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Abstract The 2011 Tohoku earthquake (Mw 9.0) was followed by a large number
of aftershocks that resulted in 70 early warning messages in the first month after the
mainshock. Of these warnings, a non-negligible fraction (63%) were false warnings in
which the largest expected seismic intensities were overestimated by at least two
intensities or larger. These errors can be largely attributed to multiple concurrent after-
shocks from distant origins that occur within a short period of time. Based on a Baye-
sian formulation that considers the possibility of having more than one event present at
any given time, we propose a novel likelihood function suitable for classifying multi-
ple concurrent earthquakes, which uses amplitude information. We use a sequential
Monte Carlo heuristic whose complexity grows linearly with the number of events.
We further provide a particle filter implementation and empirically verify its perfor-
mance with the aftershock records after the Tohoku earthquake. The initial case stud-
ies suggest promising performance of this method in classifying multiple seismic
events that occur closely in time.

Introduction

During the highly seismically active period after a major
earthquake, multiple earthquakes can occur almost concur-
rently at different locations. In this case, the seismic waves
measured by the ground sensors contain mixed signals from
more than one source. If the detection algorithm assumes
only one earthquake, the estimated earthquake parameters
(e.g., location and magnitude) will not be accurate. These
inaccurate estimates can lead to false warnings that are often
observed after large earthquakes.

The 2011 Off the Pacific Coast of Tohoku Earthquake
(hereafter called Tohoku earthquake) caused significant dam-
age over a large area of northeastern Honshu. An earthquake
early warning (EEW) was issued to the public in the Tohoku
region about 8 s after the first P arrival, which is 31 s after the
origin time (Hoshiba and Iwakiri, 2011; Hoshiba et al., 2011;
Sagiya et al., 2011). There was no blind zone, that is, warn-
ings were received at all locations before the S arrivals, be-
cause the earthquake was fairly far offshore.

The main earthquake was followed by a large number of
aftershocks that resulted in 70 early warnings issued in the
first month after the mainshock (Japan Meteorological
Agency [JMA], 2011). Among these, 63% of the warnings
contained significant errors in which the estimated seismic
intensities were at least two scales larger than the observed
ones. As a comparison, only 29% of the warnings contained
such errors prior to the Tohoku earthquake. Postevent analy-
sis revealed that 73% of these errors could be attributed to
failure to classify multiple concurrent earthquakes either

from the same hypocenter separated by a short amount of
time or from spatially distant origins (JMA, 2011). One of
the primary reasons for these false alarms is that the current
approach uses mainly P-wave arrival time to estimate the
hypocenter.

In this paper, we propose a novel approach to detect and
classify multiple concurrent earthquakes in the current JMA
system framework. We introduce an approximate Bayesian
method that estimates the location, magnitude, and origin
time of multiple concurrent aftershocks. In contrast to the
current JMA system, this approach produces multiple sets of
estimation for earthquakes that occur closely in time. The
experimental results from several case studies suggest that
this approach can successfully detect and estimate the param-
eters of multiple concurrent earthquakes.

Data and Processing

This paper includes strong-motion data observed by the
JMA seismic stations during and after the Tohoku earth-
quake. We evaluate the new classification approach on three
sections of these records as summarized below. For each rec-
ord, the values included in the JMA EEW are compared with
the values that appear in the JMA catalog in Table 1.

Data Set

Case 1: 15 March 2011, 1:36:00–1:38:00 (Two Small Earth-
quakes). Early warnings were issued to the public based on
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an estimated JMA magnitude of 5.9 at 21 s after the first
P-wave detection (see Data and Resources). However, the
largest observed seismic intensity was only 2 in the JMA seis-
mic intensity scale. As shown in Table 1, at least two events
about 200 km apart and of magnitude 2.5 and 3.3 occurred
within 15 s. Because the second event started close in time to
the wave arrivals of the first event, the EEW system treated
these separate events as one single earthquake and, as a re-
sult, overestimated the magnitude.

