
Bulletin of the Seismological Society of America. Vol. 51, No. 3, pp. 401-435. July, 1961 

R A D I A T I O N  OF S E I S M I C  S U R F A C E - W A V E S  F R O M  F I N I T E  

M O V I N G  S O U R C E S  

BY ARI BEN-~ENAHEM 

ABSTRACT 

A theory is proposed for the propagation of seismic surface-waves from finite moving sources. 
The method consists of obtaining, in the first place, basic solutions for surface displacements 
from directional sources. These solutions are integrated to obtain the effect of a moving fault 
with arbitrary dip angle. Displacements are evaluated for Rayleigh and Love waves at long 
ranges. I t  is shown that the dimensions of the source and the speed of rupture play an impor- 
tant role in the wave-pattern and cannot be ignored whenever the dimensions of the source 
are of the order of the radiation's dominant wave-length. It is demonstrated how this theory 
may lead to a derivation of the velocity of rupture and the length of faulting from seismic 
records of a single station. 
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CHAPTER 1--RAYLEIGH WAVES FROM FINITE MOVING SOURCES 

1.1 INTRODUCTION 

There is no doubt that seismic records carry information about the earthquake 
source, such as its dimensions, the speed of rupture and other parameters of inter- 
est. The point-source model is not sufficient for these purposes and one has to con- 
sider the finiteness of the source if one wishes to be able to interpret details of 
amplitude variation on a seismogram. Early attempts in this direction were made 
by Lamb (1916) and Sezawa (1929). Sezawa studied an extended source in the 
form of an infinite sheet. His results are of little value to our case, since he derived 
his results for infinite plane of sources and no propagating disturbance. 

Knopoff and Gilbert (1959) used the powerful "Knopoff-deHoop representation 
theorem" to obtain first motions of body-waves from a disturbance propagating 
along a line. However, using their method for finite regions incorporates unsur- 
mountable integrations, even for the simplest cases, which obviously renders the 
method ineffective, except for initial motions. 

In this chapter we investigate the effect of the finiteness of the seismic focus on 
the Rayleigh-wave pattern. The equations of motion are solved for an internal 
harmonic concentrated force which points in an arbitrary direction. A fault plane 
is then realized by moving this source along a line with finite speed and integrating 
the Rayleigh-pole contribution across a finite rectangle with an arbitrary strike 
and dip. Displacements are evaluated for long ranges and expressions are obtained 
for strike-slip and dip-slip fault types. Attention is mainly focused on a couple 
type motion of a vertical strike-slip model for which displacements have been actually 
computed and the results transformed into the time domain. I t  is found that the 
finiteness of the source plays a dominant role in the wave pattern whenever the 
wave-length is of the order of the fault dimensions or when the time of rupture is 
of the order of the period. It is also found that azimuthal distribution of ampli- 
tudes in that range depends strongly on the dimensions of the source and that the 
energy radiated in the direction of motion may highly exceed the amount radiated 
in the opposite direction. Not all possible faulting models are studied, but the 
method used is readily applicable to any special case. The radiation of P and S 
waves from moving faults will be treated in another paper. 

1.2 INTEGRAL R E P R E S E N T A T I O N  OF THE DISPLACEMENTS DUE TO A 

HORIZONTAL FORCE 

Consider an elastic half-space with a coordinate system as shown in figure 1. At 
the point x = 0, y = 0, z = h, we put a harmonic point-source of magnitude L 
which is a simple force pointing in the direction of the x-axis. Following a method 
given by Yanovskaya (1958) we describe this source in the form of a double Fourier- 
integral (Morse and Feshbach 1953) 

I_F L e ~ t  ~ e i(~+qy) ds dq P~ = 2-~ ~ 

py~ = 0 (1-1) 

Pz , -=0  
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To evaluate the displacement field over the free surface of the half space we have 
to solve the wave equations: 

1 0~¢i 
V2¢i = ~ "Ot 2 

(a-2) 
2 -~ 1 02~z~ i =  1,2 

V ~ i = -~ . Ot 2 

where ¢ is the dilatation potential, ~(~I ,(x), "I ,(v), 'I/~) ) is the shear potential and the 

h 

2 (D 

® 

FIG. 1. Initial stress in the x-direction, source buried at depth h below the free 
surface, r and 0 are polar coordinates of the point of observation. 

subscripts 1, 2 refer to the region above and below the source, respectively. We 
shall seek solutions of the form: 

xIr~ x) = 

~ Y )  ~_ 

'I'~ ~) = 0 

fSf L ioJt e-VZ+i(sx+qy) ¢2 = ~ e A2 ds dq 

~,~u) = ~L ei'~t f ,~2f~(Y) e-~'~+i(~+~) ds dq 
vo 

e (Alchvz + B1 8hvz)e i(sx+q~) d8 dq 
oo 09 

oo 

~o oo 

e (C~)eh/z  + D[~)sh/z)d '~+~) ds dq 

z > h  

z < h  

(1-3) 

~,~) = 0 

The displacements above the source are expressed in terms of these potentials 
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(Ewing, Jardetzky, and Press 1957) : 

0¢i O~ i ~) 
u~ = (1-4) 

Ox Oz 

o¢~ o~q ~) (1-5) 

(~(~1 OXI/lY) a~I/i x) (1-6) 
u~ = ~ + Ox Oy 

Likewise, the stresses are expressed in terms of the potentials via the following 
relations (Ewing, Jardetzky, and Press 1957) : 

P~ = ~ \ Oz + Ox/ (1-7) 

ou 4 (ou  + (1-8) Pu~ = ~ \Oy Oz / 

3u~ 
g~ = 2~ ~ -  + ~ div ~ (1-9) 

We express both the stresses and the displacements in terms of the potentials and 
subject them to the boundary conditions: 

P= = 0; P~  = 0; P= = 0 a t z  = 0 (1-10) 

] 

u) (,3 p(~) ,~(2)~ at z = h (1-11) Uy --~ Uy yz l~yz ( 

U~I) = U~2) p(1) = p(2) |  ZZ zz J 

Thus we obtain nine equations in the nine coefficients A~, A2, C~ ~), C~ ~), C~ ~), 
C(~ y), D~ ~), D~ ~), B1. After solving these in terms of s, q, ~ and V we substitute the 
relevant coefficients into the expressions for the surface displacements which were 
obtained by substituting the set (1-3) into (1-4), (1-5) and (1-6): 

L i~t f~ 

L i~t f zv 

¢c 

L e i~t f_~¢ Uz ~ 2~r ¢¢ 

f S  ( i s A 1 -  ~'D~))e ~(~qy) ds dq (1-12) 
oo 

f~: (iqA1 + v'D~))e ~(~x+qy) ds dq (1-13) 
¢¢ 

-~qbl  )e ds dq (1-14) 

We now change from the Fourier transform to the Hankel transform by the sub- 
stitutions (Sneddon 1950) : 

s + iq = K J  x x + iy = re ~e (1-15) 

and then make use of some integral representations of the Bessel functions (Morse 
and Feshbach 1953). 
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1 ~0 2~" eiKrcos(x-O) Jo(Kr) = ~ dx (1-16) 

1 j02~ eiK .... (x-e)+i(x-~-~-) Ji(Kr)  = dx (1-17) 

to arrive at the expressions for the components of the displacement vector in cylin- 
drical coordinates, r, 0, z at z = O: 

L cos 0 
Ur - -  

2~-it (1-18) 

i~t l® K J { ( 2 K 2 -  K~2)e-~'h- 2K~e-~} [Jo(Kr) _ ~_~ J l ( K r ) l  dK 
• e F(K) 

