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Abstract

We explore models for the GeV Galactic Center Excess (GCE) observed by the Fermi Telescope,

focusing on χχ → ff̄ annihilation processes in the Z3 NMSSM. We begin by examining the

requirements for a simplified model (parametrized by the couplings and masses of dark matter

(DM) and mediator particles) to reproduce the GCE via χχ→ ff̄ , while simultaneously thermally

producing the observed relic abundance. We apply the results of our simplified model to the Z3

NMSSM for Singlino/Higgsino (S/H) or Bino/Higgsino (B/H) DM. In the case of S/H DM, we

find that the DM must be be very close to a pseudoscalar resonance to be viable, and large tanβ

and positive values of µ are preferred for evading direct detection constraints while simultaneously

obtaining the observed Higgs mass. In the case of B/H DM, by contrast, the situation is much less

tuned: annihilation generally occurs off-resonance, and for large tanβ direct detection constraints

are easily satisfied by choosing µ sufficiently large and negative. The B/H model generally has

a light, largely MSSM-like pseudoscalar with no accompanying charged Higgs, which could be

searched for at the LHC.
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I. INTRODUCTION

In recent years, an intriguing excess of ∼ 1–3 GeV gamma ray photons has appeared

in the galactic center [1–3]. This galactic center excess (GCE) is approximately spherically

symmetric, with a spatial distribution consistent with annihilating dark matter (DM) fol-

lowing an NFW profile [4, 5]. As is often true of signals from indirect detection, it is not

clear whether the GCE is a hint of physics beyond the standard model (BSM) or is of as-

trophysical origin [6, 7]. Given astrophysical uncertainties, it is worth exploring the DM

hypothesis to assess how difficult it is to build theories which can accommodate the excess.

Given concrete models, one can then make predictions that can be tested in more controlled

environments such as particle colliders and DM direct detection experiments.

The GCE is well fit by a ∼ 30–40 GeV DM particle annihilating directly into bb̄ with a

cross-section of order 〈σv〉 ' 2×10−26 cm3/s, which is intriguingly close to that of a thermal

relic. Annihilation to τ τ̄ can also fit the data, though not as well and for a lower DM mass

of ∼ 10 GeV. Already, there has been much work done to understand possible underlying

particle physics models of this DM interpretation [8–18].

Simplified models of DM describing the particles and interactions undergoing annihi-

lation processes via χχ → bb̄ are a useful tool for obtaining a handle on the underlying

dynamics of the interaction. Such a process may be mediated by (colored) t-channel or

(neutral) s-channel particles. The former are strongly constrained by LEP and LHC data.

As a consequence, we focus throughout on s-channel mediators. As noted in [14, 19, 20],

pseudoscalar s-channel mediators are well-suited because they are not immediately excluded

by direct detection experiments. Using this simplified model, we can determine the coupling

strengths and masses required to fit all of the experimental data, including a careful analysis

of the relic abundance in such a theory.

With this simplified model analysis in hand, one can apply the needed features of the

theory to particular models of DM. Supersymmetric extensions of the standard model (SM)

are a well-motivated class of renormalizable models which can accommodate a stable DM

particle together with new degrees of freedom to mediate annihilation. Unfortunately, it

is not possible to explain the GCE within the minimal supersymmetric standard model
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(MSSM) via s-channel annihilation through a pseudoscalar1. The reason is simple: the

GCE requires light DM, but a thermal relic abundance demands an MSSM pseudoscalar

that is too light to be consistent with existing LHC constraints [21, 22]. These constraints

are derived from charged Higgs searches and precision Higgs constraints. Progress can thus

be made by decoupling the pseudoscalar mass from the charged and CP-even heavy Higgs

masses. The simplest MSSM extension satisfying this requirement is the next-to-minimal

supersymmetric standard model (NMSSM). The NMSSM is a theoretically well-motivated

framework that offers all the necessary elements for neutralino DM annihilating via χχ→ bb̄.

The purpose of this paper is to show that the NMSSM can indeed generate the GCE via

2 → 2 annihilation while evading stringent constraints on Higgs phenomenology from the

Large Hadron Collider (LHC) and null results from the LUX direct detection experiment [23].

Constructing a working theory—that is, one with thermal relic DM accommodating the GCE

and consistent with existing bounds—entails model building challenges which have not been

sufficiently emphasized in earlier works [10, 24, 25]. To summarize, the primary results of

this paper are as follows:

• An analysis of the simplified model for χχ→ bb̄ shows that resonant annihilation can

significantly complicate models for the GCE. In particular, theories with resonant an-

nihilation predict a large discrepancy between the annihilation rate today as compared

to the early universe. Since the observed GCE annihilation cross-section is near that of

a thermal relic, resonant models generically have difficulty explaining the GCE while

maintaining a thermal relic. As we will show, this difficulty can be overcome if there is

a large hierarchy between the couplings of the mediating particle to final state fermions

and the DM. Alternatively, the presence of additional χχ→ bb̄ annihilation channels,

particularly via the Z boson, can alleviate the tension.

• An analysis of the NMSSM reveals several surmountable model building challenges for

explaining the GCE. There are three main issues. First, a complete model will often

contain a scalar partner to the pseudoscalar that will mediate dangerous spin inde-

pendent (SI) DM-nucleon scattering. However stringent direct detection constraints

can be alleviated if this new scalar is sufficiently heavy [14], or if there is destructive

1 Annihilation through t-channel scalars in the MSSM is also strongly constrained, as we describe in Sec. II

below.
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interference—a.k.a. blind spots—induced between different SI scattering processes.

Second, many of these models induce mixing between new scalars and the SM Higgs

boson, modifying SM Higgs decay modes in a way that may be in conflict with LHC

constraints2. Third, if any component of DM carries electroweak charges, then Z-

mediated p-wave suppressed annihilation in the early universe can be quite important,

thus offsetting the correlation between the GCE and the thermal relic cross-section,

which may be problematic in models where the abundance is set via non-resonant

annihilation.

• We have identified a parameter space of the Z3 NMSSM which can accommodate

the GCE while simultaneously evading all collider and direct detection constraints.

These models are 1) Singlino/Higgsino DM via resonant annihilation through the pseu-

doscalar, or 2) Bino/Higgsino via off-resonant annihilation through the pseudoscalar.

In both cases, most of the parameter space is accessible at the next generation of di-

rect detection experiments. The latter case also provides interesting phenomenological

consequences for the LHC Run II deserving further investigation.

For this paper we have used semi-analytical methods to study the relevant parameter

space. All couplings and cross-section were output using CalcHEP 3.4 [27]. We checked

our analytic results thoroughly using micrOMEGAs [28] and NMSSMTools [29–33] where ap-

plicable. Our paper is organized as follows. In Sec. II we summarize a simplified model for

DM annihilation via a pseudoscalar, enumerating the conditions needed to accommodate a

thermal relic density simultaneously with the GCE. In Sec. III we present an analysis of the

Z3 NMSSM, detailing characteristics of the neutralino DM and the required properties of

the scalar and pseudoscalar sectors to give a cosmologically viable model. We reserve Sec. IV

for our conclusions. The full detailed analytic formulae pertaining to both the general and

the Z3 NMSSM are presented in the appendices.

II. SIMPLIFIED MODEL ANALYSIS

In this section we present a simplified model for a thermal relic DM candidate consistent

with the GCE. Throughout, we assume Majorana DM that annihilates through the hadronic

2 See Ref. [26] for a detailed study of possible exotic decays of the 125 GeV Higgs.
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channel, χχ → bb̄,with a DM mass in the range ∼ 30–40 GeV, as preferred by the fits in

Ref. [5]. One can also consider leptonic annihilation via χχ → τ τ̄ , though the fit for this

channel is poorer; we will not consider it further.

A priori, χχ → bb̄ scattering can be mediated via s-channel or t-channel exchange. If

the mediator is in the t-channel, then it must be colored. To accommodate a thermal

relic abundance, the mediator must be quite light, with mass ∼ 100 GeV, which is in

tension with stringent LEP and LHC limits on colored particles decaying to DM particles

and b-jets, unless the mediator and the DM particle are very degenerate in mass. For

example, neutralino annihilation via t-channel light (. 100 GeV) sbottom exchange is highly

constrained in the MSSM. Even if sbottom mixing angles can be tuned to evade stringent

LEP constraints [34], direct limits on colored production of the heavier sbottom are strong,

and not obviously surmountable. Furthermore, in the sbottom-neutralino degenerate case,

co-annihilation in the early universe play an important role in setting the relic abundance,

requiring different neutralino annihilation cross sections than those preferred by the GCE.

Consequently, we restrict ourselves to an s-channel mediator which is a vector, scalar, or

pseudoscalar. In all cases we consider the case where DM is a Majorana fermion, resulting

in a factor of 4 difference in relevant cross-sections as compared to a Dirac fermion. If

the mediator is a gauge boson of a scalar, then DM annihilation is p-wave suppressed and

thus negligible in the present day. Thus, we focus on the case where the mediator is a

pseudoscalar, which we denote by a, and which was considered in Refs. [19, 20].