Case 2: 20 March 2011, 14:19:00–14:21:00 (Two Small
Earthquakes). The JMAEEWsystem estimated amagnitude
of 7.6 at 6.6 s after the initial P-wave detection and issued a
warning to the public (see Data and Resources). However, the
largest observed seismic intensity was only 3. Again, as
shown in Table 1, the overestimation can possibly be attrib-
uted tomistaking two smaller earthquakes about 150 km apart
(JMA magnitude 3.0 and 4.7) that occurred within 5 s for one
large earthquake, because the occurrence of the second event
was close in time to the wave arrival of the first event.

Case 3: 11 March 2011, 14:46:00–14:49:00 (Tohoku Earth-
quake). To demonstrate that the method can also handle the
classification of a single event, we also include the analysis
of the Tohoku earthquake (Mw 9.0). An early warning was
issued to the public in the Tohoku region about 8 s after the
first P arrival, which is 31 s after the origin time (see Data
and Resources).

Processing

This paper uses the three-component acceleration data
with a sampling rate of 100 Hz from about 200 stations.
The acceleration datawere first converted to Seismic Analysis
Code format and decimated by a factor of 100, reducing the
sampling frequency to 1 Hz. The decimation was not neces-
sary but was used to reduce computation time. Each compo-
nent of the decimated acceleration k�t� was then converted to
displacementA�t�. The conversionwas done by twice integra-
tion of k�t� using a recursive digital filter with the frequency
response of a mechanical seismometer (Katsumata, 2008).

A�t� � g0 × �k�t� � h0 × k�t − 1� � h1 × k�t − 2�� − h2

× A�t − 1� − h3 × A�t − 2�; �1�

in which the function gain factor g0 and filter constants h0, h1,
h2, and h3 depend on the sampling frequency, damping con-
stant, and natural period of the seismometer. For a JMA seis-
mometer with 100 Hz sampling, 0.55 damping constant, and
6 s natural period, the values correspond to

g0 � 0:0000248691025; h0 � 1:0; h1 � 1:0;

h2 � −1:9889474; h3 � 0:9895828: �2�

The following approach to classification uses both the
vector sum of the three component displacement A�t� as well
as the vertical component of acceleration k�t�. The picking is
done with short-term average/long-term average of k�t� with
a short-term window of 1 s and long-term window of 10 s.
The method also computes expected P- and S-wave arrival
times (tP and tS) to determine whether a station should have
observed a Pwave, Swave, or neither. These arrival times are
computed with the JMA 1D layered velocity structure (Ueno
et al., 2002).

Bayesian Method

The problem of continuous parameter estimation for
multiple events can be formulated as a Bayesian inference
problem. Let θ be the vector of parameters that characterizes
an event and Θ be a set of events that are parametrized by θ,
such that Θ � fϕ; fθ1g;…; fθ1; θ2;…gg. Suppose z1:t is the
complete history of observations from all the stations until
the current time t, the posterior P�Θtjz1:t� reveals the distri-
bution of information of current ongoing events at time t
given the evidence and prior information.

P�Θtjz1:t� �
P�ztjΘt�P�Θtjz1:t−1�

P�ztjz1:t−1�
; �3�

in which P�ztjΘt� is the likelihood function and is typically
denoted as L, L�ztjΘt� � P�ztjΘt�. P�Θtjz1:t−1� is the up-
dated prior at time t,

P�Θtjz1:t−1� �
Z

P�ΘtjΘt−1�P�Θt−1jz1:t−1�dΘt−1; �4�

and P�Θ0jz0�≡P�Θ0� is the prior distribution of Θ.

