|2+v||u||2<w vt > 0.
dt v
So
d 2,
—ul* + v ul® < 1711y Vi > 0.
dt v

Thus, there is a constant Co = Cy(|ugl, || f1lv:) = 0 such that for all > 0

N 1
lu(t)* < |uol’e *"+U2—M||f||2w- (2.15)
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Moreover,

/IIM(S)II ds < —|2 éllfllzf- (2.16)

The second part of theorem 2.1 can be obtained using the inequalities (2.5), (2.6) and
(2.10) and the following a priori estimates (2.18) and (2.19).
Let v = Au in (2.13). Then, by (2.5), (2.6) and (2.10),

1d
—_”M” +V|AM| (f,AM)_b(u,M,AM)

2 dt
1 3
< | Sl Aul +clu|? ||lull|Aul>
Ifl2
—+ v|Au| +cv|u| ||u|| + 5 v|Au|
So
d 2 2_ 2 0 20,114
allull +v|Au| <;|f| +2¢ |ul”||ull™. (2.17)

Thus, by the uniform Gronwall lemma [T2], there exists a constant C; = C;(Jluo|l, | f]) = O
such that

lu@)| < C Vi > 0. (2.18)

For the detailed derivation of (2.18) from (2.17) using the uniform Gronwall lemma, one can
refer to [T2]. Moreover, it easy to see that there exists C,, > 0 such that

u
/ |Aus)[ ds |f| Juoll” °” £2C,(CoC)? / lu)Pds. (219
Theorem 2.1 defines
S):upe H— S{t)up =u(t) € H,vt > 0.

{S(#)}i>0 is a continuous semigroup in the A norm. By (2.18) and (2.19), it can be shown that
{S(#)};>0 is also a continuous semigroup in the V norm.

Lemma 2.1. S(¢) : V — V is a Lipschitz continuous map (operator) on 'V fort > 0.

Proof. Suppose u, v are two solutions with initial values ug and vg in V. Let w = u — v and
wo = ug — Vp. Then, by (2.7) and (2.11),

1d
——lwl* + v|Aw|* = —=b(u, u, Aw) + b(v, v, Aw)

2dr
=b(u, Aw, w) + b(w, Aw, v)
1 1 1 3 1 1 1 1
< clul?|lullz lwl[z|[Aw|z + clw|? [w] 2 |lv]|2|Av|2 |Aw|
200112 2,1 2 1 2
< clulflull*flw]l” + zv[Aw]” + clw||wll[|v[[|Av] + zv]Aw|".
Thus,
d 2 2 200,112 2
Ellwll +vrflwll” < C(lullull” + vl AvDllw]|
2 2
< C(lull” + vllfAvD Jw]l”
So,

lw@11* < llwoll exp {0/ (lluts)]* + IIU(S)IIIAU(S)I)dS}. O
0

The Lipschitz continuity in the H norm can be proved in a similar way.
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Remark 2.1. By (2.18), we know there is a set B C V, which is bounded in V and absorbing
in V for the semigroup {S(#)};>0. For the convenience of later discussion, we may assume
without loss of generality that B C V is an absorbing ball of {S(#)},>0.

Remark 2.2. It can be shown that u’ € L*>(0, T; H), for T > 0. In fact, setting v = u’ in
(2.13), we have, by using (2.10), that

WP+ 2L = () = b, )
2 dt e T

1 1
S| fHu'| + clul > lull| Au| > |u'|
2, 1,12 2 1,712
SAfI7+ 3117+ clull|ull*| Aul + Z|u']”.
So,
d
2 2 2 2
|u'| +Vallull L2117+ Clulllull”|Aul.

Thus, there is a constant C, = C,(Cy, C1) = O such that forall T > 0

T T
/ Iu/(s)lzds<VIIM0||2+2|f|2T+C/ lulllull*| Au] ds
0 0

T 1/2
< vllug? + {2|f|2 +C2(/ |Au|2ds> }T. (2.20)
0

Similar to lemma 2.1 of [R], we can have the following useful lemma, the proof of which
is omitted here.

Lemma 2.2. Let {ug,} be a sequence in V, which converges weakly to ug € V. Then
S@ug,, — S(t)ug, weakly in V, vVt > 0 and S(-)ug,, — S(-)ug, weakly in L%(0, T; D(A)),
YT > 0.

The next lemma is also important for the proof of our main result.

Lemma 2.3. Let {uo ,}, be a sequence in H, which converges strongly to uy € H. Suppose
u(t) = Sug, uy(t) = SOuopn. Then, YT > 0, u, — u in L*0,T:; V).

Proof. Using (2.13), it is easy to see that, by (2.8)
Ld I >+ vl I> = b( )
A 5. 1UWn — Vi, — = n—Uu,up — U,
T u u u u u u,u u,u

< cllulllun — ulllun — ull

X
1 2 2 2
< Vllun — ull” + Cllul*u, — ul”.

