CaltechAUTHORS
  A Caltech Library Service

Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging

Dong, Siyuan and Horstmeyer, Roarke and Shiradkar, Radhika and Guo, Kaikai and Ou, Xiaoze and Bian, Zichao and Xin, Huolin and Zheng, Guoan (2014) Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Optics Express, 22 (11). pp. 13586-13599. ISSN 1094-4087. http://resolver.caltech.edu/CaltechAUTHORS:20140717-090854034

[img]
Preview
PDF - Published Version
See Usage Policy.

2979Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20140717-090854034

Abstract

We report an imaging scheme, termed aperture-scanning Fourier ptychography, for 3D refocusing and super-resolution macroscopic imaging. The reported scheme scans an aperture at the Fourier plane of an optical system and acquires the corresponding intensity images of the object. The acquired images are then synthesized in the frequency domain to recover a high-resolution complex sample wavefront; no phase information is needed in the recovery process. We demonstrate two applications of the reported scheme. In the first example, we use an aperture-scanning Fourier ptychography platform to recover the complex hologram of extended objects. The recovered hologram is then digitally propagated into different planes along the optical axis to examine the 3D structure of the object. We also demonstrate a reconstruction resolution better than the detector pixel limit (i.e., pixel super-resolution). In the second example, we develop a camera-scanning Fourier ptychography platform for super-resolution macroscopic imaging. By simply scanning the camera over different positions, we bypass the diffraction limit of the photographic lens and recover a super-resolution image of an object placed at the far field. This platform’s maximum achievable resolution is ultimately determined by the camera’s traveling range, not the aperture size of the lens. The FP scheme reported in this work may find applications in 3D object tracking, synthetic aperture imaging, remote sensing, and optical/electron/X-ray microscopy.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1364/OE.22.013586DOIArticle
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-11-13586PublisherArticle
ORCID:
AuthorORCID
Horstmeyer, Roarke0000-0002-2480-9141
Additional Information:© 2014 Optical Society of America. Received 3 Apr 2014; revised 14 May 2014; accepted 15 May 2014; published 29 May 2014. We thank Prof. Changhuei Yang for helpful discussion. We also thank him for letting us use his motion controller. Huolin Xin acknowledges support from the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. For more information on Fourier ptychography, please visit us at ‘Smart Imaging Lab at UConn’: https://sites.google.com/site/gazheng/.
Funders:
Funding AgencyGrant Number
Department of Energy (DOE)DE-AC02-98CH10886
Classification Code:OCIS codes: (110.0110) Imaging systems; (100.6640) Superresolution; (100.3190) Inverse problems; (170.0180) Microscopy; (090.1995) Digital holography.
Record Number:CaltechAUTHORS:20140717-090854034
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20140717-090854034
Official Citation:Dong, S., Horstmeyer, R., Shiradkar, R., Guo, K., Ou, X., Bian, Z., . . . Zheng, G. (2014). Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Optics Express, 22(11), 13586-13599. doi: 10.1364/oe.22.013586
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:47285
Collection:CaltechAUTHORS
Deposited By: Jason Perez
Deposited On:17 Jul 2014 23:58
Last Modified:13 Mar 2017 17:50

Repository Staff Only: item control page