Table 1
Summary of the Earthquake Information Studied in This Paper

Mest Longitude (°) Latitude (°) Depth (km)
Date

(mm/dd)
Time

(hh:mm:ss.ss) M Longitude (°) Latitude (°) Depth (km)

Case 1 5.9 138.6 36.9 10 03/15 01:35:57.35 2.5 138.610 36.938 3.4
03/15 01:36:12.72 3.3 139.879 35.526 20.5

Case 2 7.6 142.1 38.2 30 03/20 14:19:38.27 3.0 141.935 38.286 42.3
03/20 14:19:58.06 4.7 140.794 37.082 7.2

Case 3 8.6 142.7 38.2 10 03/11 14:46:48.08 9.0 142.861 38.103 23.7

The first four columns correspond to the real-time JMA EEW records. The last six columns are the values documented in the JMA unified
hypocenter catalog. Both cases 1 and 2 contain two events. JMA magnitude is used for M.
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Particle Filter

In general, equation (3) does not have a closed-form sol-
ution, and there are several suboptimal solutions to approxi-
mate the posterior distribution (Arulampalam et al., 2002),
one of which is grid search. Grid search, though simple to
implement, suffers a few problems. First of all, when the
parameters are continuous and not sufficiently restricted, the
method cannot cover the complete parameter space because
there can only be a finite number of grids. Second, the grid
size is predefined; and, as a result, it requires a large number
of grids to achieve good coverage at a desired resolution.

Another solution is the particle filter (PF), which is a
sequential Monte Carlo method that approximates the pos-
terior distribution with a set of weighted particles (Doucet
et al., 2001). As the number of particles goes to infinity,
the solution from PF approaches the optimal solution. There
is a rich literature on PF and its variation (Liu and Chen,
1998; Doucet et al., 2001; Arulampalam et al., 2002). The
basic procedure is summarized below for reference.

Sampling. At the beginning of each iteration, the value of
each particle is drawn from an important density function
q�Θi

tjΘi
t−1; zt�. For i � 1;…; N

Θi
t ∼ q�Θi

tjΘi
t−1; zt�; �5�

in which ∼ denotes that the sample Θi
t is drawn according to

the distribution q�·�.

Weight Update. PF approximates the posterior with a col-
lection of weighted particles:

P�Θtjz1:t� ≈
XN
i�1

wi
t × δ�Θt − Θi

t�; �6�

in which wi
t is the weight for the particle i at time t. The sum

of total weights are normalized to 1.

XN
i�1

wi
t � 1: �7�

The weights for all particles are updated as new evidence
zt comes in and renormalized at the end of each update:

wi
t ∝ wi

t−1
L�ztjΘi

t�P�Θi
tjΘi

t−1�
q�Θi

tjΘi
t−1; zt�

; �8�

in which q�·� is the same important density that appears in
the sampling step. To simplify the calculation, q�·� is often
chosen to be the transition prior P�Θi

tjΘi
t−1�. Because the

terms cancel out in the right side, the new weight is directly
proportional to the likelihood L�ztjΘi

t�.

Resampling. Because the posterior is approximated with
discrete particles, the system suffers sample degeneracy after
a few update iterations when the weight is concentrated on
a very small number of particles. The decrease in weight

variance determines the degree of degeneracy that can be
approximated with dNeff (Arulampalam et al., 2002),

dNeff �
1PN

i�1�wi
t�2

: �9�

Small dNeff indicates severe degeneracy in which case resam-
pling is required. Resampling essentially eliminates particles
with negligible weight by generating a new set of N equally
weighted particles according to current distribution P�Θtjz1:t�.
There exists many methods for sampling from a discrete dis-
tribution, which we will not discuss here.

Each iteration typically involves one sampling and one

weight update. Resampling only happens when dNeff drops
below a certain threshold.

Model

In the rest of the section, we discuss the practical imple-
mentation details of a PF-based real-time parameter estima-
tion system for multiple earthquakes. The parameters we
would like to estimate are θ � �x; y; D;M; t0�, in which x is
longitude in degrees, y is latitude in degrees, D is depth in
kilometers, M is JMA magnitude, and t0 is origin time. The
complete pseudocode (algorithm 1 in Fig. A1) is included in
the Appendix.