Considering only the coupling to bb̄ needed for the GCE, the simplified model describing

the coupling of a Majorana DM particle χ coupled to a has the interaction Lagrangian,

− Lint = iyaχχaχ̄γ
5χ+ iyabbab̄γ

5b. (II.1)

Consequently, the entire parameter space of the model is fixed by the pseudoscalar and DM

masses, ma and mχ, and the dimensionless Yukawa couplings, yaχχ and yabb. The present

day DM annihilation cross-section is

σv
∣∣
v=0
' 3

2π

y2aχχy
2
abbm

2
χ

(m2
a − 4m2

χ)2 +m2
aΓ

2
a

, (II.2)

where Γa is the decay width of the pseudoscalar mediator a,

Γa '
ma

16π
(y2aχχ + 6y2abb). (II.3)
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The pseduoscalar a may have decay modes to other light SM fermions, but these must be

chirality suppressed to satisfy flavor bounds, so we neglect them. As noted in [5], the DM

annihilation cross-section inferred from the GCE is of order σv
∣∣
v=0
' 2×10−26 cm3/s, which

is, remarkably, within the ball park of a thermal relic cross-section. Additionally, because a

is a pseudoscalar, it cannot mediate spin-independent DM-nucleon scattering, and thus this

simplified model automatically avoids direct detection bounds.

Given the observed GCE annihilation cross-section, it is tempting to assume that the

same annihilation process also mediated thermal freeze-out in the early universe. Such a

setup works well in the case that the annihilation is not resonant, i.e. when ma and 2mχ are

not highly degenerate. To test this condition it is useful to define a degeneracy parameter,

δ = |1− 4m2
χ/m

2
a|, (II.4)

which characterizes the proximity of the theory to the resonant regime. If δ is not very small,

then the annihilation is not resonant, and the GCE and a thermal relic abundance can be

simultaneously accommodated as long as the product y2aχχy
2
abb is fixed to an appropriate

value:

σv ' 2× 10−26 cm3/s

(
yabb
yb

)2 (yaχχ
0.6

)2 ( mχ

35 GeV

)2((120 GeV)2 − 4(35 GeV)2

m2
a − 4m2

χ

)2

, (II.5)

where yb is the SM bottom quark Yukawa.

However, the story changes substantially if δ ∼ 0, in which case annihilation is resonant.

As is well-known [35], resonant DM annihilation will be substantially different today as com-

pared to the early universe. This happens because of thermal broadening of the resonance

during the process of DM freeze-out. From [35], the resonant annihilation cross-section at a

given x = mχ/T is

〈σv〉 '
3e−xδx3/2δ1/2y2aχχy

2
abbm

2
χ√

πm3
aΓa

. (II.6)

Integrating over x gives the relic abundance

Ωh2 =
3.12× 10−12m3

aΓa

(GeV)2m2
χy

2
aχχy

2
abbErfc

[√
xfδ
] , (II.7)

where xf is the value of x at freeze-out. Plugging the decay width in Eq. (II.3) into the GCE

cross-section, in the limit when the width is controlling the cross-section, for 2mχ < ma we
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find that

σv
∣∣
v=0
∼ 2× 10−26cm3

(
4m2

χ

m2
a

)(
70 GeV

ma

)2
(

10−3

yaχχ
yabb

δ
6

+ yabb
yaχχ

)2

. (II.8)

Similarly, the relic abundance close to resonance can be written as:

Ωh2 ∼ 0.12

(
m2
a

4m2
χ

)( ma

70 GeV

)2 [y−2aχχ + (δ/6) y−2abb
106

](
Erfc[1.325]

Erfc
[√
xf δ

]) . (II.9)

Thus the relic abundance is controlled by the smaller of yabb and yaχχ
√
δ/6. On the other

hand, present day DM annihilation is controlled by the larger of yabb/yaχχ and yaχχδ/6yabb.

Fig. 1 depicts the couplings yaχχ and yabb required to simultaneously accommodate the

observed DM relic abundance and GCE for a fixed DM mass of mχ ∼ 35 GeV. According to

the upper two panels of Fig. 1, a thermal relic abundance requires that the smaller of yaχχ

and yabb be of order 10−3. Consequently, at least one of the couplings of the pseudoscalar

mediator must be small. On the other hand, the GCE annihilation cross-section of order

σv|v=0 ∼ 10−26 cm3/s demands a ratio of order ∼ 103 between the two relevant couplings.

In other words, accommodating the GCE with resonant annihilation requires a large hier-

archy between the couplings of a. The story will change, however, if there are additional

annihilation modes for the DM.

More than ∼ 20% away from resonance, Eq. (II.6) and Eq. (II.7) do not apply, but

as expected, σv
∣∣
v→0

is correlated in the usual way with Ωh2. To interpolate consistently

between the resonant and non-resonant regimes, we have implemented this simplified model

in micrOMEGAs 3.6.7 [36] to numerically scan over the couplings and mass of the scalar,

fixing σv|v→0 = 2.3 × 10−26 cm3/s, and DM mass to 35 GeV. The relic density obtained is

shown in the lower two panels of Fig. 1, with the left panel being obtained analytically in

the resonant regime and the right panel being the result of a numerical scan, which matches

the analytic results.

III. NMSSM ANALYSIS

We now apply the results of the simplified model in the previous section to the parameter

space of the NMSSM. In the appendices, we present our conventions and analytic formulae,

including the scalar and pseudoscalar masses and couplings to the DM. Throughout this
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FIG. 1: Upper panels: Couplings yabb and yaχχ required to obtain relic density and GCE through

resonant annihilation as a function of ma/mχ. The left and right panels should be read as a pair,

with blue (solid) and red (dashed) curves in the left panel coupling to the similarly denoted curve

in the right panel. In the left panel, either blue (solid) curve can be matched with the single blue

(solid) curve in the right panel, and likewise either red (dashed) curve in the right panel can be

matched with the single red (dashed) curve in the left panel to obtain both the observed relic

abundance and the GCE.

Lower panels: Allowing ma/mχ to float, the allowed couplings yabb and yaχχ to obtain both the

relic abundance and the GCE are shown, obtained using analytic results (left panel) and the full

numerical scan (right panel). The blue (solid) and red (dashed) curves in the left panel correspond

to the similarly denoted curves in the top two panels. One can see broad agreement between the

analytic results and the output of the scan.
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analysis we restrict ourselves to the Z3 NMSSM, which has a superpotential

W = λSHuHd +
1

3
κS3, (III.10)

with soft breaking terms

−Lsoft = λAλSHuHd +
1

3
κAκS

3. (III.11)

The Peccei-Quinn symmetry limit is defined as κ → 0. There is of course more freedom in

the general NMSSM, which gives greater parameter freedom in the scalar sector to satisfy

constraints, but the Z3 NMSSM is sufficient to study sample cases of viable regions.

As is well-known, for sufficiently large values of λ, the NMSSM Higgs mass can be sub-

stantially boosted from its usual mass range in the MSSM [37, 38] without the need for very

heavy stop squarks. However, this mass enhancement is only effective at small tβ, which we

will find to be important later.

Within the NMSSM, there are three basic phenomenologically viable neutralino identities:

Singlino, Singlino/Higgsino (S/H), and Bino/Higgsino (B/H). The pure Singlino case is

inaccessible in the Z3 NMSSM, as it requires vanishing λ which implies µ = 0. For the

Z3-invariant NMSSM, a light, mostly Singlino DM implies that κ/λ ∼ mχ/2µ must be fairly

small, since µ & 150 GeV from LHC bounds (see Sect. III A). In addition, when Higgsino

is mixed with Singlino, annihilation through the Z pole is opened, significantly modifying

both the relic density and current annihilation rate in the relevant mass range to explain

the GCE. Annihilation through the Z-pole can still be a factor even for points maintaining

consistency with the LEP constraints on the invisible width of the Z, bounding the Higgsino

fraction to be small or tβ to be close to 1 as discussed in detail later in Sect. III A. Since the

Higgsino fraction is set by (λvu,d/µ) this implies that λ must also be kept fairly small. In

the Bino/Higgsino case, by contrast, κ/λ is taken large to decouple the Singlino component.

Since κ is bounded by perturbativity constraints to be at most O(1), this forces λ to be

much smaller.

Given that κ/λ� 1 in the Singlino case, the greatest challenge is to maintain a healthy

CP-even sector. This can be easily understood upon diagonalizing the Hu, Hd sector to the

(H, h) (approximate) mass eigenstates defined by 〈h〉 = v, 〈H〉 = 0 (which correspond to the

mass eigenstates in the MSSM decoupling limit), while keeping the singlet in the interaction
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basis3. We identify h with the SM-like Higgs and H with the heavier MSSM-like Higgs. In

this basis the CP-even mass matrix is

M2
h =


m2
A + s22β (m2

Z − λ2v2) s2βc2β (m2
Z − λ2v2) −λvµc2β

(
m2
A

2µ2
s2β + κ

λ

)
c22βm

2
Z + λ2v2s22β 2λvµ

(
1− m2

A

4µ2
s22β − κ

2λ
s2β

)
λ2v2s2β

(
m2
As2β
4µ2
− κ

2λ

)
+ κµAκ

λ
+ 4κ2µ2

λ2

 ,

(III.12)

where tβ ≡ tan β = vu/vd, sβ ≡ sin β, cβ ≡ cos β, c2β = cos 2β, s2β ≡ sin 2β and v =√
v2u + v2d = 174 GeV and we have omitted the entries below the diagonal for simplicity.

This matrix is related to the interaction eigenstate mass matrix by a tβ dependent rotation,

and we have re-written the parameter Aλ in terms of the usual MSSM parameter mA as

follows:

m2
A =

µ

sβcβ

(
Aλ +

κµ

λ

)
. (III.13)

In the absence of significant mixing between the different states, the mass of H will be

approximately given, as in the MSSM, by the mass parameter mA.