L sin 0 ~ [® (2K ~ - K~)e -~'~ - 2K~e -~ 
uo - 27citr e ~ F(K) ~'J~(Kr) dK (1-19) 

L cos t~ ~t f® (2K 2 - K~)e -~ 2~u'e -~'~ 
e Jo -- K~Ji (Kr) dK (1-20) U z -  2~rit F(K) 

i . 3  E V A L U A T I O N  OF T H E  R A Y L E I G H  D I S P L A C E M E N T S  

In (1-18) to (1-20), we replace 2Jm(Kr) by H~(~)(Kr) ~ H,,(2)(Kr) and inte- 
grate in the complex K plane as shown in figure 2. I t  is well known (Pekeris 1955) 
tha t  the residue at the Rayleigh pole at ~-~,K~ (~, = ½%/3 + w/~) yields the 
surface-wave displacements and is given, e.g. for (1-20) in the form 

L cos ~ ~~t 
U~ - -  2zri t  e 

(2K~2 - K ~ 2 ) e - h V ~ - ~  -- 2%/(K~ -- K~2)(K~2 - K ~ 2 ) e - h X / ~  (1-21) 
OF(K,~) 

OK~ 
2 ~2) • K~ H1 (K,r).~ri 

= 7K~ and r i  arises from taking the principal value at the pole. The final where K~ 
~-esults for all the components of the displacement are: 

Ur = i L K~C1 cos Oe~'°tIe-hK'~dl -- Ele - h ~ }  
it 

(Ho(~)(Knr) -- 1 Ho(2)(Knr)} 

ue . . . .  i L C2 sin t~e i~ 1 {e_hK,~d, _ Eie-h~z~d~ }Hl(2)~(l~r)" (1-23) 
it r 

_ ~ --hKnd2 u~ -~ i L K~C~ cos t~e~t{ - e  -I~K'~ -k ~ e  }H~(2)(K~r) (1-24) 
it 

where C~, C2, Cs are positive real constants, d~ = ( ~ / ~  - 1)/3' d2 -- ( % / ~  -- ½)/% 
C~ is the shear velocity and CR the Rayleigh-wave velocity. Neglecting terms in 
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1 / r  and  using the  known app rox ima t ion  (Rysh ik  and  Grads te in  1957), when  
[ l>>lml 

H~(2)(~) = /I/ ~ 1 -t- 0([~l-~)} (1-25) 

we get 

L cos 0 
Ur = -- CI '  V ~ {  e-hK~dl - Ele-hK~a2}e i(~t-K"r+(~/4)) (1-26) 

uo = - L C~' sin 0 1 {e--~g,~l - -  E1e--h~"d~}e~(~t--g'~--(3~/4)) (1-27) 

FIG. 2. Path of integration in the complex k plane. 

wi th  E1 = - -  

constunts .  

L ~ I c o s  0 
- -  ~ 2 e  ~e ( 1 - 2 8 )  = 

272 2~ ,2 -- 1 
• = and  C1', C~', C3' posi t ive  real 2~ ~ -- 1 '  E2 2~¢/(.y2 _ 1)('Y 2 _ ½) 

1 . 4  A M O D E L  F O R  A V E R T I C A L  S T R I K E - S L I P  F A U L T  

Consider  now our previous  point  source, s i tua ted  a t  dep th  h below the  free sur- 
face, whose Ray le igh  d isp lacements  are given b y  (1-22) to (1-24).  Suppose  t ha t  
we h a v e  similiar sources d is t r ibuted  cont inuously  f rom z = hi to z = h2 (see fig. 3) 
thus  filling the  in te rva l  Ah on the  z axis. Le t  these sources act  s imul taneously :  the  
in tegra ted  effect a t  a poin t  P ( s i tua ted  on the  free surface) for u~, say, is, f rom 
(1-24)  : 

iwt Tj ( 2 ) / T r  \ 1 f h2 ( e -hgndl ~ E "--hKnd2 ~ 
u~ = L i C 3 K ~  cos ve ~1 klknr) ~-h ah ~ j dh (1-29) 

it 1 
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(since there is no phase effect due to the differences in depth)  

iLC3 
U~ -- "g~l~ COS Oe~'~t H1 (2) ( K~ r) 

( e -h~ : ~  _ e_h~K.~) _ T 2 ( e _ h ~  _ e_h2,:~) (1-30) 

Ah 

The  reason for in t roducing the fac tor  1/Ah in (1-29) is to enable us to fall back on 
the expression for the point-source as h2 --~ h~. 

Assume fur ther  tha t  this segment  of sources Ah, starts  at  some t ime to = 0 to 
move  to the r ight (fig. 3), in the plane xz, with a finite speed v, up to the coordi- 

Y 

(x,y) 

-TO~ -° ' '  - ~" ~ ' 1 ~ - - ~  i > x  

' 

Z 

FIG. 3. Realization of fault-plane. 

ha te  x = b, radiat ing as it moves. Tak ing  into consideration the  variat ion both  in 
r and t, we get for the u~ component :  

C3 2 1 .fb 

with 

cos OH1 (~) (K~ r)e i~(t-~/~) d$ (1-31) 

2 2 r = y + ( x - -  ~)2; cos0  = ( x - - ~ ) r  -~ 

M3L 
- ~2~e ~ e - ~ K ~ 2 )  } g~ 2ttAh {(e--hlK~l~ _ e--h~K~d~) __ ~ ~ --h~:~do -- (1-31')  

I n  order  to evaluate  (1-31) we make  use of the mult ipl icat ion formulae of the 
Bessel functions (Rysh ik  and Gradstein 1957) : 

BIn(OR) = ~.~ ~ B~+~(R) E(1-- ~ 2 ) 1  M ~2 ,~=0 M !  - ~ R 11 - -  ] < 1 ( 1 - 3 2 )  
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The geometry in figs. 3 and 4 yields 

R = roK~ and r = ro%/1 - 2(~/ro) cos 0o q- (~2/ro2). 

We choose ~2 = 1 - 2(}/to) cos 0o q- (}2/ro~) so that  

11 - Oel = I ( / r o ( 2 c o s 0 0 -  (}/ro))l < 1 for (}/ro) < 1. 

Substituting this into (1-32), and (1-32) into (1-31), and neglecting terms of the 
order (}/ro) ~, we obtain for the integral (which we denote J for brevity),  

f b {~__o 1 ~H (2) } e_~(a~ ) bJ = e ~t 0 cos 0 ~ (K~} cos 0) l+M(K,~ro) d} (1-33) 

y, ~ P ( x , y )  

,~ > X  

x 

FIG. 4. G e o m e t r y  of free surface.  

Hence, 

j _ cos 0o , ~ / - 2 -  e ig~b~c°sO0- cRIv)  - -  I ei(o~t--~ro+(3~rl4)) 
~¢/~ ~ K , b  (cos 0o -- (C~-/~)) + O[(Knro) -a~] (1-34) 

where terms higher than 1/V'~0 have been neglected in accordance with (1-25). In 
addition it is assumed that  the extension of the source is small as compared with the 
range ro. These assumptions are summed up as: 

5oro . .  
~z 1 (1-35) 

70)<< 1 (1-36) 

Simplifying equation (1-34) and repeating the former technique for the other com- 
ponents, we obtain the parallel expressions for U~ ~ and UoR; the results are: 

ur~ _ 2 cos Oo gr(~);sin X~ ,~_~,~)) (1-37) 
VK~o ~ x ~ j  
 ioOo 4 UJ - ( ~  oo(~o) d c*"+C'~')) (1-3s) 

U a 2 cos O0 , , ~sin X,~ e,(ea_(,.,,)) (1-39) 



412 B U L L E T I N  OF T H E  SEISMOLOGICAL SOCIETY OF AMERICA 

where Mi are some real positive constants and 

XR = 2~R -- COS 00 (1-40) 

~ =  ¢ o ( t -  r~) _ XR (1-41) 

M1 gr(~,) = ~ [ 2  go(o,) 
(1-42) 

M~L 
- 2uAh'y {(e-h~K"~ -- e-h2~:"~) - -  T l ( e - - h a K ' ~ d 2  - -  e - - h 2 K ' ~ d 2 ) }  

The ratio CR/v is not subjected to any theoretical limitations. 