Prior Distribution. The prior P�θ� determines how the par-
ticles are initialized. A good prior encodes geographical in-
formation such as the location of nearby fault lines to the
station that first triggered and the most common magnitudes
generated at the fault lines. This information can be compiled
from historical earthquake catalog for each station and used
in real time when initializing the PF. If prior information is
absent, then a flat prior can be used instead. The choice of
prior distribution affects the quality of the estimates and the
convergence rate. Prior distribution of large coverage may
cause the initial estimates to be unstable because little evi-
dence is present. Priors of small coverage may result in slow
convergence or false convergence (converging at the wrong
values). These trade-offs can be evaluated empirically. In this
paper, we use a uniform flat prior of �100 km for location,
�10 km for depth, �1 magnitude for event magnitude, and
�10 s for event origin time.

Likelihood Function. The performance of the PF for param-
eter estimation depends largely upon the design of the like-
lihood function. In addition to the arrival time and measured
amplitude from the triggered stations that current JMA ap-
proach uses, our likelihood function also utilize the same in-
formation from nontriggered stations as well because they
also convey important information about the event.

In this paper, we use the attenuation relationship developed
by JMA for magnitude estimation. The relationship is stated as
follows (Hoshiba and Ozaki, 2013). Let Amax be the maximum
displacement measured by a seismometer after the onset of an
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event. The earthquake P-wave and S-wave magnitudesMP and
MS can be expressed as a function of the linear distance from
the station to the hypocenter (R), the depth of the hypocenter
(D), and the maximum displacement for P wave (AP

max), or the
maximum displacement of the entire duration (AP�S

max ):

0:72MP � logAP
max � 1:2 logR� 5 × 10−4R − 5:0

× 10−3D� 0:46; �10�

0:87MS � logAP�S
max � logR

� 1:9 × 10−3R − 5:0 × 10−3D� 0:98: �11�
The relationship between the parameters is illustrated in

Figure 1. These formulas are specifically tailored for the geo-
logic compositions in Japan (see Data and Resources). The
P-wave and S-wave magnitudes are expressed in terms of the
maximum displacement Amax rather than the maximum accel-
eration or velocity because the scatter of displacement is smaller.

Given equations (10) and (11) and that the displacement
is lognormally distributed A ∼ lnN �μ; σ2�, we propose the
following likelihood function for a single station:

L�zjx; y;D;M; t0� �
exp −�logAmax−logAexp�2

2σ2

Amax × σ
������
2π

p : �12�

Here Aexp is the expected Amax and σ is the standard deviation
of displacement measurement. Depending on whether the
station has observed P wave, S wave, or neither, the expected
maximum displacement and its standard deviation are differ-
ent. For convenience, by rearranging equations (10) and (11),
we can compute Aexp and σ for the following three cases.

Note that equation (12) is based on an amplitude that
departs from standard arrival-time-based methods. The main
reason for adopting this approach is the observation that the
information of no shaking is critical in separating and clas-
sifying multiple earthquakes that occur close in space and
time. This will be further discussed in the Discussion section.

• Has not observed any seismic wave:

logAexp � logAnoise; σ � σnoise: �13�

• Has observed P wave:

logAexp � 0:72MP − 1:2 logR − 5 × 10−4R� 5:0

× 10−3D − 0:46; σ � σP: �14�
• Has observed S wave:

logAexp � 0:87MS − logR − 1:9 × 10−3R� 5:0

× 10−3D − 0:98; σ � σS: �15�

Anoise and σnoise are the noise in displacement measure-
ment due to recent environmental noise and can be computed
independently for each station by keeping a running window.
σP and σS can be precomputed from historical earthquake
data. The decision of which Aexp to compute for a station
depends on whether P wave, S wave, or neither has arrived
at the station. The expected travel time of P wave and S wave
(tP and tS) can be computed with ray theory, given the rel-
ative location of the station to a hypocenter �x; y; D�. Com-
parison between tP, tS, the absolute current time t, and the
absolute event start time t0 gives direct estimation of which
Aexp to compute for a station. Figure 2 provides an illustrative
summary of these design ideas.

This design of the likelihood function is based on the
maximum displacement Amax that a seismometer observes
during the shaking of a P or Swave. However, a seismometer
may not observe the maximum displacement immediately
after the wave arrival. In this case, the initial estimates can
be highly incorrect using this likelihood function. A simple
delay function g�·� can be included to approximate the in-
stantaneous displacement before the maximum is observed,

Aexp � g�t − t0 − tP�Amax; 0 ≤ g�·� ≤ 1; �16�

in which t and t0 are the absolute current time and the
absolute event origin time, respectively. tP is the expected
P-wave travel time. An example of g�t� is a left shifted sig-
moid function.