The problematic element of this matrix is the off-diagonal h − S term: since mA must

be kept fairly large in order to lift the heavy CP-odd/even masses in accordance with LHC

constraints, this mixing term tends to be large, leading to a tachyonic eigenvalue upon

diagonalization. Additionally, this mixing can induce sizable deviations of the SM-like Higgs

couplings, rendering it non-SM-like. This off-diagonal term can, however, be tuned away by

choosing parameters such that m2
A ∼ 4µ2s22β. Additional h − S mixing is induced through

the off-diagonal h − H and H − S terms, but this is hierarchically smaller than mixing

induced directly by the off-diagonal h− S term and generically evades LHC bounds. Both

h − S and H − S mixing also induce scattering in direct detection experiments, which are

generically sizable for points where the neutralino couples strongly enough to produce the

GCE.

Likewise, the CP-odd mass matrix, in the (A, S) basis is

M2
P =

m2
A λv

(
m2
A

2µ
s2β − 3κµ

λ

)
λ2v2s2β

(
m2
A

4µ2
s2β + 3κ

2λ

)
− 3κAκµ

λ

 ,

(III.14)

3 We will refer to this basis as the (H,h, S) basis, in contrast to the (Hu, Hd, S) interaction basis and the

(H,h, hS) mass basis.
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where A denotes the MSSM pseudoscalar in the absence of the singlet. The lighter and

heavier mass eigenstates will be denoted by ma and ma2 respectively. Note that in the

presence of significant mixing between the two states, the mass of the heavier state, ma2

can be quite discrepant from the MSSM pseudoscalar mass parameter, mA. Generically

such significant mixing will exist between the singlet and MSSM-like component of the

lightest pseudoscalar eigenstate; there is insufficient freedom to remove this mixing in the

Z3 NMSSM, though it may exist in the full NMSSM. Further, by choosing Aκ, ma can

be tuned to desirable values as needed for annihilating 2 → 2 through the light CP-odd

pseudoscalar.

Our results can be summarized as follows:

• For mixed Singlino/Higgsino dark matter, annihilation is mediated via the pseu-

doscalar on resonance in the GC today, while the relic abundance is set by a com-

bination of annihilation through the pseudoscalar and the Z boson. We will show

that off-resonance annihilation is not possible in this case on account of the Z pole:

our analysis in Sec. II shows that a large product of couplings is necessary, implying a

large value of λ and correspondingly large Higgsino fraction. At large tβ, this enhances

the Z contribution to the relic density and may violate Z-pole constraints; at small tβ

this produces a sizable direct detection cross-section which cannot be tuned away. In

either case, the constraints on the Higgsino fraction force annihilation near the pseudo

scalar resonance.

• For mixed Bino/Higgsino dark mater, contrary to the S/H case, annihilation must

occur off-resonance, unless µ is very large. We will show that the needed hierarchy of

couplings for resonant annihilation discussed in Fig. 1 cannot be achieved for the B/H

case.

A. Singlino/Higgsino Dark Matter (κ/λ� 1)

We begin by expanding the components of the neutralino in the limit κ/λ � 1, so that

we can read off the coupling of the DM to the (mostly singlet) CP-odd scalar which mediates
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the annihilation. The full expressions can be found in Appendix B. We find

N13

N15

∼ −vλ
µ
cβ

(
1− tβ

mχ

µ

)
,

N14

N15

∼ −vλ
µ
sβ

(
1− mχ

µtβ

)
, (III.15)

N15 ∼
[
1 +

v2λ2

µ2

(
1 + s2β

mχ

µ

)]−1/2
, (III.16)

where mχ/µ is also taken to be small, and N13, N14 and N15 refer to the Higgsino down,

Higgsino up and Singlino components of the lightest neutralino respectively.

In the S/H scenario, the SM-like Higgs can mix strongly with the light singlet-like Higgs.

We will always assume this mixing is suppressed since it leads to non-SM like behavior for

the 125 GeV Higgs. As detailed in Appendix D, this forces mA ∼ 2|µ|/s2β which removes the

possible MSSM type tβ enhancement one could expect for the coupling of the pseudoscalar

to the down type quarks.

The annihilation of a pair of neutralinos via a pseudoscalar proceeds predominantly to bb̄,

so that the relevant quantity of interest is the active part of the mostly singlet pseudoscalar.

Assuming that mA >> ma, this component is given by

Pa,A
Pa,S

∼ −vλ s2β
2µ

. (III.17)

where Pi,j indicates the composition of pseudoscalar mass eigenstate i (i = a, a2), in terms

of the interaction eigenstates j (j = A, S). The generally larger singlet component of the

lightest pseudoscalar is upon normalization:

Pa,S ∼
(

1 +
λ2v2s22β

4µ2

)−1/2
. (III.18)

We thus find that the couplings of the lightest pseudoscalar to the DM and the b quarks can

be written

gaχχ ∼ i
√

2

[
κN2

15 − λN13N14 +
λ2v

2µ
s2β (N13cβ +N14sβ)N15

]
Pa,S, (III.19)

gabb ∼ −i
mbλ√

2µ
s2βPa,S, (III.20)

where one can see that there is no tβ enhancement in the couplings. This implies that, as one

moves away from resonance, λ/µ will have to grow substantially to maintain the required

annihilation rate for the GCE.

We also see from Eq. III.15 that the Higgsino component may be substantial (unless µ is

very large). This generates a coupling to the Z-boson of

gZχχ =
mZ√

2v

(
N2

13 −N2
14

)
, (III.21)
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which vanishes in the limit of tβ → 1. Because twice the mass of the DM in the 2 → 2

annihilation is close to mZ , annihilation through the Z pole is important for setting the relic

abundance away from tβ = 1. On the other hand, since annihilation of a Majorana particle

through a vector particle is p-wave suppressed, this annihilation mode is unimportant in

the Universe today. We verified that there is no destructive interference between the Z

and a possibly resonant (though p-wave suppressed) annihilation via the singlet-like scalar.

Therefore, to obtain a GCE, we need the Z mediated thermal relic density to not be too

large.

We used micrOMEGAs to obtain the value of gZχχ leading to the observed thermal relic

density for mχ = 35 GeV via annihilation through the Z pole: gZχχ ∼ 0.04. The contour

corresponding to this coupling is shown in the λ - µ plane for tβ = 20 in the left panel of

Fig. 2, setting an upper bound on λ for a given value of µ.
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FIG. 2: Left: λ as a function of µ needed to set the relic density via annihilation through the Z.

The relic abundance thus fixes an upper bound on the Higgsino fraction. Right: Blue (dashed)

curves denote the value of λ needed to obtain the GCE in the µ versus pseudoscalar mass, ma,

plane. The red (solid) curve traces out where the Higgsino fraction is such that one obtains the

correct relic abundance via annihilation through the Z alone. As one can see, annihilation must

occur very close to resonance to achieve the GCE under these conditions.
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The invisible width of the Z gives another constraint on gZχχ. The partial width of the

Z to a pair of neutralinos is given by

Γ =
GFm

3
Z

12
√

2π

(
N2

13 −N2
14

)2(
1−

4m2
χ

m2
Z

)3/2

, (III.22)

and is constrained to be . 2 MeV [39], yielding |N2
13−N2

14|
(
1− 4m2

χ/m
2
a

)3/4
. 0.11. This

upper bound is also shown in Fig. 2 as a function of µ. Since the dependence of the neutralino

composition upon λ and µ does not change significantly when one extends the Z3 NMSSM

to the general NMSSM (See Appendix. B), this requirement extends robustly to the general

NMSSM. While the upper bound from Ωh2 ∼ 0.12 is more constraining for mχ = 35 GeV,

the bound from the invisible width of the Z-boson becomes more constraining for lighter

dark matter masses, due to the phase space opening.

We further extract the needed λ to obtain the GCE for a given pseudoscalar mass ma;

this is shown in the right panel of Fig. 2. Given that the coupling of the Z boson and

therefore its contribution to the relic density are fixed by the Higgsino component of the

DM (and hence by λ and µ), we can see from the right panel of Fig. 2 that the combination

of the GCE plus relic abundance implies that ma is very close to 2mχ: Outside the region

denoted by the red (solid) curve, the thermal cross-section from the annihilation via Z alone

would force a too small relic density, so that there cannot be any additional contribution

from the annihilation via the pseudoscalar.

Even on-resonance, to be phenomenologically viable, the spin-independent direct detec-

tion cross-section must evade the stringent LUX bounds for mχ ∼ 35 GeV, σSI . 10−9 pb.

Extracting the SM-like Higgs only contribution from the general expression presented in

Appendix E, the scattering cross-section is:

σhSI ' λ4
m2
r

πm4
h

[
mp(µ s2β −mχ)

µ2 −m2
χ

]2
N2

15

( ∑
q=u,d,s

fTq +
6

27
fTG

)2

(III.23)

' 1.2× 10−45 cm2 ×N2
15

(
µ s2β −mχ

µ−mχ

)2(
λ

0.2

)4(
200 GeV

µ+mχ

)2(
125 GeV

mh

)4

.

(III.24)

While this scattering may be small when tβ is large, when tβ = 1, this scattering cross-section

is generally above current bounds.