~ Y 

P 

~¢--Z, ', 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

h2~ Z I '} 

FIO. 5. Geometry of vertical dip-slip fault. 

1 . 5  A MODEL FOR A VERTICAL D I P - S L I P  F A U L T  

We shall now calculate the Rayleigh displacements for the case of a ver- 
tical dip-slip fault (fig. 5). We shall make use of the results given by Pekeris 
(1955) for a vertical concentrated point-source. Transforming his results (which 
were originally given for a step time-dependence of the source) back into the 
steady-state source, we find: 

- -L  ~t f® 2vv'e -~' Ur ~- -~e  Jo 
uo = 0  

Uz 

-- (2K 2 - Ke2)e -"'h 

F(K) 

L ,,or f® (2K ~ -- K~2)e -Èl' -- 2K2e -~'h 
2 -  e go F(K)  

J~(Kr)K  2 dK (1-43) 

(1-44) 

Jo(Kr)vK dK (1-45) 
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On using the method of section 1.3 we get for the Rayleigh displacements: 

- iLC3 i,~t TT (2) / T7 { e--hg~d2 e--hK~dl u ~ -  Kse ~1 tlx~r) - - E 2  } (1-46) 
tz 

u~ - iLC4 Ks ei~tHo c2) (K~ r) { e -h~d2 - E1 e -hK~dl (1-47) 
tz 

The realization of the fault plane in this case is done in the following way: a hori- 
zontal line of sources which extends from x = 0 to x = b starts to radiate at some 
time to = 0. This line segment then moves downward in the z direction from z = h~ 
to z = h2, with a velocity v, radiating ~s it moves. The computation of the dis- 
placement at some point P(0,  r) on the free surface involves two integrations: 

_ iLCa Ks 
U~  ~b. Ah 

(1-4S) 

• - -  ~2~ s~,~l ,..~..~r)e ~'~(t-(h-h~l~')) dh d} 
~1' JO 

U~' (o~) -  iLC,~ Ks 
~b. Ah 

(1-49) 
• ----/hlfb ( e-hK~'d' - -  ~I~V o--hK~d~US~.O(~)i~,..~.S~Zi'~(t--(h--h~k')) dh d} 

dh2 JO 

with 

r = r0 1 -- 2 -~ c o s 0 0 + - -  
r0 r02 

Following our previous method, (1-32) to (1-35), we get, to ~ first approximation: 

ie ''~tl foZ'Ho(~)(K~,r)d} = , ~ / / / T  ~sin Y ~  e~(~.+c3~l,)) (1-50) 

_iei<~t 1 /'b Hi(~)(K.,r) d} = l f f ~  [sin Y.~ e~(¢~÷(=,4)) (1-51) 
with 

2CR ' ~ = co t -- -1- YR (1-52) 

The second integration over h is exact. The final results are 

U R - LC~' ~ sin Ye 
z y ~  

,V~0  (1-53) 
~sin O~ e ~ O ~ - ~  sin O1 e~O~-h~,,~l} e~(¢~+(~i~)) • [ - - ~ -  - -  E~ 

U ~ _ LC~' ~ / ~  sin Y~ 

 v/V° (1-54) 
fsin O~ e~O~-~d~ sin (~1 ~ e.~.+(~14)) 

J 



414 B U L L E T I N  O F  T H E  S E I S M O L O G I C A L  S O C I E T Y  O F  A M E R I C A  

with 

01 - (h2 -- hl)~ ( %/'~ - 1 2 - C ~  i 3' C~.~;v/ 

(1-55) 

Note that  O~ and O~ are complex• For the sake of numerical computations it is 
useful to use the relations: 

sin ~ = ~/sin ~ ~2ch~ + sh~ cos ~ 2 e ~  t ~  I (1-56) 

v@ + 
where ~ = ~ + i~. When dealing with high frequencies, the previous equations 
may be simplified due to the fact that  d~ ---~ 2dr and the term involving O~ in (1-53) 
and (1-54) becomes insignificant. We also observe that  in case C,/v >> ~ - ~  - 1/% 
i.e., v << Ca, 0~,: may be taken as real. In case v >> C~, it may be considered pure 
imaginary. For either long periods, or b -~ 0 and h~ --+ h~ we fall back on the point- 
source solution. 

1 . 6  D I P - S L I P  F A U L T  W I T H  A R B I T R A R Y  D I P  A N G L E  

Consider a fault plane striking in the direction of the y axis, and dipping at  an 
angle ~ with respect to the free Surface (fig. 6). Let a simple force L, pointing along 
the fault, be localized at each point of a segment y = 0 to y = c (which is parallel 
to the y axis at depth z = hi). We may split the force f~ into a vertical component 
and a horizontal component, 

L~ = ]L  I cos ~ (1-57) 

L~ = I L l  sin 6 (1-58) 

We shall first compute the three components Ur R, Uo R and Uz ~ due to L~. Making 
use of (1-22) to (1-24), we have: 

( UrR)~ iLC1.  

- ~ / ~  (1-59) 

f0fo • ~ c { e-Knd:(hl"+$sia~) -- E1 e-I~dl(hl+$sin~) } COS 0 H 0  (K~ r)e i~¢t-(~/~)) d n  d $  

( Ue')~ - iLC2 

~ c  (1-60) 

.fo~foC{e--K~d2(ht+~sia~) --  Ele-~,~dl(hl-~i~a)} sin0r H~2)(K~r)e i~( t - (~ /~) )dvd$  

( U,')~ - --iLC3 Ks 

~ac (1-61) 

• ~ ~ 2  e ~ C o s  

with 
r 2 = (x -- ~ cos ~)2 + (y _ ~)2 (1-62) 



RADIATION OF SURFACE-WAVES FROM MOVING SOURCES 415 

where c is the y-extension of the fault. Using the method of (1-32) to (1-35), we 
u s e  

r = roO = _ _ ~2 2 0 ~ 1 2 (~ cos Oo cos ~ 4- ~ sin 0o) -4- e°s2 ~ + 
ro ro 2 

½ro(1 -- ~2) ~ ~ cos 0o cos 6 + ~ sin 0o 
(1-63) 

P(×,y) 

-Lh21 z ~L 

Fie. 6. Geometry of dip-slip fsu]t with arbitrary dip angle. 