The likelihood L�·j·� is applied in each time step to up-
date the weight of each particle. Assuming that each station
makes independent observations and the collection of obser-
vations from all stations is z, the complete likelihood func-
tion becomes

RD

Hypocenter 

Station 

P-wave S-wave 

tP

tS

Ap
max

Ap+s
max

t0 

(a) (b)

Figure 1. Illustrations of the parameters used in the Model section. (a) Hypocenter and seismic station and (b) amplitude and arrival
times. tP and tS mark the arrival time of the P wave and S wave since the start of the earthquake at t0, tP ≤ tS.
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L�zjx; y; D;M; t0� �
Yn
i�1

L�zijx; y; D;M; t0�; �17�

in which n is the number of stations. The independence
assumption is a minor simplification because nearby stations
may have correlated observations.

Generalized Particle Filter

Particles are initialized according to a prior distribution
on the parameters. Because we are approximating an un-
bounded and continuous 5D space with a bounded and dis-
crete one, care must be taken to ensure the particles have
sufficient coverage and the number of required particles stays
bounded. This is especially important for the seismic appli-
cation because both the number of parameters and the range
of values they can take are large. One way to ensure particle
diversity with a limited number of particles is to adopt the
regularized PF (RPF) approach (Arulampalam et al., 2002).

RPF differs from common PF only in the resampling
stage. Rather than sampling from a discrete approximation
of the posterior density P�·jz� as in equation (6), RPF samples
from a continuous approximation (Musso et al., 2001). More
specifically, RPF draws samples from the approximation,

P�θjz� ≈
XN
i�1

wi × Kh�θ − θi�; �18�

in which Kh�θ� � 1
h K�θ=h�; h > 0 is the rescaled kernel

density of K�·�, h is the bandwidth, and wi is the normalized
weight for the particle i. As a comparison, Kh�θ� is the Dirac
delta function δ�θ� in the regular PF. Special care is given
to the design of kernels to minimize the error between the
approximated and actual distribution. Under the assumption
that all particles are equally weighted and the density is
Gaussian, the optimal kernel is the Epanechnikov kernel
(Musso et al., 2001).

Kopt�x� �
� nx�2

2Cnx
�1 − ∥x∥� ∥x∥ < 1

0 otherwise
; �19�

in which nx is the dimension of the parameter space, Cnx is
the volume of the unit hypersphere in Rnx . Figure 3 lists a
few popular kernels in the literature.

The bandwidth vector h can be chosen proportionally to
the variance in the particle population by computing the Cho-
lesky decomposition of the empirical covariance matrix
(Bickel and Levina, 2008).

Approximate Method for Multiple Concurrent
Earthquakes

PF allows for solving the Bayesian inference problem
when exact inference is intractable; however, for the esti-
mates to approach the optimal solution, the number of re-
quired particles must grow exponentially with the number
of events.

Fortunately, as shown in historical records, the probabil-
ity of having n concurrent earthquakes within a time window
of 60 s is exponentially small for large n (n > 3). Incorpo-
rating this information into the prior distribution can signifi-
cantly reduce the size of the state space. However, the state
space may still be too large for efficient real-time computa-
tion even with this information. For example, suppose the
earthquake can be parameterized by a five-parameter vector
θ, θ � �xyDMt0�T , in which �xyD�T is the [longitude,
latitude, depth] coordinate, M is the event magnitude, and
t0 is the event starting time. In the presence of n � 3 earth-
quakes, the states to be searched reside in a 5 × 3 � 15-
dimensional space.

This amount of computation may be executable in rea-
sonable time on a supercomputer or a networked system of
computers with parallel implementation of PF (Miao et al.,
2010; Durham and Geweke, 2013). In this paper, however,

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Epanechnikov
Uniform
Trianglar

Figure 3. Some popular smoothing kernels used in regularized
particle filter (RPF). Each kernel integrates to 1 to ensure that the
resulting density is still a probability density function.