Depending on parameters, however, destructive interference can render the spin-

independent scattering cross-section small, and even vanishing. For example, this can occur
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for neutralino-DM scattering in the MSSM. Even if the only exchanged particle is the Higgs,

depending on the admixture of Bino and Higgsino in the DM, the scattering cross-section

can identically vanish, i.e. there may be a direct detection blind spot [40]. If multiple

MSSM scalars exist in the spectrum, there may also be destructive interference due to mul-

tiple scalar exchange channels [41]. A systematic study of blind spots in the NMSSM does

not exist, although blind spots in a broader class of simplified DM models were considered

in [42]. In the present scenario, blind spots may result from destructive interference among

the exchanged scalar states. Combining the results in Appendix E, for moderate/large tβ

we have

σSI '
m2
pm

2
r

v2π

{
(Fd + Fu)

m2
htβ

[λN13tβ (N14Sh,s −N15)−N15 (λN14 + κN15Sh,stβ)]

+

(
Fdt

2
β − Fu

)
m2
Ht

2
β

[λN13 (N14SH,stβ +N15)−N15tβ (λN14 + κN15SH,s)]

−(FdtβShS ,d + FuShS ,u)

m2
hS

[N15 (λN14ShS ,d − κN15ShS ,s)

+λN13 (N15ShS ,u +N14ShS ,s)]}
2 , (III.25)

where Fu =
∑

q=u fTq + 4
27
fTG ∼ 0.15, Fd =

∑
q=d,s fTq + 2

27
fTG ∼ 0.13. This allows for a

3-way cancellation between the contributions from hS, h,H, as we will show below.

At large/moderate tβ, the small up and down components of the singlet-like Higgs are

related to the singlet components of the standard and non-standard heavy Higgs by:

ShS ,d ∼ SH,s +
Sh,s
tβ

, (III.26)

ShS ,u ∼ Sh,s −
SH,s
tβ

, (III.27)

where SH,s ∼ λv/µtβ. (III.28)

As mentioned previously, the singlet component of the SM-like Higgs can be minimized by

tuning mA ∼ µtβ, though this relationship receives relevant radiative corrections which can

introduce a non-zero (though small) mixing angle:

Sh,s ≈
−2λvµε

(m2
h −m2

hS
)
, (III.29)

where ε parametrizes the departure of this mixing angle from the tree-level cancellation

induced by setting

m2
A =

4µ2

s22β

(
1− κ

2λ
s2β − ε

)
|ε→0. (III.30)
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The singlet-SM-like Higgs mixing is also relevant for the singlet-like Higgs mass, which can

be approximated by:

m2
hS
∼
M2

hS(2, 2) + δloop −m2
h

(
1− S2

h,s

)
S2
h,s

1 +
(
1− S2

h,s

)
S2
h,s

(III.31)

where

M2
hS(2, 2) =

κµ

λ

(
Aκ +

4κµ

λ

)
+ λ2v2

(
1− c22β

)
− κ2v2

2
s22β c

2
2β −

1

2
κλv2

(
2c22β + 1

)
s2β

(III.32)

and the dominant contribution to δloop is [43, 44]

δloop ∼
λ2µ2

2π2
log

m2
H

µ2
∼ λ2µ2

2π2
log t2β . (III.33)

Using Eqs. III.15 and III.26-III.28 in Eq. III.25, the direct detection cross-section is then

proportional to (again in the large tβ limit)

σSI ∝
{(

2

tβ
− mχ

µ

)
2 tβ
m2
h

+
tβ
m2
H

+
1

m2
hS

(
2Sh,s +

λ v

µ

)[
λ v

µ2
mχ + Sh,s

(
2

tβ
− mχ

µ

)
+
κµ

λ2 v

]}2

.

(III.34)

We can see from the above that positive values of µ lead to suppression of the spin-

independent direct detection cross-section. First, we note that µ > 0 has the effect of

reducing the Higgsino component and therefore the dominant contribution due to the SM-

like Higgs. Second, since mH ∼ mA ∼ |µ| tβ, the direct detection cross-section is further

reduced when µ is positive. Therefore, generally, direct detection bounds do not constrain

very strongly the region of interest in the λ-µ plane,

To verify our analytics, we performed a numerical scan in the NMSSM parameter space

using NMSSMTools 4.2.1, which in turn runs micrOMEGAs 3.0. The results are summarized

in Fig. 3. A priori, each point in our parameter space is defined by the six parameters:

(λ, κ,Aλ, Aκ, µ, tβ). In Fig. 3, λ and µ are plotted as axes. At each point we have fixed

tβ = 40, Aκ = −250 GeV, and adjusted Aλ to set ε to zero at tree-level (Eq. III.30) 4. As a

result, singlet-Higgs mixing is only generated from loop effects, and is thus small. For the

4 We verified that this condition renders the 125 GeV Higgs very SM-like.
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FIG. 3: Results of a numerical scan with micrOMEGAs, fixing mh ∼ 125 GeV, tβ = 40, Aκ = −250

GeV, and Aλ to remove mixing between the SM-like and singlet Higgses. The green band shows

the region of parameter space fitting the GCE: 0.5 < 1026 cm3/s×σv|v→0 < 4, the blue region

shows the observed relic abundance, and the red the excluded LUX region. We have fixed κ to

accommodate particular values of the DM mass. Upper panels: mχ ∼ 37± 0.5 GeV, Lower panels:

mχ ∼ 42 ± 0.5 GeV. Consistent with the analytic results shown in Fig. 2, the green strips are

centered around ma = 2mχ, and as λ/µ (controlling the Higgsino fraction) decreases, the green

strips converge closer to resonant annihilation. The blue relic density strip breaks away from the

green GCE line when annihilation through the Z becomes important.
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top and bottom panels, we have fixed κ to accommodate a DM mass of ∼ 37 GeV and ∼

42 GeV, respectively, using the tree level relation in Eq. B.6. The right panels show the

zoomed in region of interest for the corresponding DM mass.

At large tβ, the NMSSM coupling λ does not help to boost the Higgs mass. Consequently,

we require a heavy stop sector to lift the Higgs, as in the MSSM. Thus, at each point

in Fig. 3 we have fixed the stop masses such that mh = 125 GeV, with At = 0. Both

the singlet-like scalar and singlet-like pseudoscalar masses vary in this plane, and the gray

shaded regions denote where one or the other becomes tachyonic, in which case there is no

successful electroweak symmetry breaking. The solid black lines in Fig. 3 show contours

where 2mχ = {ma, 0.9ma}.

The green shaded region denotes the region roughly consistent with the GCE, with 0.5×

10−26 cm3/s < σv|v→0 < 4 × 10−26 cm3/s. As expected from our analytical results, this

region is composed of two distinct strips which closely straddle the contour 2mχ/ma = 1.

These strips are relatively wide and further from resonance for lower values of µ, and become

narrower and closer to resonance for larger values of µ: both the decrease in the Higgsino

fraction and the decrease in λ produce a reduction in the aχχ coupling for larger values of

µ, thus requiring more resonant behavior to produce sufficient annihilation.

The blue shaded regions in the plot denote where the relic density is consistent with

the experimentally observed one within ±3σ: 0.1118 < Ωh2 < 0.128. Like the GCE, there

are two blue bands, corresponding to either side of the resonant point. The blue ribbon

that breaks away from the resonant region and follows constant λ/µ denotes where the

relic density is controlled by annihilation via the Z. For mχ ∼ 37 GeV, this is in good

agreement with what is shown for mχ = 35 GeV in the left panel of Fig. 2. Further, for

mχ ∼ 37 GeV there is a small sliver of parameter space where the relic density is achieved

through resonant annihilation via the CP-even scalar. This region is not viable for the GCE

because this process is p-wave suppressed in the present day.

As we saw in our discussion of the simplified model, the regions consistent with a thermal

relic and GCE are disjoint if the only annihilation process is via s-channel pseudoscalar

exchange and a delicate balance between the couplings and masses is required to make both

GCE and relic density consistent at the same time. The green and blue bands are very

different in the region 2mχ < ma. The relic density band is located at 2mχ ∼ 0.9ma, as

thermal averaging allows resonant annihilation in the early universe, while the GCE region
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must be close to resonance for any enhancement in the annihilation rate.

Meanwhile, the green and blue bands for 2mχ > ma appear coincident, but do not

overlap even when both appear to merge into the 2mχ > ma contour. The reason is again

the presence of thermal broadening in the early universe, which in this case results in more

neutralinos annihilating off-resonance and thus pushes the relic line closer to resonance.

However, in the presence of a second annihilation channel—in particular, via the Z boson—

this changes because another relic annihilation mode is in play. Consequently, the blue

and green bands do cross once the Z contribution starts to matter. In the left and right

panels of Fig. 3, the thermal relic and GCE bands overlap at (λ, µ) ∼ (0.33, 200 GeV) and

(λ, µ) ∼ (0.24, 320 GeV), respectively. The difference in the values of λ and µ comes from

the slight difference in the DM masses between the two panels. In the right panel, the DM

mass is slightly larger, and is thus closer to the Z boson resonance, requiring a larger value

of µ to suppress the cross-section to appropriate levels.

We checked that all these points are in agreement with the recent LHC limits on chargino

neutralino direct production. We find BR(χ0
2 → χ0

1Z) ∼ 0.4 with micrOMEGAs for the

region of interest. On the other hand, by taking the ATLAS trilepton search [45] and

using the provided simplified model information on χ0
2χ
±
1 → W±Zχ0

1χ
0
1, we found that for

µ & 150 GeV the upper limit on BR(χ0
2 → χ0

1Z) is always weaker than 0.4 (which is reached

only at µ ∼ 200 GeV) for the values of DM mass considered here.

The red shaded regions in Fig. 3 are excluded by LUX. We see clearly that direct detection

does not provide a very stringent constraint on the parameter space. For smaller values of

µ there is a blind spot in the parameter space, at which the SI direct detection cross-section

vanishes identically. At larger values of µ, meanwhile, the SI cross-section falls off. We have

verified that the region where the direct detection cross-section is minimized is in very good

agreement with that predicted by Eq. III.34.

In principle, one could vary Aκ for any set of parameters to independently set the pseu-

doscalar mass via Eq. C.10. However, we want to show the variation in the cosmological

quantities of interest with the pseudoscalar mass. Taking a larger (smaller) value of Aκ

would shift the relic density and GCE contours to the right (left), leading to somewhat

larger (smaller) values of λ and µ.