The integration yields 

( U  R)~ _ Ct'L cos 0o 

(1-64) 
"\fsin~e2 ~ e_~Q~_~h~d2 _ E1 ~ s i n  Q1 R e_iQ2LK~h~l 1 __Sinz~ZR ei(~+(3~/4)) 

( Uo')~ - C2'L sin Oo 1 

tt r]/2 %/~ff~ (1-65) 
fs in  Q2 R e--iQ~R--Kn~ld~ _ E sin Q1R ~ sin ZR 

" [---~2R 1 --Q1 R e -~QIR-~h~dlj ~ e i(~R-(3~I4)) 

U " C3'L cos 00 ( o ) x -  
(1-66) 

)'sin Q2 R e_iQ~R_x~t~ sin Q1 ~ \ sin Z .  
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Q t R = 2 C R ~ \ v - e o s 0 o c o s 3  4 - i s i n 3 ~ j ~  (1-67) 

co 0ooo 0+   o   }l 
ZR-- ¢oc sin 0o. ( r ~ )  

2CR ' ~'R = ~ t -- -- ZR (1-68) 

In a similar manner we may obtain the suitable expressions for the contribution 
due to Lz. Combining them all, we have for the total Rayleigh-radiation of the 
dip-slip fault-plane: 

(urR)total = (UrR)xcos 5 +  (U,R). sin 3; (U.R)tot~l = (Ug)~cos3  
(1-69) 

. . . ~ Y  P(r,8) 

FIG. 7. Geometry of strike-slip fault  with arbi t rary  dip angle. 

1.7 STRIKE-SLIP FAULT WITH ARBITRARY DIP ANGLE 

The situation is displayed in figure 7. Applying the former method we get, with 

r = ro# r 2 = ( x -  ~)24_ ( y _  ~cosS)  2 

~2 4- 2cos2 3 (1-70) 
#2 = 1 - 2 ( T s i n O o c o s 3 + ~ c o s 0 0 )  + 

r0 ro 2 

the approximation: 

½r0(1 -- #2) ~ ~ cos O0 + ,/sin Oo cos 3 (1-71) 

Using (1-32) and (1-22) to (1-24), and realizing the fault as described in figure 
7, we obtain, 

iC1L fb f~fe-~el(hl+ ,~i.~) ~ Ho(2)(Knr)e i~u-(~/~)) U~" = t~z~ K~ Jo Jo \--E~e-K~(h~+'~)f Cos 0 d,  d$ (1-72) 
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Evaluating this double integral along the lines stated above, we get, to terms of the 
order of 1/%/'~ : 

LCI'~/-#- cos 00 fsin XR~ 
U~ R = ;~ v ~ 

fsin ~1 R e--iA1R--hlKndl 

and similarly 

UOR -- LC~' 
it 

U R _ _  LCs' 
it 

with 

2 e--iA2R--hlKnd2t eii~R~-(37r/4)) E1 sin h R 
A2 R 

E1  s i n  _ _  A2 R _- _ ~} A2 R e ~A2R hlKnd e i(¢R-i37r14)) 

1 sin 00 f sin X~; 

f sin A1R e--iA1R--hlKndl " 

sin A2 R - "  _ 1 

f 
ei( (~R+or/4) ) 

(1-73) 

(1-74) 

(1-75) 

A1R = ~  s i n 0 o c o s ~ + i  ~¢/ ---- l s in  

(1-76) 
A2R ¢o~ ( sin 00 cos ~ + i %/0  ~ ~ sin 

3' 

Here again A1 and A2 are complex. This is so because the depth does not have a 
phase effect while the extension along the y-axis, does. The former results are easily 
generalized for a radiating couple: we differentiate each of (1-37) to (1-39) with re- 
spect to y, with a/Oy = sin 00 (O/Oro) + (cos Oo/ro) (0/a00). Neglecting terms higher 
than 1/%/70 we find that the only terms which contribute (to this order of magni- 
tude) are those which arise from differentiating the exponent e ~ ' .  It  means that in 
order to obtain the couple solutions we have to multiply (1-37) to (1-39) by the 
factor K,~ sin 0oe-(~/2) : 

( , _ sin 200 {sin XR; e,(,~-¢3,/4)) 
U~ )oo~, %/,~ g~(o : )%/~[  X R )  + 0{(K'r°)-~/2} (1-37~) 

sin 2 fsin XR; ei(~R--(~/4)) + 0{K~r0)-5/~} (1_38 ~) (Uo')~o~,l~- r° me° go(o~)1.V,..~ (, X, J 

( U,')oo, p,e - sin 200 g ~ ( ~ ) ~  fsin X,~ e,(,n~(3,,4)) %/~o ( ~ [ -  -/- 0{ (K~ ro) -3,2 } (1-39 ~) 

If one wishes, one may obtain also solutions for bidirectional fault by superposing 
on (1-37 ~) to (1-39 ~) the solution --U~(,r - 00). (Motion starts simultaneously from 
the source in two opposite directions.) The same applies to (1-53) to (1-54) and 
(1-73) to (1-75). 
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1.8 A WORKED EXAMPLE 

Let us now investigate in detail the case of the strike-slip fault-plane, for a con- 
crete example, in order to see the behaviour of the various parameters which take 
part in the mathematical formulation of the resulting displacements. The limita- 
tions on the choice of the parameters is given by (1-35) and (1-36). The condition 
1 (< (curo/CR) has obviously the physical meaning: 

r0 >> ~ (1-77) 
2~r 

Looking back on the previous equations we note that  the ratio b/X appears in the 
parameters, X and Y and has a dominating influence on the function {sin X/Xl 

sin x 

~1 "rr > 
cub ,Ca ^,  x =~-E%-cos~j 

F r o .  8 .  F i n i t e n e s s  f a c t o r  a s  f u n c t i o n  of  a z i m u t h a l  a n g l e  a n d  s o u r c e  p a r a m e t e r s .  

Let us investigate the radial Rayleigh-displacement for the case a = ~/2 with a 
couple-type moving source. Multiplying (1-37) by cu/CR sin Ooe (~u:) we have: 

LCj sin 200 
I v J  I = Ah ,V/~o (1-78) 

. { ( e - - ( a l / T )  - -  e - - ( a 2 / T ) )  __  T l ( e - - ( a a / T )  _ _  e--(a4/T)} sin X ,  

with 

2 ~ h 1 % / ~ -  1 2rh2%/~ 2 - 1 
a l  = a2 = 

7CR ~CR 
(1-79) 

2 ~ h l ~ f ~  - ½ 2 ~ h ~ -  ½ a a  = aa  ---- 
"/CR ~/CR 

We shall now omit the phase factor, taking only the absolute value of the dis- 
placements. The amplitude factor of ] U~ I is built of three sub-factors. The factor 
sin 20o is characteristic for the dipole field of a point source. The factor containing 
the four exponentials plays the role of an at tenuator  and has a single zero for some 
T which depends on the constants a~- and T1. (U~ also has such a zero.) The third 
factor, of the type (sin X/X), is a contribution of the finiteness of the source in the 
direction of the propagating disturbance. I t  is this factor which is responsible for 
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the deviation from the pure dipole-field. This function has its zeros at 

~ ( ~  0) 2CR - -  cos0 = nlr, n = 1, 2 , . . .  

We rewrite this relation in the form 

b CR b cos 00 nk (1-80) 
V 

from which the physical significance is clear: it is the condition for destructive 
interference at the point of observation. This case is analogous in many ways to 
Frauenhoffer diffraction through a rectangular slit and should not be mistaken for 
the condition of constructive interference in the case of two separated point-sources. 
The important  thing to remember is tha t  as long as 

- cos 0 < (n + 1)~r, 

no additional zeros are introduced into the normal couple pattern,  and no more 
than a relative reduction in amplitude is expected. Thus, a bound for b can be set 
if the observed pat tern for a certain frequency does not deviate from the point- 
couple scheme. Furthermore,  the excessive number of zeros in any quadrant  will be 
equal to the greatest integer in [2(b/X)] with an uncertainty of unity. The number 
of lobes is therefore a clear measure for the dimensions of the source. Another in- 
teresting outcome of the dependence on (sin X)/X is exhibited by the ratio of 
amplitudes at equal distances in two opposite directions: 

7rb  o 00) 
(1-81) 

U~(~ + Oo) o) sin -~- + cos 0 

+ 

I t  is important  to note tha t  this ratio, at least for the strike-slip fault, is inde- 
pendent of the source time-function as well as of the layering of the elastic half- 
space. We shall later make use of this fact. I t  is obvious from (1-81) tha t  this ratio 
may acquire any value from zero to infinity. The phenomenon that  surface-waves 
amplitudes show a very strong dependence on the azimuth of the station has al- 
ready been established by Gutenberg and Richter (1934, 1936), Benioff (1955) and 
Gutenberg (1955). This ratio approaches unity as (b/h)  decreases, and is another 
measure for the source extension, and the speed of rupture. 