Epicenter 

S-wave front 

P-wave front 

Stations that 

seismic shaking 
Eq. (13)

Stations that 
have observed 
only the P-
wave 
Eq. (14)

Stations that  
have both  
P- and S -
wave 
Eq. (15) 

Figure 2. Illustrative summary of the design of a single-station
likelihood function. The expected observation made by a station
depends on whether it should have observed a P wave, S wave,
or neither, given a hypocenter estimate.
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we propose a simple heuristic to keep track of multiple earth-
quakes. The heuristic has the desired property such that the
complexity grows linearly with the number of the events.

As a first approximation, the heuristic initializes separate
PFs pf1�θ1�; pf2�θ2�;… for all possible earthquakes rather
than keeping track of all events within one PF
pf�Θ � fθ1; θ2;…g�. Each PF communicates its current esti-

mate θ̂ at the end of each update step to all other PFs. Specifi-
cally, each PF (pfi) computes the following posterior at time t,

P�θtijz; fθ̂t−1j ; j ≠ ig�: �20�
This approximation breaks down the 5n state space inwhich n
is the number of concurrent earthquakes. It dramatically re-
duces the required computations to keep all events estimation
up to date; however, it is suboptimal because all the particles
from pf1; pf2;… combined only cover a small fraction of the
complete parameter space.

The heuristic initializes a new PF with each single sta-
tion P-wave pick, using a high threshold such that noisy de-
tections are filtered out. Because local detection can be due
to an existing event that is being tracked by another PF, it is
necessary to condition new initialization on a separate met-

ric. A natural choice of metric is P�zjθ̂1; θ̂2;…�, that is, the
probability that the triggered measurement can be explained
by existing events. Computation of this metric can follow
directly from the single-station likelihood calculation as in
equation (12); however, determining Aexp is nontrivial in this
case because it involves computing the additive effect of the
interference of multiple wavefronts. We propose an alterna-
tive metric that allows for rapid computation; the metric is
the probability of shaking due to any of the existing events
and threshold on the highest probability:

max
i
P�zjθ̂i� � max

i
L�zjθ̂i�

�
< τ; initialize new pf
≥ τ; do nothing

: �21�

By tuning the threshold τ, we adjust how conservative the
system is in declaring new events. The complete algorithm
is outlined in Figure A1 for reference.

Results

We carried out the PF parameter estimation approach on
the data described in the Data and Processing section, using a
flat prior around the first triggered station and 1000 particles
for each PF. The algorithm updates at a 1 s interval, and all
experiments were run in simulated real time.

Case 1: 15 March 2011, 1:36:00–1:38:00 (Two Small
Earthquakes)

Twenty trials were performed during this period of time.
Snapshots of the particle distribution for one of the runs are
shown in Figure 4. The averaged time histories of the esti-
mated parameters across all 20 runs were compared against
the JMA unified catalog (marked as dotted lines) in Figure 5.

The standard deviations across all runs are included as the er-
ror bars. The labeled x axis corresponds to seconds because of
the first detection of the first event. As the results demonstrate,
the first PF was initiated at the first P-wave arrivals, and 15 s
later, another PF was created. This approach successfully
identified the two separate events. In addition, all estimates
converge within 10 s after the initializations. On average,
the method is able to localize the epicenters to within
20 km and produce magnitude estimates with an error of
�1, relative to the JMA unified hypocenter catalog (Table 1).

Case 2: 20 March 2011, 14:19:00–14:21:00 (Two
Small Earthquakes)

We repeated the analyses for the dataset of case 2, in
which two small earthquakes occurred 5 s apart. The snap-
shots of particle distributions and time series of estimated
parameters are included in Figures 6 and 7. In this example,
because the first event occurred offshore and there were fewer
near-source recordings, localization and estimation of other
parameters are more challenging than for case 1. Indeed, the
results showed that the estimates converge slower (about 30 s
for event A), and the averaged localization error was relatively
large (about 80 km for event A), relative to the JMA unified
hypocenter catalog (Table 1). However, the algorithmwas still
able to identify and separate the two events and to provide
accurate estimates of their magnitudes to within �0:5.