We now consider the case of tβ = 1. Here, there is no contribution from the Z to the relic

density and in principle one could obtain both consistent GCE and relic density just from the
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FIG. 4: Left: Contours of direct detection cross-section (in units of 10−45 cm2) in the λ−µ plane,

taking the analytic expressions in Eq. III.24 and tanβ = 1. Right: Contours of λ needed to obtain

the galactic center excess. Comparing with the left-hand plot, we can see that the annihilation

must occur very close to resonance.

exchange of the pseudoscalar. However, in the absence of blind spots, the direct detection

cross-section is large through the SM-like Higgs, as can be seen in Eq. III.24 and in the left

panel of Fig. 4. The right panel, similar to the right panel of Fig. 2 shows the required

values of λ in the ma-µ plane to obtain the GCE. Comparing the left and right panels of

Fig. 4, we can see that without a significant reduction of the direct detection cross-section

from the SM-like Higgs, off-resonance annihilation would be ruled out by direct detection

constraints.

There is no contribution from the heavy MSSM like non-standard Higgs to the direct

detection cross-section. However, the presence of a non-zero ε, leading to mixing between

the singlet-like and the SM-like Higgs, allows an additional contribution from the singlet-like

Higgs. Therefore, one can check for blind spots in the region where the GCE is obtained.

At tβ = 1, the up and down components of the mostly singlet like Higgs are simply

related to the singlet component of the SM-like Higgs: ShS ,u ∼ ShS ,d ∼ Sh,s/
√

2. Including
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the contribution from both of these, the SI direct detection cross-section is given by:

σSI =
m2
pm

2
r

πv2

( ∑
q=u,d,s

fTq +
6

27
fTG

)2

λ2N4
15

×
{
Sh,s
m2
hS

[
ShS ,s

(
κ

λ
− N2

14

N2
15

)
−
√

2Sh,s
N14

N15

]
− 1

m2
h

[
Sh,s

(
κ

λ
− N2

14

N2
15

)
+
√

2
N14

N15

]}2

.

(III.35)

Thus one could tune away the direct detection if

Sh,s
m2
hS

[(
κ

λ
− N2

14

N2
15

)
−
√

2Sh,s
N14

N15

]
∼
√

2

m2
h

N14

N15

. (III.36)

This is difficult to satisfy, however, since the light singlet mass, mhS is not independent from

all the other parameters. Specifically, the mixing, Sh,s is relevant for its mass, as mentioned

previously. Taking the dominant contribution to the singlet Higgs mass to scale with λ and

an upper bound on the singlet component of the SM-like Higgs, Sh,s . 0.3, to be consistent

with measured Higgs properties, we find that λ . 0.3 is required in order to achieve the

blind spot. This is challenging for Higgs phenomenology at tβ = 1, since stop masses of the

order of 100 TeV or higher are required to drive the Higgs mass up to 125 GeV. While an

unpleasant region of parameter space from a UV complete point of view, this is required by

the phenomenology of the GCE at tβ = 1. Therefore, similar to moderate/large tβ, even

for tβ = 1 we only find a viable solution where consistency with GCE, relic density, LUX

constraints and SM-like Higgs phenomenology forces the allowed parameter region to be very

close to resonance. We again verified our analytical results thoroughly with micrOMEGAs and

NMSSMTools.

B. Bino/Higgsino Dark Matter (κ/λ� 1)

We now turn to the case of DM which is an admixture of Bino and Higgsino. We first note

that in this case, the CP-even sector is effectively the MSSM Higgs sector since the singlet

mass is driven up by the required large values of κ/λ and is effectively decoupled. Therefore,

the SM-like Higgs mass is controlled by MSSM like contributions from the squarks and there

is no motivation to consider small value of tβ, which we know are problematic for obtaining

a mass of 125 GeV. Hence, in this section, we will restrict ourselves to moderate/large values

of tβ.
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We now turn to finding the region of parameter space where Bino/Higgsino DM is viable

for the GCE. We first consider the resonant annihilation case; as demonstrated in Fig. 1

a large hierarchy in the couplings gaχχ and gabb is needed to achieve the observed relic

abundance and the GCE. We will now show that this hierarchy is not generally present for

the Bino/Higgsino case.

Expanding the results in Appendix B in the limit mχ << µ, the up and down Higgsino

as well as Bino parts of the neutralino can be written as

N13

N11

∼ mZsW
µ

sβ

(
1 +

mχ

µtβ

)
,

N14

N11

∼ −mZsW
µ

cβ

(
1 +

mχtβ
µ

)
, N11 ∼

(
1 +

m2
Zs

2
W

µ2

)−1/2
.

(III.37)

The active part of the mostly singlet pseudoscalar through which the dark matter annihilates

is
Pa,A
Pa,S

∼ −λ v
2µ

(
s2β − 6

µ2

m2
A

κ

λ

)
∼ 3κ

vµ

m2
A

, (III.38)

leading to

Pa,S =

(
1 + 9κ2

v2µ2

m4
A

)−1/2
(III.39)

upon normalization. The coupling of the dark matter to the lightest pseudoscalar can thus

be written

gaχχ = −i
√

2

[
λN13N14 +mZsWN11(sβN13 − cβN14)

(
s2β

λ

2µ
− 3

κµ

m2
A

)]
Pa,S ,

∼ i3
√

2κ

(
m2
Zs

2
W

m2
A

)
N2

11Pa,S, (III.40)

while the coupling to b quarks becomes

gabb = −imbsβκ√
2µ

(
sβ
λ

κ
− 3µ2

cβm2
A

)
Pa,S ∼ 3iκ

mb√
2

µ tβ
m2
A

Pa,S. (III.41)

Note that in the above, unlike the S/H scenario, mA can be order of |µ| since we no longer

have to cancel the singlet component of the SM-like Higgs. Hence the gabb coupling and

consequently σv are tβ-enhanced. The ratio of the couplings thus becomes

gaχχ
gabb

' 2m2
Zs

2
W

µmbtβ
, (III.42)

which is generically O(1), unless µ is very large. In addition, since λ is small, the Higgsino

components in the neutralino are now much smaller than in the Singlino/Higgsino case. As

a result, the Z funnel does not play an important role in setting the relic abundance.

22



*
*

*
*

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

-.*-. ΣSI  = 10-9 pb
....    Κ =   0.5
__    Κ = 0.55
- - -   Κ =   0.6

tΒ = 10

tΒ = 20

tΒ = 30

350 400 450 500 550 600 650 700-1000

-800

-600

-400

-200

mA HGeVL

Μ
HG

eV
L

mΧ=35 GeV, ma=60 GeV, Λ=0.05

....    Κ = 0.5
__    Κ = 0.55
- - -  Κ = 0.6

Σv v®0 = 2.3´ 10-26 cm3 �s
....    Κ = 0.5
__    Κ = 0.55
- - -  Κ = 0.6

56 58 60 62 64350

400

450

500

550

ma HGeVL

m
A

HG
eV

L

mΧ=35 GeV, Μ = -600 GeV, tΒ =10, Λ=0.05

FIG. 5: Left: Contours fixing the s-wave annihilation cross-section of Bino/Higgsino DM to 2.3×

10−26 cm3/s for various choices of κ as a function of µ and mA. The dot-dashed lines show

the constraints from requiring that the scattering cross-section in direct detection experiments be

smaller than 10−45 cm2 (below and to the right is allowed). Right: Contours fixing the s-wave

annihilation cross-section of Bino/Higgsino DM to 2.3× 10−26 cm3/s for various choices of κ as a

function of ma and mA.

We are therefore left to consider the off-resonance annihilation case, where a working

solution is easily achieved for moderately large κ, and tβ and µ2/m2
A not too small, as can

be seen from Eqs. III.40 and III.41. Utilizing these expressions, together with Eq. II.2, we

find the results for the GCE shown in Fig. 5. In the left panel we fix the DM mass to 35

GeV and the pseudoscalar mass to 60 GeV. For a small fixed value of λ = 0.05, we show the

required values of µ and mA to obtain σv|v→0 = 2.3× 10−26 cm3/s for different values of κ

and tβ.

Since we have fixed ma = 60 GeV, we are sufficiently far from resonance that the usual

matching between thermal cross-section for relic density and GCE today holds. Therefore we

expect that for this set of parameters, one would obtain a consistent GCE and relic density

in the early universe. The right panel shows the same information but in the ma – mA plane

with a fixed value of µ = −600 GeV and tβ=10. The hard cut-off for each value of tβ in the

left panel for mA is due to a naive implementation of the LHC H/A → τ+τ− bounds [46],
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assuming that both mH and ma2 are approximately given by mA. However, note that in this

scenario, there can be significant mixing between the two pseudoscalars, thereby changing

the correlation of ma2 with mA. On one hand this could lead to a weakening of these bounds

for a given mA, but on the other hand this could strengthen them due to the presence of

a large active component in ma. We will discuss this and other relevant constraints due to

Higgs phenomenology in more detail when we analyze our full numerical results obtained

from micrOMEGAs and NMSSMTools.

The parameter region under consideration is also easily made compatible with LUX limits.