In our computation, the following magnitudes have been used: b = 60 km, 
hi = 15 kin, h2 = 20 km (Ah = 5 kin), ~b/CR = 50, so that  al = 9 sec, a2 = 12 
sec, a3 = 18 sec, and a4 -- 24 sec. With these numbers, we see that  the function 
(e -(°IT) - -  e - ( 1 2 / T ) )  - -  0 . 8 0 ( e  - ( 1 s / T )  - -  e -(24/T)) has a zero for T ~--- 20 sec. I t  is posi- 

tive for T < 20 sec and negative for T > 20 sec. Results are given in figures 9-20. 



4 2 0  BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

The first set (figs. 9-14) gives the dependence of U, on eo • 00 is given at intervals of 
5 ° and the parameter CR/v  runs over the set: C ~ / v  = 4 (v ~--- l (km/sec) ) ,  0.9194 
(v ~ ¢~), 0.5308 (v ~ a).  Periods have been chosen as T = 15 see, 25 see, 50 sec. 
For periods higher than 50 sec the deviation from the couple field is small. The 
second set of figures (figs. 15-17) gives I V, I as a function of T, where 00 is the pa- 
rameter, and in the third group (figs. 18-20) the amplitude is given as a function 
of the ratio CR/v ,  with 00 as a parameter. 
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FIG. 9. Azimuthal distribution of radial displacements for a vertical strike-slip fault. 
FIG. 10. Azimuthal distribution of radial displacements for a vertical strike-slip fault. 
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FIG. 11. Azimuthal  distribution of radial displacements for a vertical  strike-sl ip fault .  
:FIG. 12. Azimuthal  distribution of radial displacements  for a vertical  strike-sl ip fault .  

To see what happens for dip angles other than ~ = 7r/2 we shall take the other 
extremity, ~ = 0. The amplitude factor of U, for this case is, from (1-73) : 

, U R  I C6'Lsin200 1 { e _ ¢ ~ l l r )  f s i n x R ~ S i n ( x  sin0°) 
= ( 1 - 8 2 )  

~ 0  T 3/s - -  Ele-(a~/r)}L XR ) ( ~ s i n O 0 )  

where a l ,  a3 are the same as in (1-79), and E1 = 2~,2/(2"r ~- - -  1). Examining (1-82) 
we notice that  for the previous values of ~ = 5 km and T => 15 sec, we always 



RADIATION OF SURFACE-WAVES FROM MOVING SOURCES 421 

t 
--200~ 

have ~z/)~ sin 0o _-< ½ sin 00 < 1, i.e., the deviation from the results for ~ = v/2 
will be small unless z acquires higher values. We conclude therefore, that  the dip 
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Fie .  13. Azimutha l  d i s t r ibu t ion  of radial  displacements  for a ver t ical  s tr ike-sl ip faulL 
FIG. 14. Azimuthal  d i s t r ibu t ion  of radial  displacements  for a vert ical  s tr ike-sl ip fault .  
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FIG. 15. Spectral  d i s t r ibu t ion  of radial  displacements  for a vert ical  s tr ike-sl ip fault .  
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FIG. 17. Spectral  d i s t r ibu t ion  of radial  d isplacements  for a ver t ical  s tr ike-sl ip fault .  

angle for the strike-slip case with ~ << b has no fundamental  influence on the wave 
R m pattern.  The computation for U~ ay be carried along the same lines given hitherto, 

and there is essentially no remarkable qualitative difference of the wave pattern 
for this case. 
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1.9 GENERALIZATION TO A LAYERED HALF-SPACE 

The former results may be generalized to an inhomogeneous elastic medium which 
in turn may be represented by a multi=layered half-space. Consider a horizontal 
simple-force placed in the jth layer of an m-layered half-space, at depth h below 
the free surface. We shall follow the method of analysis given in section 1.2: After 
defining 3m + 6 scalar potential-functions there will be 6m + 9 boundary-condi- 

Ur 

IOC 

C 

-lOO 

-ZOO 

~'.~20 o 
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Fzo. 18. Radial displacements for the vertical strike-slip fault, as a function of the 
velocity ratio CR/V. 

FIG. 19. Radial displacement for the vertical strike-slip fault, as a function of the 
velocity ratio CR/v. 
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FIG. 20. Radial displacements for the vertical strike-slip fault, as a function of the 
velocity ratio C~/v. 

tion equations for the 6m + 9 indeterminate coefficients. The surface Rayleigh- 
displacements will have the form: 

iL e~t ~F~i(K~) { 1 } u, = ~ cos Oo ~_, K .  H~2)(K~ r) - H~2)(K. r) (1-83)  
~ = 1  OmFo(Kn) 

OK, 
1 

uo = 2mriL sin Oo e~:t . _+~=, mFI~(K.) H~2)(K. r) (1-84) 

OK, 

iL e++t ,~F2~( K.)  u: = ~ cos Oo ~ K.  H~2)(K~ r) m = 0, 1 ,2 . . -  (1-85) 
~=~ OmFo(K.) 

OK~ 
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Here mF0(K,,) stands for the system determinant for the layered half-space 
and ~FlJ(K~), ~Fj(K~) are some hnear combinations of the cofactors of the 
system determinant. These expressions are functions of the source depth, the width 
of the layers and the elastic parameters of these layers. The summation extends 
over all the possible modes. 

The integrated Rayleigh-pattern for a vertical strike-slip fault with a couple- 
type source is given later in (3-3) and (3-4). To obtain the exact analytical form 
of g~ and g m (defined there) in case the fault extends downward through m0 
layers, one has to evaluate ~FlJ(K~) and ~F2i(K~) for mo different cases. Each 
case corresponding to the source being located at a different layer. The resulting 
2m0 functions mFlJ(h, co), mFj(h, co), j = 1, 2, . . -  m0 = m are then integrated 
individually with respect to h between the proper limits. Finally we have: 

mo f ~ r j  ,~FlJ(co, h) dh 
]=z y-z 

g/~ = wl O,~Fo(K~) (n = 1) (1-86) 

OK~ 

mo f [  ~F2 (co, h) dh 
m y=1 1--I 

g, = w2 O,~Fo(K,) , m = 0,1,2, . . .  (1-87) 

OK, 

H; is the width of the j th  layer. H0 = 0. w~ and w2 are positive real constants. It 
has been assumed here that the fault extends from the free surface. Expressions for 
~F~(Kn), ~F21(Kn) and ~Fo(Kn) are given by Yanovskaya (1958). It can be shown 
that the surface displacements are specified already by 6m -t- 3 indeterminate coef- 
ficients. That is so because the corresponding differences between the 6 coefficients 
above the source and the 6 coefficients below the source lead to terms of zero resi- 
due in the integral representation of the surface displacements. It has also been 
proved by Keylis-Borok (references given in Yanovskaya 1958) that ~ ,  the 
(6m H- 3) by (6m -F 3) determinant of the total system, is factorable into a Ray- 
leigh determinant ~F0 of order 3m ~- 3 and a Love determinant AL of order 3m: 

= ~ ~:h~l~,~]tl  g~ ~F0"AL (1-88) 
m j=l  ) 

where K~,~ is the shear wave-number of the ruth layer. 