Thus

2 2 2 2
—lup —ul” + vy —ull” < cllull”u, —ul”

dt
Therefore

T T
2 2 2 2
vf it (s) — u(s)|2ds < lumo — o] +cf as) Pluen — P ds.
0 0

By Lebesgue’s dominant convergence theorem, and noting that
lim |u, (1) — u(@®)|)? = lim [S(Ouno — S)ugl* =0 Yt € (0,T)
n—oo n—o0

we have
T
lim lun(s) — u(s)||*>ds = 0. O
0

n—00
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3. The global attractor in V'

First, define [[-, -] : D(A) x D(A) — R'as
[u, v] := v(Au, Av) — %v)»l((u, v)) Yu,v € D(A).

Then

[ul® = [, ull = v|Au® — Jvigfull® = v|Au|* = v]Aul® = Jv|Aul.
Thus

vlAul® < [ul* < v|Aul?. (3.1
Since

1d 2 1 2 2 1 2

5 g 1l + avhillall” + vlAul™ = v flull” = (f, Au) = b(u, u, Au)

we have

d 2 2 2
g 1™+ vadllull® = 20, Au) = 2b(u, u, Au) = 2[u]”.

By integration, and denoting S(#)ug := u(t),
1
IS@uoll* = lluol*e™*" +2 f e MITIK(f, S(s)uo) ds 32)
0

where
K(f,v) :=(f, Av) — b(v, v, Av) — [v1?. 3.3)

Now we need to show the asymptotic compactness of the semigroup {S(¢)};>0 in the
space V. For the convenience of readers, we give the definition of asymptotic compactness as
follows.

Definition 3.1. The semigroup {S(t)};>0 is asymptotically compact in a given metric space if
and only if

{S(t,)u,} is precompact, whenever {u,} is bounded and t, — o0. 3.4

Let B C V be bounded. Consider {u,}, C B and {¢,|t, > 0,1, — o0 as n — 00},.
By remark 2.1, there exists 7 (B) > 0 such that

SHBcCB vVt > T(B).

By the previous a priori estimates, B can be assumed to be a closed ball, thus a closed and
bounded convex set. So, forallt, > T(B), S(t,)u, C B. Since {S(t,)u,}, weakly precompact
in V, there is {u,},» such that

Sty — T)uy — wr weaklyin V VT e N (3.5)

with wr € B.
By section 3 of [R] (see (3.23) of [R]), we have that S(#,)u,, — w strongly in H.
By the weak continuity of S(¢) in lemma 2.2

w = (Vw_) !11’1’1 S(tn’)un’ = (Vw_) !lm SISty — Tuy
=S(T)(Vy—) lim Sy — Duy = S(T)wr (3.6)
n’—o0o

where V,,—lim is the limit taken in the weak topology of V.
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Thus
w = S(T)wr VT e N (3.7
and
lwll < liminf IS )un || (3.8)
n’—o00
Since V is a Hilbert space, to show the asymptotic compactness, we need only to show
that
lwll = liminf ||S (& )u, || (3.9)
n’—o00
Note that, by (3.2),
IS@)uall> = 1SSy — Thunl?

T
= ||S(ty — Tu,|’e™7 +2 / e MIEI(f, AS(9)S(ty — T)uy)
0

=b(S(s)S(ty — Tuy,, S()Sty — Tup, AS(S)S (8 — Tuy)
—[S)Sty — Tu, ) ds. (3.10)

By (3.5) (and noting that, without loss of generality, we can and will drop the prime for
n’ thereof), we have

S()S(t, — THu, — S(Hwy weakly in L?(0, T; D(A)). 3.11)
By (3.11) and noting that e ™" 7= f ¢ L>(0, T; H),
T T
lim e M T= (£ AS()S(t, — T)uy,) ds = / e "MIT=I (£ AS(s)wr) ds. (3.12)
n—0oQ 0 0

Since [-] is a norm in D(A), equivalent to |A - | and 0 < e "7 L e™MT=9 L 1,
Vs e [0, T1, we have (fOT e"MT=9)[.]2ds)2 isanormin L(0, T; D(A)), equivalent to |A - |.
Thus

T
f e "M TS (s)wr]? ds < liminf e "M T =9[S(s)S(t, — T)u, 1 ds. (3.13)
0 n—oo

Now, we show the following:

T
lim e M T=Ip(S(5)S(ty — Ty, S(5)S(ty — Ty, AS(s)S(t, — T)uy,) ds

n—o00 0

T
= / e "M T=Ip(S(s)wr, S()wr, AS(s)wr) ds. (3.14)
0

Let ug, := S, — T)u,, up := wr. Then, to show that (3.14) is equivalent, we present
the following lemma 3.1.

Lemma 3.1. Suppose
uon = uo weaklyinV
ug, — uog strongly in H.
Then

T
lim e "M T D b(S (g, S(t)uo.n, AS(t)ug,,) dt

n—o00 0

T
= / e MT=Dp(S(Hug, S()ug, AS(H)ug) dt VT > 0.
0
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Proof. Let S(t)up,, = un(t), S(t)uo = u(t). Then
u(s) = Ss)wr u,(s) = S)St, — T)u,.