The scattering cross-section for B/H DM through h and H is given by

σSI '
m2
Zs

2
Wm

2
pm

2
r

πv4
N4

11


(
Fu
tβ
− Fdtβ

)
m2
H

(
N14

N11

cβ +
N13

N11

sβ −
λv

mZsW

N13

N11

N14

N11

SH,s

)

−(Fd + Fu)

m2
h

(
N13

N11

cβ −
N14

N11

sβ

)]2
,

(III.43)

∼
m2
pm

2
r

πv4
m4
Zs

4
W

µ4
N4

11

[
(Fd + Fu)

m2
h

(
mχ +

2µ

tβ

)
+

Fd
m2
H

µtβ

]2
, (III.44)

where in the second line we have used the large tβ approximations and kept only the leading

Higgsino contributions. This is exactly equivalent to the MSSM direct detection cross-section

at large tβ. In this case, opposite to the S/H case, negative µ tends to suppress the direct

detection cross-section [41, 47]. This suppression occurs both via the hχχ coupling and the

interplay of h- and H-mediated annihilation diagrams, allowing for significant freedom to

evade direct detection constraints. In the left panel of Fig. 5, in addition to the required

values for GCE, we show the contours where σSI = 10−9 pb for different values of tβ in the

µ − mA plane. To the right of these contours, the direct detection cross-section therefore

does not provide a relevant constraint.

The viable region for Bino/Higgsino DM is summarized in Fig. 6 where we present the

results of a full numerical scan using micrOMEGAs and NMSSMTools. The parameter space is

set by (λ, κ, Aκ, µ, tβ, M1, mA). For each point in the scan, without loss of generality, we

have fixed M1 = 35 GeV, producing the value mχ ≈ 35 GeV favored by the GCE. We also

fix λ = 0.05, which, as can be seen from the expressions for the pseudoscalar couplings, does

not affecting the phenomenology if sufficiently small. Furthermore tβ was fixed to 20 and µ

and mA were fixed to −600 GeV and 600 GeV respectively, sufficiently heavy to evade direct
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detection LHC bounds. Therefore we are left with two parameters, κ and Aκ, taken as the

axes of Fig. 6. They control the couplings and the lightest pseudoscalar mass respectively as

discussed in Appendix B 2. We further fix all other soft masses to 1 TeV, with the exception

of the stop sector, where we fix At =
√

6mQ3 , and mQ3 = mu3 = 7.5 TeV resulting in a

SM-like Higgs mass in the range 122-128 GeV across the plane.

As one can see, the GCE allowed regions (green) and the correct relic density (blue)

overlap along two stripes in the (κ, Aκ) plane and are close to the regions where 2mχ and

ma differ by about 20%, consistent with off-resonance conditions discussed in Sect. II.

As can be seen from Eq. C.11, and mentioned previously, the lightest pseudoscalar has

a non-negligible active component, up to 50% in the region of interest, rendering it quite

MSSM-like. Consequently, this state is constrained by collider results. If ma is sufficiently

light, decays of the SM-like Higgs into a pair of pseudoscalars are open and significantly

modify Higgs coupling measurements. The overall contribution depends on the haa coupling,

which is controlled by λAλ but has sub-leading contributions due to κ and Aκ [48]. This

excludes much of the lower branch consistent with the GCE where ma . 60 GeV, though

the bound weakens for κ & 0.55 because the haa coupling becomes sufficiently small.

H/A → τ+τ− bounds [46] are also significant, excluding a portion of the upper branch

consistent with the GCE for ma > 90 GeV. Both the pseudoscalars and the heavy scalar are

relevant for this constraint. The heavier pseudoscalar has a mass of 500−700 GeV through-

out the plane, which is sufficiently large that it evades H/A → τ+τ− bounds even without

a singlet component to further suppress the production cross-section. This is remarkable

because the mass of the heavier MSSM scalar and charged Higgs is 450 GeV throughout the

plane 5, for which H/A→ τ+τ− bounds require tβ < 18.8. Thus the bounds are evaded par-

tially because the NMSSM allows the scalar and pseudoscalar mass and mixing structures

to be decoupled.

Meanwhile, LHC H/A→ τ+τ− limits on a 90 GeV MSSM-like pseudoscalar require tβ <

7.19. The production cross-section is suppressed somewhat due to the singlet component

of the lightest pseudoscalar and the fact that no CP-even scalar accompanies it, but the

MSSM-like component is still large enough to result in a strong bound. The pseudoscalar

5 The significant discrepancy between mA and the heavier MSSM-like scalar mass is due to radiative cor-

rections.
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FIG. 6: Results of numerical scan with M1 = 35 GeV µ = -600 GeV, mA = 600 GeV, tβ = 20,

λ = 0.05, 122 GeV < mh < 128 GeV, GCE: 0.5 < 1026 cm3/s×σv|v→0 < 4, 0.1118 < Ωh2 < 0.128.

The green and blue regions show the parameter space consistent with the GCE and observed relic

density. The black dashed lines show the contours for constant pseudoscalar mass, ma. Notice

that as κ increases, the regions with the correct relic abundance pull slightly away from resonance,

as expected from our analytical results. The red region is excluded by A→ τ+τ− searches at the

LHC, while the purple exclusion comes from modification of SM Higgs rates due to the presence

of the open h→ a a channel.

production cross section scales with t2β, so that the entire region with ma & 90 GeV in Fig. 6

is excluded since we set tβ = 20. Increasing mA would reduce the active admixture of the

lightest pseudoscalar, but the GCE requires keeping the ratio tβ/mA approximately constant
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so that this LHC exclusion is quite robust6. This exclusion is shown as the red region in

Fig. 6. Below ma ∼ 90 GeV there are no published limits from the LHC and the LEP limits

from e+e− → hA [49] are too weak to exclude the region.

In addition, there are flavor constraints coming fromBs → µ+µ−. In general a suppression

of O(10) at the level of the amplitude may be required at large tβ. This is however easy to

achieve. From a low energy point of view, there are various ways to ensure the consistency of

the models with the measured value [50], even without relaxing the assumption of minimal

flavor violation (MFV) [51]. Cancellations can occur between the wino- and gluino-mediated

contributions against the Higgsino contribution, depending on the sign of At. Moreover the

wino and gluino contributions, which depend more strongly on tβ, can be further suppressed

by requiring alignment of the squark mass matrices in the down sector. All these various

options to ensure consistency with the Bs → µ+µ− measurement may require additional

model building efforts within a UV-complete model addressing the SUSY flavor problem,

which are beyond the scope of this paper. Therefore we will not discuss flavor constraints

further.

We would like to stress that the Bino/Higgsino case realizes the original purpose of

going to the NMSSM to relax the relations between the lightest pseudoscalar mass and

the charged/CP-even Higgs masses that were obstructing a viable GCE model within the

MSSM. The direct detection cross section and two lighter neutral scalars are very MSSM-like,

but the parameter regions consistent with the GCE and thermal relic density are possible

because the light pseudoscalar has a sizable component of both the MSSM and the singlet

pseudoscalars. The viable B/H region with a light and fairly active pseudoscalar without

either a light charged Higgs or a CP-even Non-SM-like Higgs presents interesting challenges

for the LHC Run II: Direct searches for a pseudoscalar with mass ∼ 60 − 90 GeV and

production cross section suppressed by a factor of O(few) compared to the MSSM, may

still reveal a signal in a region left open by LEP due to its kinematic limits. This region,

normally deemed excluded in the conventional MSSM (mA, tβ) plane, requires dedicated

detailed studies of the LHC signatures, which are beyond the scope of this paper and are

left for the future.

6 Reducing both mA and tβ may allow one to evade the limits, but it would create more tension in obtaining

a SM-like Higgs with a mass of 125 GeV, as is well known for the MSSM.
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IV. SUMMARY AND CONCLUSIONS

We have examined models to explain the GCE with thermal relic DM, focusing on the

χχ→ bb̄ annihilation in supersymmetric models. We have found that while the MSSM fails

to accommodate the GCE due to SM-like Higgs precision, LHC H± → τν searches and the

mass relations between the pseudoscalar and charged/CP-even Higgs bosons, viable regions

can be found in the Z3 NMSSM. Both Singlino/Higgsino and Bino/Higgsino DM can explain

the excess.

In the case of Singlino/Higgsino DM, the mostly singlet pseudoscalar is light, and there

is an accompanying light CP-even. The parameters of the mass matrix must then be tuned

to ensure that the SM-like Higgs does not pick up a large singlet component, and to keep

the other light CP-even state mostly singlet. In addition, 2mχ must be within a few percent

of the light pseudoscalar mass, ma, to ensure compatibility with both the GCE and the

observed relic abundance.

For the Bino/Higgsino case, the situation is much less tuned: an O(1) value for κ, mod-

erate tβ, and negative µ of at least several hundred GeV allow one to achieve the observed

GCE and relic abundance well away from any resonant region without inducing too large of

a nucleon scattering cross-section. This closely parallels the would-be MSSM solution, which

works here given the extra freedom provided in the NMSSM for decoupling the charged/CP-

even and the lightest pseudoscalar Higgs masses. Given the large MSSM-like fraction of the

lightest pseudoscalar, up to 50%, this region provides interesting LHC Higgs phenomenol-

ogy worth further study. In particular, extending LHC pseudoscalar Higgs searches below

the current mass threshold of 90 GeV would probe a large fraction of the parameter space

relevant for the GCE.