CHAPTER 2--LOVE WAVES PROM F I N I T E  MOVING SOURCES 

2.1 INTRODUCTION 

The effect of the finiteness of the seismic focus on the Love-wave radiation pat- 
tern is investigated. We start from the exact solution for the surface displacements 
due to a harmonic horizontal point-source, situated in a homogeneous layer over- 
laying a homogeneous half-space. A fault plane is then realized by moving this 
source along a line with finite speed and integrating the Love-poles contribution 
across a finite rectangle in the layer. Displacements are evaluated for long ranges 
and expressions are obtained for strike-slip and dip-slip fault types. Attention is 
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focused mainly on a couple-type motion of a vertical strike-slip model. The theory 
is then applied to the G-wave pat tern for which the results are also transformed 
into the time domain. I t  is also demonstrated how tiffs theory may  lead to an 
estimate of source parameters such as fault-length and rupture-velocity from 
phases and amplitudes ratio of G or R waves recorded at a single station. 

All present computations and results will be limited to the first mode only, as 
higher modes are not observed under common circumstances. Consequently, C6(oJ) 
will stand for the first branch of the dispersion curve. 

2 .~  THE HORIZONTAL-SOURCE SOLUTION 

The surface displacements for a simple horizontal force, acting at depth h below 
the free surface in a layer of depth H was given by Yanovskaya (1958). Using the 

g ® 

z 

FI~ .  21. Point source in a layer over a half-space. 

method outlined in Chapter  1 for a horizontal force in the sense of section 1.2, 
located at z = h < H (fig. 21), we have: 

iL cos 0 ~tTT(~), ~" ~ DL(nK, H, h) (2-1) 
Ur = 2~1 r e ~1 ~n~rJ(OAL(~K,H) ~ 

• H ,  1 (~Kr)l  ~KDL(~K, h) 

u~ = 0 ,  n = 1 (2-3) 

The suitable expressions for the cartesian components are accordingly: 

iL . nKDL(,K, H, h) 
u~ = ~ sin20 e~H~2)(nKr) ~OA~(~K, H)~ + 0[(~Kr)-~/~] (2-4) 
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U y  ~ -  - -  - -  
¢~t ~(2) ~ . . . .  KD L (nK, H, h) iL sin 20e ~o ( ~ r )  ~ ~  + O[(~Kr) -3j~] 

4g~ 

o ~  ) 

U~ = O, n = l  

The notation incorporated in (2-1) to (2-6) is 

DL = { ~ ~ sh(~I + ch(~ H) } ch@~ h) 

A~ = ~ ch(vl H) + ~ sh(,, H) 

(2-5) 

(2-6) 

(2-7) 

(2-S) 

- n = ~ ¢ / ~  - -  K12 = i~al 
# 1  

h = H - g  v2= %/(~-K 2 -K22  =~a2 

_ ~ , ~ / / 1 2  1 
K1 91 ~' = - - ~  C~ ~ 

K2 -~°  Af t  1 1 
~2 ~2 = "V C~ 2 ~2 ~ 

(2-0) 

n K -  ~ ~ > C L > 8 1  
CL 

and CL = CL(~) is given implicitly by the period equation 

AL = 0 (2-10) 

Performing the operations indicated in (2-1) and (2-2) we get, with the aid of 
(2-7) to (2-10), for the leading term of uo : (we shall give henceforth the results 
for u0 only, as u~ varies like ro -s/2) : 

iL sin 0 H(o ~) (~Kr)e'~'tNo(~) cos (h~al) + 0[(~Kr) -312] (2-11) 
u 0  = - 2~---; 

with 

N o ( . , )  = ~ ~ 

¢t _ _  (2-12) 

2 . 3  A MODEL FOR A D I P - S L I P  F A U L T  IN  T H E  L A Y E R  

Imagine a fault plane striking in the direction of the y-axis and dipping at an angle 
~f with respect to the free surface (fig. 22). Assume further that  the impulse starts 
at  some depth hi ,  in the layer, along a line y = 0 to y = c, directed downwards, 
at  the angle 6. We may split the force L into a vertical component and a horizontal 
component: L~ = ] L I cos 6 L~ = ] L I sin 3. The only contribution to Love waves 
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arises from the L~ component. Using the same method as given in section 1.6 we 
get for the integrated radiation: 

L sinOo cos ~ " ZL 

(2-13) 
"[ --Q~s~sin Q1 L ei(¢hlal-VQ1 L) _1_ sin~O2 L e--i(~hlal--Q2 L) )~ ei( T L +~r /4) ) 

with 

Z L - - - - - - s m 0 o  r~ = o: t - -  - - Z L  (2-14) 
2eL 

P(x,y) 

H 

h.. 

Fla. 22. Geometry of the dip-slip fault inside the layer. 

QI~ -- ~ t \ v  cos 00 cos ~ + ax CL sin 8 (2-15) 

Q L = ~  -cOS0oCOS~ - - a l C L s i n  (2-16) 

under the conditions 

2.4 A MODEL FOR A STRIKE-SLIP FAULT IN THE LAYER 

The geometrical configuration of the fault in this case is clear from figure 23. The 
integrated effect of the fault is given by  the double integral: 

i f0 i L  sin Oo No(co) H~ 2) (K~ r)  U°~ = - 2~--~ ( 2 - 1 s )  

• eos[coc~l(hl -~ v sin ~)]e i~(t-(~/~)) d~ d~ 
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which yields 

UoL= ~/ /~  L sin Oo No(w) 1 ~sin A~ L ei(O~aahl+hlL ) 

s i n  A~ L ) A2 L e--i(o~alhl--A~L)} s in  XL i(~L+(3v]4)) + - -  --~-~-L e 

9L = ¢ 0  ~o) ~b (C~/, - cosOo) t - ~  - x~ x ~  =2-o~ 

with 

(2-19) 

f Y P[r,O} 

i 
" I Ii I 

h+~/sinB 

FIG. 23. Geomet ry  of the  str ike-sl ip faul t  inside the  layer.  

- wz (sin Oocos6 + alCLsin~}  (2-20) AlL 2CL 

-- °~(T (sin Oocos 6 -- al CLsin ~ } A2~ 2CL 

For a vertical strike-slip fault we substitute 6 = ~/2 in (2-19) to get with 

AI~ = A L _ ~ a l z _  h L ) 2 o = h2 - -  hi 
} 

_ L singoNl(w) s inXLs inA L cos [OtlOJ (hi + h~) 1 [I (2-21) Uo ~ 

In order to generalize for a radiating dipole we differentiate (2-21) with respect 
to the coordinate y, using the operator O/Oy -- sin 00 (O/Oro) -4- (cos Oo/ro) (0/00o) 
and neglecting terms higher than r o  1/2. We find that the relevant contribution to 
this order of magnitude comes from differentiating the exponent e i~ L. This means 
that in order to obtain the couple displacement from (2-21) we have to multiply 
it by ~/CL sin 00e -('~/2). Thus we have: 
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L L sin 00 KI/2N(~ sin XL i(~,LnU(w/4)) 
( U 0 ) c o u p l e  - -  - -  ~ n \ / -  .1%~to ~ e + O[(.Kro) -3/2] (2-22) 

The layering-dependence of Uo is given by: 

N~(~) - sin AL N°(c°) [ (hl Zc" h~) 1 (2-23) 
v/ cos 2 

Where the "dipole factor"  is sin ~ 0o, whereas we had the factor sin 20 for the 
leading components of the Rayleigh dipole pat tern The finiteness-factor (sinX/X)e ~¢ 
is the same for both waves. 