Thus, we need to show that

T T
lim e*“M(T*’)b(un(r),un(t),Aun(t))dt:/ e "M TDpu(t), u(r), Au(r))dr. (3.15)
0

n—o00 0

We rewrite the difference of the two sides of the above equation and estimate it in terms
of the following three parts:

T
/ eI by (1), u (1), Auy (1)) = b(u(t), u(t), Au(?))) dt
0

<L+bL+1

+

T
f e M T Dpu, —u, u,, Auy) dt

T
/ e M T Dby, u, —u, Auy) dt
0

0

T
+ / e MT Dy, u, Alu, — u)) dt|. (3.16)
0
Now we want to estimate I}, I, and I3 one by one.
First,
T 1 1 1 3
L<c | lug—ul?luy —ull?unll?|Au,|? dt
0
T i T 3
<c</ |y — ul*[lun —u||2||un||2dt) (/ |Aun|2dr)
0 0
T i
< c(/ |un — u|2dt> -0 as n— oo (3.17)
0

since u, — u strongly in H.
Second,

T
1 1 1 1
I < C/ Lo > Noall> Noew — wll> | Ay — Aul>|Auy,| dt
0

1 1
T 3 T 3
SC(f Iulllullllun—ulllAun—Auldt) (/ IAunlzdl>
0 0

1 1

T i/opT /T 3
<c(/ |u|2||u||2||un—u||2dr> (/ |Aun—Au|2dr) (f |Aun|2dr>
0 0 0

T i
<c</ ||un—u||2dt> -0 as n— oo (3.18)
0
where lemma 2.3 is used.

Finally, we estimate /3. By (2.10),

T T
f |B(u)|?dt < c/ u||lu||*|Au| dt < oo.
0 0

Thus, b(u) € L*(0, T; H).
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While

T
I </ (Bu), A, — )] dr.
0

Thus, by lemma 2.2,

T
lim ; < lim e "M T=D1(Bu), A(u, —u))|dt = 0. (3.19)
n—o0 n—0oQ 0
Now (3.15) and thus (3.14) are proved by (3.17)—(3.19) and (3.16). U

Now we return to the proof of the asymptotic compactness of {S(¢)};>01in V.
By (3.10), (3.12)—(3.14), we have

T
lim sup [|S(5,)u,|* < (diam y (B))?e "7 + 2[ e "MT=9 (£ AS(s)wr) ds
0

n—0o0

T
-2 / e "M TS (s)wr ] ds
0

T
—2/ e "M T=Ip(S(s)wr, S(s)wr, AS(s)wr) ds. (3.20)
0
By (3.6) and (3.2)

T
lwli? = ISMwr|? = flwr|2e=7 +2 / e T
0
x{(f. AS()wr) — b(S(s)wr, S(s)wr, AS()wr) — [S(S)wr]*}ds. (3.21)
Thus, from (3.20) and (3.21),
lim sup [|S(t)u, > < wl® + [(diam v (B))* — lwr |*le™"*"
< JJlw||* + (diam v (B))%e M7, (3.22)
Let T — oo in (3.22). Equation (3.9) is proven. Thus, S(#,)u,, — w, strongly in V.
The asymptotic compactness in V is proven and thus .4 is compact in V. We now have

Theorem 3.1. Let 2 be an open set satisfying (2.5) and (2.12). v > 0, f € H. Then,
the semigroup {S(t)},>0 associated with (2.14) possesses a global attractor A C V. More
precisely, A is compact and invariant in the space V, which attracts all bounded sets in H
with respect to the metric of V. Moreover, A is connected in V and maximal.

Proof. We have already shown the asymptotic compactness of the semigroup {S(f)},> in the
space V. Note that remark 2.1 gives B C V, an absorbing ball of {S(#)};>0 in the metric of the
space V, while lemma 2.1 shows that S(#) : V + V is a Lipschitz continuous map (operator)
on V for t+ > 0. Now, by a direct application of the general result of the global attractor
theory under the condition of asymptotic compactness (see, for example, [T2] (second edition)
section 1.1 or [L2]), to the semigroup {S(#)},>¢ in the space V, we obtain immediately a global
attractor A which is compact in the space V and attracts all the bounded subsets in the space
V with respect to the metric of V. Moreover, A is connected with respect to the metric of V
and is also maximal.
However, it is known that (see [L3])

1S uoll* < exple(1 + luol* + 211 £ 15} (3.23)

This means that the global attractor A also attracts all the bounded subsets in the space H with
respect to the metric of the space V. |
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Remark 3.1. By theorem 3.1, we see that the attractor .4 obtained above indeed coincides
with the attractor obtained in [R] (see remark 3.1 therein), where it is shown that A is compact
in the space H and is bounded in the space V, with only the condition (2.5) imposed for the
domain. There, the attractor A is proved to attract all the bounded subsets of H with respect to
the metric of H. The above result shows that, under the additional condition (2.12), A is not
just bounded, but indeed is also compact in the space V. Moreover, it attracts all the bounded
subsets of H with respect to the metric of V.
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