Because of the peculiar requirements of these 2 → 2 models, one may advocate for

looking beyond the 2 → 2 annihilation models into 2 → 4 annihilation. This has already

been considered for the general NMSSM, where annihilation occurred to decoupled singlet

pseudoscalars in a mostly decoupled hidden sector [10]. Within the Z3 NMSSM the needed

spectrum is difficult to achieve, because the parameters needed to obtain a large enough

annihilation rate tend to induce a problematic Higgs sector; we leave examination of these

models for future work. In conclusion, while achieving the GCE excess via the MSSM is

very difficult, simple viable models exist within the NMSSM.
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Appendix A: General NMSSM

We will follow notations and conventions consistent with Ref. [48] where the full super

potential and all possible soft breaking terms for the general NMSSM are detailed. We

present here all the relevant mass matrices and mixing angles in the general NMSSM before

reducing to the Z3 case. Where relevant we will denote the matrices in the Z3 NMSSM with

a subscript. However, we drop this subscript in the main text since only the Z3 NMSSM is

discussed in detail there. Throughout,

v =
√
v2u + v2d = 174 GeV (A.1)

tβ ≡ tan β =
vu
vd

(A.2)

µ ≡ µeff = µ+ λs (A.3)

B ≡ Beff = Aλ + κs (A.4)

m̂2
3 = m2

3 + λµ′s (A.5)

where vu, vd and s are the vacuum expectation values of Hu, Hd and S respectively.
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Appendix B: Neutralino Masses and Mixings

The neutralino mass matrix is:

M =



M1 0 −g1vd√
2

g1vu√
2

0

M2
g2vd√

2
−g2vu√

2
0

0 −µeff −λvu
0 −λvd

2κs+ µ′


. (B.1)

The lightest mass eigenstate of the neutralino is defined in terms of its components as:

χ = N11B̃ +N12W̃ +N13H̃d +N14H̃u +N15S̃. (B.2)

The characteristic equation for the neutralinos is, for mχ 6= |µ|,

0 = −λ2v2
{

(mχ −M1) (mχ −M2)
(
mχ − 2µ

vuvd
v2

)
− 1

2
g22v

2
[
mχ −M1 + (mχ −M2) tan2 θW

]}
+ (mχ − 2κs− µ′)

{
(mχ −M1) (mχ −M2)

(
m2
χ − µ2

) 1

2

−1

2
g22v

2
(
mχ + 2µ

vuvd
v2

) [
mχ −M1 + (mχ −M2) tan2 θW

]}
.

(B.3)

If we decouple the wino, the above reduces to:

0 = −λ2v2
[
(mχ −M1)

(
mχ − 2µ

vuvd
v2

)
− 1

2
g22v

2 tan2 θW

]
(B.4)

+ (mχ − 2κs− µ′)
[
(mχ −M1)

(
m2
χ − µ2

)
− 1

2
g22v

2
(
mχ + 2µ

vuvd
v2

)
tan2 θW

]
We will concentrate on two limiting cases for the composition of the neutralino:

Singlino/Higgsino and Bino/Higgsino.

1. Singlino/Higgsino

• General NMSSM: 2κµ
λ

+ µ′ << µ << M1,

Using the characteristic polynomial, and also decoupling the Bino, we can trade µ′ for

the mass eigenvalue, mχ:

µ′ = mχ − 2κ
µ

λ
− λ2v2 (mχ − µs2β)

m2
χ − µ2

. (B.5)
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• Z3 NMSSM: 2κ
λ
<< 1,

µ′ = 0 in the Z3 NMSSM, therefore, we can instead re-write κ in terms of the mass

eigenvalue mχ:

κ =
λ

2µ

[
mχ −

λ2v2 (mχ − µs2β)

m2
χ − µ2

]
. (B.6)

In both cases:

N13

N15

=
λv

µ2 −m2
χ

cβ (tβmχ − µ) ∼ λv

µ
cβ

(
tβ
mχ

µ
− 1

)
, (B.7)

N14

N15

=
−λv

µ2 −m2
χ

sβ

(
µ− mχ

tβ

)
∼ −λv

µ
sβ, (B.8)

N15 =

(
1 +

N2
13

N2
15

+
N2

14

N2
15

)−1/2
. (B.9)

2. Bino/Higgsino

• General NMSSM: 2κµ
λ

+ µ′ >> µ >> M1,

• Z3 NMSSM: 2κ
λ
>> 1,

In both cases, we decouple the Singlino, and therefore M1 can be re-written in terms of the

mass eigenvalue, mχ:

M1 = mχ +
m2
Zs

2
W (µs2β +mχ)

µ2 −m2
χ

. (B.10)

The components are then given by:

N11 =

(
1 +

N2
13

N2
11

+
N2

14

N2
11

)−1/2
, (B.11)

N13

N11

=
mZsW sβ
µ2 −m2

χ

(
µ+

mχ

tβ

)
∼ mZsW

µ
sβ, (B.12)

N14

N11

= −mZsW cβ
µ2 −m2

χ

(µ+ tβmχ) ∼ −mZsW
µ

cβ

(
1 + tβ

mχ

µ

)
. (B.13)
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Appendix C: CP-Odd Mass Matrix

The general CP-odd mass matrix in the (A, S) “interaction” basis is given by

M2
P =

 2(µB+m̂2
3)

s2β
λ(Aλ − 2κµ

λ
− µ′)v

−3κµAκ
λ

+ λ2v2

2µ
s2β
(
B + 3κµ

λ
+ µ′

)
− ξF

(
4κ+ λµ′

µ

)
− κµµ′

λ
− 2m′2s

 .

(C.1)

Defining m2
A as the (1,1) element of the above matrix: m2

A = 2 (µB + m̂2
3) csc 2β,

M2
P =

m2
A λ(Aλ − 2κµ

λ
− µ′)v

−3κµAκ
λ

+ λ2v2

2µ
s2β
(
Aλ + 4κµ

λ
+ µ′

)
− ξF

(
4κ+ λµ′

µ

)
− κµµ′

λ
− 2m′2s

 .

(C.2)

Further using the characteristic polynomial for the above, we can redefine m′2s in terms

of the lighter mass eigenvalue, ma, and all the other parameters:

m′S
2

= −
λ2v2

(
Aλ − 2κµ

λ

)2
2 (m2

A −m2
a)

− m2
a

2
+
(
Aλ + 4

κµ

λ

) λ2v2
4µ

s2β −
3

2
κAκs

−1

2
κµ′s+

1

2
ξF

(
4κ+

µ′

s

)
+
ξS
2s
. (C.3)

In the absence of the singlet, mA would be the usual MSSM parameter controlling the

CP-odd Higgs mass as well as the CP-even non-standard Higgs.

In the limit that m2
A >> m2

a, the components of a are given by:

Pa,A
Pa,S

≈ − λv

m2
A

(Aλ − 2
κµ

λ
− µ′) , (C.4)

Pa,S =

(
1 +

P 2
a,A

P 2
a,S

)−1/2
, (C.5)

where Pa,A is the active component and Pa,S is the singlet component of the light CP-odd

Higgs.

If we now take Aλ such that we minimize the mixing with the SM-like Higgs,

Pa,A
Pa,S

≈ −2λv

m2
A

(
µ

s2β
−
(

2
κµ

λ
+ µ′

)
+
ε

2

)
. (C.6)
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In terms of the components given above, the relevant couplings of the light CP-odd Higgs

are:

yabb =
imbtβ√

2v
Pa,A (C.7)

yaχχ = i
{[

(N14cβ −N13sβ) (g1N11 − g2N12) +
√

2λN15 (N13cβ +N14sβ)
]
Pa,A

+
√

2
(
λN13N14 − κN2

15

)
Pa,S

}
.

(C.8)

In the Z3 NMSSM, m3 = 0 and Aλ is no longer a free parameter, but is related to mA

via Eq. III.13. The mass matrix reduces to:

M2
PZ3

=

m2
A λv

(
m2
A

2µ
s2β − 3κµ

λ

)
λ2v2s2β

(
m2
A

4µ2
s2β + 3κ

2λ

)
− 3κAκµ

λ

 .

(C.9)

Now, we can use the characteristic polynomial for the CP-odd mass matrix to re-write Aκ

in terms ma:

Aκ = − λ

3κµ

[
m2
a −

λ2v2s2β
2µ

(
m2
As2β
2µ

+
3κµ

λ

)
− λ2v2

m2
a −m2

A

(
m2
As2β
2µ

− 3κµ

λ

)2
]
. (C.10)

After further requiring minimal mixing of the SM-like CP-even scalar with the singlet,

the active component of a is given by:

Pa,A
Pa,S

≈ − λv

m2
A

(
m2
A

2µ
s2β − 3

κµ

λ

)
∼ − λv

m2
A

(
2µ

s2β
− 4

κµ

λ
+ ε

s2β
2µ

)
. (C.11)

Appendix D: CP-Even Mass Matrix

In the basis (Hd, Hu, S) the general mass matrix for the CP-even scalars is

M2
R =


g2v2c2β +

(
µB + m̂2

3

)
tβ

(
λ2 − 1

2
g2
)
v2s2β − µB − m̂2

3 λ
(
2µvcβ −

(
B + κs + µ′) vsβ)(

λ2 − 1
2
g2
)
v2s2β − µB − m̂2

3 g2v2 sin2 β +
(
µB + m̂2

3

)
cot β λ

(
2µvsβ −

(
B + κs + µ′) vcβ)

λ
(
2µvcβ −

(
B + κs + µ′) vsβ) λ

(
2µvsβ −

(
B + κs + µ′) vcβ) 1

2
λ
(
Aλ + µ′) v2

s
s2β + κs

(
Aκ + 4κs + 3µ′)− ξS+ξF µ

′
s


(D.1)
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Rotating the upper 2 × 2 matrix by the angle β and replacing M2
A = 2 (µB + m̂2

3) /s2β

gives now the mass matrix in the (H,h,S) basis:

M2
h =


m2
A + s22β

(
m2
Z − λ

2v2
)

s2βc2β

(
m2
Z − λ

2v2
)

−λvc2β
(
Aλ + 2κµ

λ
+ µ′

)
s2βc2β

(
m2
Z − λ

2v2
)

c22βm
2
Z + λ2v2s22β 2λv

(
µ− sβcβ

(
Aλ + 2κµ

λ
+ µ′

))
−λvc2β

(
Aλ + 2κµ

λ
+ µ′

)
2λv

(
µ− sβcβ

(
Aλ + 2κµ

λ
+ µ′

))
1
2

(
Aλ + µ′) λ2v2

µ
s2β + κµ

λ

(
Aκ + 4κµ

λ
+ 3µ′

)
− λ
µ
(ξS + ξF µ

′)


(D.2)

Note that in the absence of the singlet, the upper (2 × 2) matrix is the MSSM Higgs

mass matrix and it is clear that these fields would acquire expectation values according to:

< h >= v, and < H >= 0, clarifying our notation.