2 . 5  T R A N S F O R M A T I O N  I N T O  T H E  T I M E  D O M A I N  

We shall now proceed to obtain a theoretical seismogram from (2-22). The same 
method will apply, mutatis mutandis, to any of the expressions in (2-13), (2-19), 
and (2-21). 

First we note that  the amplitude of ( Ue L) oo~ple in (2-22) is even in co. Taking 
the source time-dependence to be that  of ~(t) we get: 

t L sin200 f® (uo)coup,o( ) -- cos + (2-24) J0 
with 

r0 ) 
r = t CL 2CL -- cos 00 

(2-25) 
G(w) = nK1/~NI(~) sin XL G(0) = 0, G( ~ ) = 0 

X L  ' 

and (2-24) can be integrated numerically for any observed dispersion curve C~ = 
CL(~). This is only an approximation since our solution to the wave equation 
is exact only for a homogeneous mantle but  is not an exact solution for the real 
earth. There is an apparent difficulty at the lower limit of the integral because we 
derived our previous theory on the assumption that  ~r/CL >> 1, thus restricting w 
to non-vanishing values. However, the contribution to the integral from values of 
the integrand at the neighborhood of o~ = 0 can be made small enough as compared 
with the rest of the integral. 

Kelvin's stationary-phase method may be used to approximate (2-24). Using 
the results given by Pekeris (1948) and Newlands (1954) we have, 

K0 = K(~0), C~ = CL(~o0), 

for (d~K/dwo 2) > 0, and ~0 - root of (d(~t - Kro)/d~) = 0: 

t~l ro / ~  [ -- roKo -- ~ -- cos 00 (2-26) 

for (d2K/d~o 2) < 0: 
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UoL(t) 2L sin2 00 G(oJ0)  s i n { c o o t - r o K o  b o : o ( ?  0)} 
/zl ro . / - ~ - , d ~ K  - ~ - c o s 0  (2-27) 

d~o ~ 

2 and for (d'K/doom) = 0, with U~ the stationary value of group-velocity and ~ the 
angular frequency corresponding to U~ : 

4L sin 2 00 G(¢o~) Uo~(t) 
d~KTJa 

g 

• Ai (u)  cos~omt - roK,~ - - -  
k 

where 

(2-28) 

ro 

daK l~/a 

and where Ai (u )  is the Airy-function defined by Ai (u )  = ~ cos (ut + ½ta)dt. The 
validity-condition for (2-28) was given by Pekeris (1948). The reader is reminded 
that  our results apply only to the first SH mode and for a single stationary point. 
In ease of n modes and m roots of d/&o(o~t - ~Kro) = 0, a double sum is understood. 

2.6 APt'LICATION TO THE G WAVE 

Our findings will be applied to the G phase which is being repeatedly observed 
on records of major earthquakes. This phase appears on seismograms as a long- 
period SH pulse. I t  propagates with a rather constant group velocity of 4.38-4.44 
km/sec (Gutenberg and Richter 1934, 1936; Benioff 1958; Sato 1958; and Press 
1959), and its power is concentrated mainly in the period range 40 < T < 400. 
Gutenberg's (1959) low-velocity channel in the upper mantle provides a possible 
explanation to the low group-velocity of this phase. 

Starting with an assumed constant group-velocity in the above-mentioned 
period range we integrate the basic relation Uu = C - X(dC/dX) = Uo to get 
C = ( Uo/i - noT) (Sato 1958) with the observed values of U0 = 4.38-4.44 km/sec 
and a0 = 6 X 10 -4 sec -~ (Sato 1958, Harkrider 1960). The wave number thus be- 
comes a linear function in the angular frequency: K (~) = 1/U0 (¢o - 27ra0). Being 
unable to use the stationary-phase approximation, we take the following alternative. 
We put the value of K(~) directly into (2-24) and integrate between the limits of 
the spectral window from ~1 to ~2. I t  is observed that  G(~) in (2-24) is a slowly- 
varying function over the integration range. If we introduce into the integrand an 
exponential decay factor which governs the absorption in the real earth we have 

sin ~ 00 G(~) ¢oP-le -a~ 
{ Ue~(t) }~ = Eo ~'Foo sin An cos (~ro -~ 50) d¢o 

1 (2-29) 
_ ~ol -1- o:2 b 1 b 

2 ro = t 2v Uo (ro - ~ cos 0o) 
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E0 is some real constant, F0 is the radius of the Earth and the factor (F0 sin A~) -~/2 
arises from the asymptotic expansion of the Legendre function of a large order, 
which replaces the Hankel function in problems of wave propagation over a sphere 
(Brune 1961, Brune, Nafe, and Alsop 1961, Yanovskaya 1958a). This asymptotic 
expansion is conditioned by KF0 >> 1. & is a phase angle which includes the constant 
initial phase (Brune 1961) and the polar phase shift (Brune, Nafe and Alsop 1961). 
.q = A,~/2QUo, where U0 is the constant value of the group velocity and Q is the 
average value of Q (Sato 1958) over the spectral window, n is the order of the surface 
wave and AN is the distance along a great circle travelled by a surface wave of order 
n. p is a characteristic of the source time-dependence. Since we are dealing with a 
horizontal couple we shall have p = } for a delta source and p = ~ for a step source. 
Equation (2-29) can be integrated numerically for every desired epieentral dis- 
tanee, and thus the corresponding wave form can be obtained. The exact evaluation 
of (2-29) is possible in terms of Incomplete Gamma-functions. Under the conditions 
n > 2, ro > (T1/2~r), and e - a ~  >> e -no2, (2-29) is approximated by 

( t-~r~ ) sin 20o cos wlr0+ g ~-+t~o 
e -a~* (2-30) {UoL(t)}~ m, constant × ~ G(a~) 

The term lg-*(ro/~) in (2-30) is responsible for the broadening of the G pulse due 
to absorption. 

C H A P T E R  3 - - D E R I V A T I O N  OF THE SOURCE PARAMETERS FROM THE 

SPECTRUM OF SURFACE W A V E S  

3.1 INTRODUCTION 

Up to the present time, mantle Rayleigh waves and Love waves have been ex- 
amined mainly by two methods. By the first method, dispersion curves are utilized 
to obtain information on the velocity distribution in the crust and the upper mantle 
of the earth (Ewing, Jardetzky, and Press 1957). The second method seeks infor- 
mation on the earthquake-source by the method of phase-equalization (Aki 1960). 
This method is based on the notion of a seismic point-source and thus a priori 
cannot provide us with any further knowledge which concerns itself with departures 
from this oversimplified model. 

The theoretical results obtained in the former chapters can be used to obtain 
valuable data on real earthquake sources. This is done by introducing two new 
theoretical entities which are measurable on seismic records, whenever there 
exists a considerable departure from the point-source model. These are the direc- 
tivity function and the differential-phase function. 