Case 3: 11 March 2011, 14:46:00–14:49:00 (Tohoku
Earthquake)

We used the dataset of the Tohoku earthquake to show
that the approach also works for a single event. The snapshots
of particle distributions and time series of estimated parameters
are included in Figures 8 and 9. Because the event was origi-
nated offshore, there was substantial localization error in the
initial estimates. However, the averaged error decreased with
time and converged at less than 40 km at 40 s after the initial P-
wave arrival. The magnitude estimate grew from 6.0 to 8.4 as
the earthquake rupture propagated, which is consistent with the
earthquake rupture physics. At convergence, all five estimated
parameters were close to the values in the JMA catalog.

Discussion

Current JMA methods to detect and associate multiple
earthquakes perform well when the events are far apart in
space or time. However, they have been shown to generate
many false alarms when events are close in space or time
(Sagiya et al., 2011). The empirical studies suggest the par-
ticle-based heuristic can successfully separate multiple con-
current seismic events and provide reasonable estimates of
their parameters. Also, the speed of convergence may be im-
proved by incorporating P-wave arrival time in the likeli-
hood, that is, the residual between observed and predicted
P-wave arrival times. The results show that estimated param-
eters converge in less than 10 s for inland earthquakes. For
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Figure 5. Results compiled from 20 independent runs for the period between 01:36:07 and 01:36:37 on 15March 2011. Time histories of (a) the
localization error, (b) magnitude, (c) depth of the hypocenter, and (d) origin time of the event. The two events are labeled according to Figure 4d.
Averaged time histories across all 20 runs are marked as solid lines, and the official values that appear in the JMA catalog are marked as dashed lines.
The standard deviations across all runs are shown as error bars. The time displayed on the x axis is relative to the first pick from the earliest event.
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Figure 4. Distributions of 2000 particles visualized on the map at (a) 1 s, (b) 2 s, (c) 14 s, and (d) 17 s after 01:36:07 on 15 March 2011.
The time corresponds to seconds elapsed since the first P-wave detection. The official epicenters for the two events as they appeared in the
JMA catalog are marked as stars and labeled in (d) for reference. The color version of this figure is available only in the electronic edition.
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Figure 6. Distributions of 2000 particles visualized on the map at (a) 2 s, (b) 7 s, (c) 17 s, and (d) 37 s after 14:19:56 on 20 March 2011.
The symbols are defined as in Figure 4. The color version of this figure is available only in the electronic edition.
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Figure 7. Results compiled from 20 independent runs in the period between 14:19:56 and 14:20:36 on 20 March 2011. The subfigures
and included symbols are defined as in Figure 5.
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offshore earthquakes, the estimates converge in 20–30 s. In
terms of localization error, we observed less than 20 km for
inland earthquakes and 20–80 km for offshore events.

In order to classify multiple concurrent earthquakes, the
use of nontriggered stations is important. The current JMA
EEW system uses arrival times of waves at only the triggered
stations in the hypocenter calculation. As a result, when multi-
ple earthquakes occur around the same time and the later event
occurs close to the wave arrival times of the earlier event, the
EEW system treats these events as one single earthquake. If this
is the case and the stations around the later event observe non-
negligible shakings, the current system may overestimate the
magnitude because these stations are far away from the esti-
mated hypocenter (i.e., the location of the earlier event). In our
approach, the likelihood function uses information from not
only the triggered stations but also the nontriggered ones. This

design together with the adaptive measure of Anoise allows the
algorithm to identify unaffected regions between events and is
therefore crucial in separating multiple concurrent earthquakes.