If we further set Aλ such that the mixing of the singlet with the SM-like Higgs is ε, the

off-diagonal terms mixing with the singlet reduce to:

Aλ =
2µ

s2β
− 2κµ

λ
− µ′ + ε , (D.3)

M2
h(1, 3) = λvc2β

(
2µ

s2β
+ ε

)
, (D.4)

M2
h(2, 3) = −λvεs2β . (D.5)

The mass eigenstates are defined by in terms of the components Si,j where i = {H, h, hs}

and j = {u, d, s}:

H = SH,dHd + SH,uHu − SH,sS , (D.6)

h = Sh,dHd + Sh,uHu − Sh,sS , (D.7)

hS = ShS ,dHd + ShS ,uHu + S . (D.8)

We will assume that the non-singlet-like non-standard Higgs, H, is decoupled from the

mostly SM-like Higgs, h. This implies that the up and down components of H and h are

given as in the usual MSSM decoupling limit by

SH,d = Sh,u ≡ cα = sβ, (D.9)

SH,u = −Sh,d ≡ −sα = cβ. (D.10)

Further, we will be always interested in the case when the singlet is mostly decoupled from

the other two CP-even Higgses. In such a case, the singlet components of the standard and
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the non-standard Higgses Sh,s and SH,s, are related to the up and down components of the

mostly singlet CP-even Higgs, ShS ,u and ShS ,d :

ShS ,d = Sh,scβ + SH,ssβ, (D.11)

ShS ,u = Sh,ssβ − SH,scβ. (D.12)

In terms of the above components, the relevant couplings of the mass eigenstates are

given by:

yhiuu = − mu√
2vsβ

Si,u (D.13)

yhidd = − md√
2vcβ

Si,d (D.14)

yhiχχ =
[
(g1N11 − g2N12)N13 +

√
2λN15N14

]
Si,d

−
[
(g1N11 − g2N12)N14 −

√
2λN15N13

]
Si,u

+
√

2
(
λN13N14 − κN2

15

)
Si,s .

(D.15)

When mA is much larger than any of the other mass scales, the singlet components of

the non-singlet like Higgs are approximately given by:

SH,s ≈
λvc2β
m2
A

(
2µ

s2β
+ ε

)
, (D.16)

Sh,s ≈
−λvεs2β
m2
h −m2

hS

, (D.17)

where mh ∼ 125 GeV is identified with the SM-like Higgs and mhS is the mass of the singlet

like Higgs. The up and down components of the singlet-like Higgs are then given as follows:

ShS ,u ≈
−λvεsβs2β
m2
h −m2

hS

− λvcβc2β
m2
A

(
2µ

s2β
+ ε

)
∼ −λµv

m2
A

c2β
sβ

(D.18)

ShS ,d ≈
−λvεcβs2β
m2
h −m2

hS

+
λvsβc2β
m2
A

(
2µ

s2β
+ ε

)
∼ λµv

m2
A

c2β
cβ

(D.19)
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Decoupling the MSSM-like heavy Higgs, H, from the other two, the 2× 2 reduced mass

matrix in the (h,S) basis is given by:

M2
hS =

 c22βm
2
Z + λ2v2s22β −λvεs2β
−λvεs2β λ2v2 + κµ

λ

(
Aκ + 4κµ

λ
+ 3µ′

)
− κλv2s2β + λ2v2ε

2µ
s2β + λ

µ
(ξFµ

′ + ξS)


(D.20)

Generally, since we want to have minimal mixing of the singlet-like Higgs to the others,

the (2,2) element of the above should approximately give the tree-level mass of hS. The (1,1)

element should similarly correspond to the mass of the h. Loop corrections to this mass

should be the usual MSSM corrections from the squarks. Sbottoms and staus generally lead

to small (∼ few GeV) negative corrections, while one can get large positive corrections from

the stops. Therefore, since we want this h to correspond to the observed SM-like Higgs, we

always constrain λ to be such that M2
hS(1, 1) . 130 GeV.

In the Z3 NMSSM, m3 = 0 and therefore mA and Aλ are not independent parameters,

but again related via Eq. III.13. In that case, the (1,3), (2,3) and (3,3) elements of the

CP-even mass matrix are as follows:

M2
hZ3

(1, 3) = −λvµc2β
(
m2
A

2µ2
s2β +

κ

λ

)
(D.21)

M2
hZ3

(2, 3) = 2λvµ

(
1− m2

A

4µ2
s22β −

κ

2λ
s2β

)
(D.22)

M2
hZ3

(3, 3) = λ2v2s2β

(
m2
As2β
4µ2

− κ

2λ

)
+
κµAκ
λ

+
4κ2µ2

λ2
. (D.23)

When κ/λ is small, the CP-even singlet will generally be light and therefore to minimize

mixing of the singlet with the SM-like Higgs, we need:

m2
A =

4µ2

s22β

(
1− κ

2λ
s2β − ε

)
. (D.24)

The above clarifies the limit in which the above reduction is valid: when 2µ/s2β >> κµ/λ

the heavy Non-SM like Higgs decouples and with mA ∼ 2|µ|/s2β the SM-like Higgs has a

negligible singlet component.
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The singlet components of the Higgses are now given as:

SH,s ≈ −
λv

2µ
c2βs2β (D.25)

Sh,s ≈
−2λvµε

(m2
h −m2

hS
)
. (D.26)

These correspond to the following up and down components of the singlet:

ShS ,u ≈
−2λvµε

(m2
h −m2

hS
)
sβ +

λv

2µ
c2βs2βcβ (D.27)

ShS ,d ≈
−2λvµε

(m2
h −m2

hS
)
cβ −

λv

2µ
c2βs2βsβ ∼ −

λv

2µ
c2βs2βsβ (D.28)

Note that when κ/λ >> 1, mhS will generically be pushed up and the Singlet Higgs will

decouple from the now MSSM like CP-even Higgs sector.

The (2,2) element of the reduced (2 × 2) matrix, which in the limit of zero-mixing with

the other Higgs should give the tree-level hS mass, in the Z3 NMSSM is given by:

M2
hSZ3

(2, 2) =
κµ

λ

(
Aκ +

4κµ

λ

)
+
λ2v2m2

A

4µ2

(
1− c22β

)
s22β −

κ2µ2v2

m2
A

c22β −
1

2
κλv2

(
2c22β + 1

)
s2β

(D.29)

Setting ε ∼ 0, (mA = 2µ/s2β):

M2
hSZ3

(2, 2) =
κµ

λ

(
Aκ +

4κµ

λ

)
+ λ2v2

(
1− c22β

)
− κ2v2

2
s22βc

2
2β −

1

2
κλv2

(
2c22β + 1

)
s2β

(D.30)

The above in the large tβ limit and dropping sub-dominant terms is in agreement with

the expressions presented in Refs. [43, 44].

Appendix E: Direct-Detection

The spin-independent elastic cross-section for a neutralino scattering off a heavy nucleus

due to the exchange of all the Higgses is given by

σSI =
4m2

r

π
[Zfp + (A− Z)fn]2 (E.1)
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where mr = mNmχ
mN+mχ

, mN is the mass of the nucleus, mχ is the neutralino mass, and in the

decoupling limit:

fp,n =

( ∑
q=u,d,s

f
(p,n)
Tq

aq
mq

+
2

27
f
(p,n)
TG

∑
q=c,b,t

aq
mq

)
m(p,n), (E.2)

au =
−g2mu

4mW sβ

[
(g2N12 − g1N11)

{
N13

[
−ShS ,uShS ,d

m2
hS

− sβcβ
(

1

m2
h

− 1

m2
H

)]
+N14

(
s2β
m2
h

+
c2β
m2
H

+
S2
hS ,u

m2
hS

)}
+
√

2λ

{
N13N14

(
−Sh,ssβ
m2
h

+
SH,scβ
m2
H

+
ShS ,uShS ,s
m2
hS

)
+N15

[
N14

(
cβsβ

(
1

m2
h

− 1

m2
H

)
+
ShS ,dShS ,u
m2
hS

)
+N13

(
s2β
m2
h

+
c2β
m2
H

+
S2
hS ,u

m2
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)]}
−
√

2κN2
15

(
−Sh,ssβ
m2
h
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SH,scβ
m2
H

+
ShS ,uShS ,s
m2
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)]
,

(E.3)

ad =
g2md

4mW cβ
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N13
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m2
h
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s2β
m2
H
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−N14
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m2
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1
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− 1
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−
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√
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m2
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)]
.

. (E.4)

Note that in the non-decoupling limit, the above reproduces the general formula with the

replacement of cβ → −sα and sβ → cα everywhere except for the common factor. m(p,n) is

either the proton or the neutron mass. For their respective form factors for {u, d, s}, we use

the default parameters used by micrOMEGAs 3.2 [28, 52]:

fpTq = {0.0153, 0.0191, 0.0447}; fnTq = {0.011, 0.0273, 0.0447} . (E.5)

Further, f
(p,n)
TG = 1− f (p,n)

Tu
− f (p,n)

Td
− f (p,n)

Ts
.
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