3 ,2  DERIVATION OF SOURCE PARAMETERS FROM THE AMPLITUDES 

It was shown in section 1.8 that in the ease of a horizontally-moving fault, the 
amplitude ratio of two opposite-going components depends neither on the source 
spectrum nor on the layering, since these are cancelled out, while it does depend on 
the horizontal extension of the source, the velocity of rupture, and the strike of the 
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fault with respect to the line joining the station with the initial epicenter. This 
function is henceforth caUed directivity, and is generally given by 

where C stands for either Rayleigh or Love phase-velocity, whichever is the case. 
In case the opposite-going components did not travel the same distance, they should 
be equalized in order to normalize the directivity which is defined for equal seismic 
paths. The directivity is defined for two different situations. In the first, the waves 
are studied at two different stations on opposite sides of the fault. The second situa- 
tion is that in which surface waves of different order recorded at a single station. 
Such are for example mantle Rayleigh-waves or G waves which start from the fault 
both in the direction of faulting and in the opposite direction and thus reach the 
recording station from two opposite directions. The directivity does not in practice 
depend on the direction of reception of the instrument (e.g., orientation of the strain 
seismograph). This happens because in the case of Love waves, U~ L is of the order 
1/(Kro) ~/~, and for long ranges is negligible in comparison with Uo L. The same is 
true of the azimutal component U0" of the Rayleigh waves which for long ranges 
is negligible in comparison with the radial component Ur R. See equations (1-37) to 
(1-39) and (2-1) to (2-3). Thus the orientation of the instrument may affect the 
recorded amplitudes but will not affect the directivity. This argument does not hold 
for low vahles of Kro, which is the case for very low frequencies. 

The directivity is equal to unity for the case of a verticM dip-slip fault. It does 
not depend on the dip angle in case of a strike-slip fault with arbitrary dip angle 
and is not defined in the case of a dip-slip fault with arbitrary dip angle. 

The source parameters v and b are derived from the seismic records in the fol- 
lowing way. After digitizing the proper phases on the records and taking their 
numerical Fourier-transforms, the amplitude ratios for a set of selected frequencies 
are computed and then compared with the theoretical ratio given by (3-1), which 
has been corrected for absorption on different paths. The corrected amplitude- 
ratios are then plotted against the period and compared to theoretical trial-curves. 
These curves may easily be drawn by computing the theoretical zeros and infinities 
of (3-1). A wide enough spectrum (100-400 see.) is needed to obtain good results 
for the three unknown parameters. A knowledge of the dependence of the phase 
velocity and the attenuation coefficient (or Q) on period are needed. Q can be ob- 
tained independently using G or mantle Rayleigh waves of the same parity. 

3.3 D E R I V A T I O N  O F  F A U L T  L E N G T H  F R O M  T H E  D I F F E R E N T I A L  P H A S E  

Consider a vertical strike-slip fault of length b which extends vertically from 
depth hi to depth h2 in an m-layered half-space. The total surface-wave radiation 
for the spectral frequency ¢o is given, according to (2-22) and (1-37~), (1-38 ~) and 
(1-39~) : 

UoL _ L sin 2 O0 %/~KNm(c0) sin XL e~(~L.(~/~)~ (3-2) 
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with 

U R _ L sin 200 V,-K~g ,~(c~) sin XR ei(,R+(~/4)) (3-3) 
V;0 x. 

U R _ L sin 200 ~ g]~(w) sin XR e.¢e+(a~/4)) 

= - c o s  0 ( 3 - 5 )  

Equation (3-2) gives the Love-wave pattern while (3-3) and (3-4) represent the 
Rayleigh-wave pattern. The subscript j in (3-5) and (3-6) refers to Love or Ray- 
leigh waves, whichever is the ease. The function Nm has been derived for the simple 
ease of a layer over a half-space in ease of Love waves, and g,m and g~ have been 
given for a homogeneous half-space. The source is a horizontal dipole with harmonic 
time dependence. For an arbitrary time-dependence the layering functions N,~, 
grm and g,~ will be multiplied by a suitable factor. The situation for a single-layered 
half-space is displayed in figure 21. We shall now apply these results to the propa- 
gation of mantle Rayleigh-waves and G waves around the globe. Since at the 
moment we are eoneerned only with the phases of these waves, we need only add 
to (3-5) and (3-6) the polar shift Pn (Brune, Nafe, and Alsop 1961) and replace 
r0 by A~. Thus 

~ = ~o t 0 -  - ~  -t- ( -  cos00 4-2~rmnn uP~ 

with 

n = 1 , 2 , . . .  ; 0 =00 =<2~r; 

& = 3 x + ~ ( n - 1 ) r 0 ,  

= ~rnFo-- A1, 

(3-7) 

m = 0 , 1 , 2 , . . .  

n = 1, 3, 5 , . . .  

n = 2 , 4 , 6 , . . .  (3-8) 

~r ( n  - -  1 ) ,  n = 1 , 2 ,  3 ,  - . .  P ~ = ~  

A1 is the shortest distance from the source to the station. Equation (3-6) is the 
phase of a spectral component of a surface wave of order n (time taken with respect 
to the origin time to of the earthquake). C is the phase velocity of either G or R 
waves, and v is the velocity of rupture. The differential phase 01~ of two opposite- 
going surface waves is therefore given by: 

O~ - ¢'n+l -- ~'~ - f (40,OOO -- 2A~ -t-. bcosOo) + (M.-I- 1)  
2~r c (3-9) 

M = 0, 1,2, " "  

The slope of 01~ versus f /C  will yield the faulting length b provided that 00 and 
C(f) are known. An alternative formula may be obtained by taking the differential 
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phase of the second order 02e. Manipulating with three phases of three waves of 
consecutive orders, one finds: 

( (~+1 - ~) + I fg6o/(~+2 - ~) b 
0'2~ = 2~r = f C cos 00 + constant (3-10) 

A special case of (3-9) and (3-10) is of interest for practical purposes of deriving 
the fault length without having recourse to the phase-velocity function. I t  is a 
well-established fact that  the G waves propagate on the flat portion of their group- 
velocity curve, at least in the period range 150 < T < 250 see. Thus, solving the 
differential equation U~ = eonst. = U0 we obtain f / C ~  = f / U o  - s0, where a0 is 
some constant. Therefore (3-10) reduces to 

b 
02 ~ = f uo  cos 00 q- constant (3-11) 

Furthermore,  if each G event is taken with respect to its own arrival time, we also 
have 

b 
01 ~ = f Uoo cos 00 -1- constant (3-12) 

which is more convenient to use when only two G events are available, although less 
accurate, since the time of origin is known to a higher degree of accuracy than the 
arrival times of the individual events. 

CONCLUSIONS 

Our theory was able to explain the asymmetrical radiation pat tern from earth- 
quake faults and derive from it some important  and previously elusive parameters 
of the source. I t  may serve to associate many earthquakes with at least two im- 
por tant  parameters and thus be of great use in exploring the mechanism at the 
focus and the nature of the earth's interior. Moreover, the dependence of the 
surface-wave amplitudes on the vertical extent of the source were already indicated 
in most of the results of chapters 1 and 2. In future work we intend to generalize 
our theory to fit the real earth and thus be able to derive the vertical extent of 
the faulting as well as its length. One should treat  the derived quantities as rough 
values since their physical meaning is probably not sharply defined. We hope 
that  future comparisons between measurements and the theory may  point up ways 
to improve the theory, so as to cope with more realistic earthquake mechanisms. 

Our present work has, however, another aspect which extends beyond its im- 
mediate applicability to the derivation of fault lengths and rupture velocities, and 
that  is the notion that  the classical point-source picture is no longer adequate as a 
model for most earthquakes. The finiteness and the motion of the source have 
their bearing on many measurements from earthquake records and ignoring them 
can lead to serious errors (e.g., eMeulations of phase- and group-velocities from 
readings of a single station, the concept of an "epicenter," etc.). Ear thquake seis- 
mologists must from now on let this new dimension enter their way of thinking. 
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