Another advantage of our approach is the use of regu-
larized PF to circumvent the need for intensive computation
that traditional grid search requires. Although a prior distri-
bution is still required as mentioned in the Model section,
such a distribution can be compiled from historical records.
Alternatively, initial measurements can be used to select the
appropriate priors to achieve better performance (Liu et al.,
2011). This approach is also subject to several weaknesses.
For example, the algorithm is sensitive to the choice of prior
distribution, the number of particles, the values of Anoise,
σnoise, σP, and σS. Although these values can be adjusted
and adapted in real time, it requires extensive empirical stud-
ies and analyses of historical records for the algorithm to be
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Figure 8. Distributions of 1000 particles visualized on the map at (a) 2 s, (b) 7 s, (c) 13 s, (d) 22 s, (e) 32 s, and (f) 62 s after 14:46:46 on
11 March 2011. The symbols are defined as in Figure 4. The color version of this figure is available only in the electronic edition.
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robust. Some of the slow convergence and high variance re-
sults in the Results section may be attributed to suboptimal
choices in these parameters.

In this paper, we use only three cases to test the proposed
method, so we are currently carrying out more extensive eval-
uations of ourmethod usingmany examples ofmultiple earth-
quake sequences that have occurred over the last several years.

As a side note, the performance of parameter estimation
for multiple seismic events is limited by how well one can
model the ground motion when multiple wavefronts overlap.
In the algorithm proposed in the Model section (see Fig. A1),
this model is not considered. Although the omission makes
little difference in the case studies in which the events are spa-
tially far apart (greater than 100 km), if we want to apply the
same technique to separate aftershocks from mainshock that
occur close in time, then such model should be considered.

Conclusion

In the seismically active period, multiple earthquakes of
similar or distant origins can take place at almost the same
time. Failure to identify them as separate events leads to poor
estimates of their parameters. The error in estimates can in turn
cause false warnings. In this paper, we study the problem of
detecting and classifying multiple earthquakes that occur close
in time. Based on a Bayesian formulation that considers the
possibility of having more than one event present at any given
time, we propose a novel-likelihood function suitable for clas-

sifying multiple concurrent earthquakes and present a sequen-
tial Monte Carlo heuristic whose complexity grows linearly
with the number of events. The performance of the heuristic
is empirically validated with three sets of JMA seismic records
after the 2011 Tohoku earthquake. The initial studies show
that the approach is able to successfully separate multiple
events that occur close in space and time and estimate their
parameters in real time to a reasonable degree of precision
in comparison to official values determined by JMA in the
postevent analyses. Although complete validation and charac-
terization are required before this method applied in real-time
detection, the initial results show that our approach can reduce
the chance of overestimation of earthquake magnitude and, as
a result, contribute to the design of a better EEW system.

Data and Resources

Waveform data used in the present study were extracted
from continuous recordings of the stations within the Japan
Meteorological Agency (JMA) strong-motion network. The
JMA earthquake early warning (EEW) performance in three
cases is available at http://www.data.jma.go.jp/svd/eew/
data/nc/pub_hist/2011/03/20110315013605/content/content
_out.html, http://www.data.jma.go.jp/svd/eew/data/nc/pub
_hist/2011/03/20110320141959/content/content_out.html,
and http://www.data.jma.go.jp/svd/eew/data/nc/pub_hist/
2011/03/20110311144640/content/content_out.html (last ac-
cessed July 2013). We use Seismic Analysis Code (http://
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Figure 9. Results compiled from 15 independent runs for the period between 14:46:46 and 14:48:46 on 11 March 2011. The subfigures
and included symbols are defined as in Figure 5.
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www.iris.washington.edu/software/sac/manual/fileformat
.html, last accessed July 2013) for the data processing. The
JMA attenuation relationship is available in the report of
the second JMA EEW evaluation committee (http://www
.data.jma.go.jp/svd/eqev/data/study-panel/eew-hyoka
/t02/shiryou.pdf, last accessed July 2013).
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Appendix

The algorithm in Figure A1 describes the outline of regu-
larized particle filter for multiple seismic event detection. The
“CONVERGED” criteria can be substituted with desired con-
ditions (e.g., change in estimates kθ̂t−10 − θ̂t−1k < δ).
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Figure A1. Pseudocode for particle filter implementation of
Bayesian parameter estimation system for multiple events.
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