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lEECHANICAL Sil.HiiITUDE A:m '.i.'URBULENOE* 

3y Th. v. Karr;1an 

The development of hyd1·odynamics '.'V'i thin the last decade 

has shown that skillful a;pplication of the equations from the 

dynamics of ideal fluids quite often brings clarity into such 

phenomena which in themselves are not independent of' the vis-

.cosity. The vortex equations, in particular, proved themselves 

very useful. I may be· alloi"led to mention the theory of the 

vortex street by which 1~e are able to reproduce the mechanism 

of.the form resistance with suitable approximation under stated 

conditions,· although stich'aresistance is.precluded in a fluid 

which is perfectly inviscid. Disregarding for the present the 

origination of ·the vortex, the strerunattitude in the wake of 
' . . 

the body may be described approximately correct by the repre-

sentation of individual vortices, wi t:10ut transgressing the law 

s-overning the motion of such vortices in m1 ideal fluid. An-

other striking, ex8.-mple i·S the theory of the· induced dxag of 

wings, which likewise shd'vrn the exte:1t of r:i.:pplyi~1g ti10· vortex 

equa ti om 1.vi thout ovexBteppin.g t~1e bo:inds of tha dynadics of 

ideal fluids. 

3ut the prospects are ostensibly less promising for turcu-
---··--'ft·- ·-·-- ________ ____..,. ---

* 11 l.2eollan.i scl".e A~1nlic:1kei t und 'l'U1.'bule:1z. 11 Reprint ffjOm Nach­
richten van der Gesellschaft der Wissensohaften zu Gottingen, 
1930 -: Facb.gruppe l (:~athe:.iatik) Ko. £5, pp. 58-76 . 
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lent fluid motion. It naturally is clear from the beginning 

that the balance between frictional and inertia forces prepon­

derates in the problem of nascent turbulence·~ so that the cited 

method does not enter into consideration at all in this case. 

But there remains the topic of the "fully developed turbulence," 

the problem according to th'e . theory of "hydraulic stream a tti­

tude, 11 which is perhaps of still greater importance for .the 

practice. Still there are some indications which hold at least 
' 

some promise of success in an attack on the problem when disre-

garding the frictional forces, or better exprei;rned,. with the 

frictional forces confined to a definite zone, for instance, 

directly adjacent to the wall. Some time ago W. Fritsch* meas­

ured in the Aachen Aerodynamic. Institute the velocity distribu­

tion in grooves between two paralle.l. walls by. constant wall Q.is­

tance and for varying degrees of wall. roughness. The result.a 

showed that the distribution curves - apart from the immediate 

neighborhood of the wall - are almost exactly superimposed as 

soon as the shearing stress at the wall assumes the same value, 

regardless of whether the fluid passes by a polished, smooth 

wall or, with correspondingly lower velocity, past a rough wall, 

or even a wall being saw-like in profile. The flow resistance 

in these grooves with very rouch walls follows the so-called 

"square" law, i.e., it is proportional to the fluid density and 

.. 

... 

.. 
•• 

to the square of the velocity, but unaffe~ted· by the degree of •. 

fluid viscosity. Is it not feasible therefrom to surmise that ~ 

*W. Fritsch, Zei tsch~ f. angew. Math. u. Mech. 1 1928, p. 215. 



• 

...... 
N.A.C\A. Technical Memorandum lfo. 611 3 

the viscosity is without p1·edominating effect on the development 

of the velocity distribution? The present paper represents a 

method of attack in this sense, and endeavors an attempt to make 

the laws of turbulent flow in grooves amenable for calculation 

with a minimum of arbitrary assu:.nptions. 

We are indebted to O. Reynolds* for his explanation of the 

existence of turbulence as'_"osoi~latory motion, wl1ich - in con-
.. •· . 

trast to molecular unrest, responsible for the laminary fric­

tion phenomena. - he designated as molal fluctuating motion. 

Segregatil1g the velo6i ty components dependent on the time (1Ne 

call them fluctuating, or oscillatory components) further the 

. ... pressure variations from the mean values which oorre-spond to 

• 

.. 

the basic flow, the general hydrodynamic equations reveal the 

momentum components transmitted by the oscillatory motion as 

supplementary stresses from the standpoint of· the'basio motion, 

which are defined by mean values of products from· the osoilla-

tory velocities. 

I confine r..r1self to the case of two-dimensional. flow and 

express the rnean of velocity x i'n the mean flow direction by 

u, that of velocity y by V, and the oscillatory components 

by u and v. Then the suppleme:1tary stress components read as 

ox = p u2 

p.v2 

T = p UV 
*O. Rey:_1olds, Phil. Trans. A, Vol. 186, 1894, p. 123. 
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These components are conformal to the so-called lar.tinar 
... 

stress components originating .. :in an uI;J.st.eady, vis9,0us fluid due 
·,·, . . ,, . .. .. 

to the molecular motion as given by 

au 
cry = 2 µ ay (2) 

The analogy becomes particularly.apparent when we include 

the derivation of the coeffioie11t of visooai ty. µ, which iE:t ~:: 
'.. ;·' . . . ;'" - .;.'. . . . ~.. . . ·:; '' . ' ' . 

defined up to a numerical facto,f:, the prod~c;t, . µ ~ ~ A. c, 
. ' •• ' •' . . : ' - ' : .' '. ~ ·. ' ' ' ; . !. '" ·. ' 

where P = density, A. = i~ean pa th 1.ength,. a.nP. o = molecular 
),, ,. . . ·-· . 

velocity. 
! .· 

Take, for instance, the c~se of. Paral).el.~ flow in direction 

x, . that is, U = U(y), V.(y) = O, and c.onsJ(ier the derivation 

of the shear stress - first, conformal to 

'T =-Puv 

and then, according to 

As oscillatory components in the molecular motion, we have 

u = ± c ± 7. dU v = ± c,·.· and to the extent that 
dy' 

U = +_ , dU 
c - " ay' is coupled with .. v == C'!, . a.nd 

with v = - c. dU Obviously,., uv = - o ·t -, iivhich proves the 
dy . 

analogy between the two expressions~ · 

• 

-.. : . 

.. 

l . 

.. 
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The next step to render the turbulent shear stress calcu­

lable is to formally introduce a "turbulent friction coefficient,n 

as proposed by Boussinesq* and notably, by Stanton.** The lat­

ter, appreciating the velocity distribution developed from the 

center in ~ smooth pipe, disclosed the relation 

Umax - U = f npo f (lr'\ 
\ l 

(3) 

where T 0 = shearing stress transmitted to the wall, r = pipe 

diameter, and y = distance from middle of the pipe. This law 

of similitude is summarily adhered to by the introduction of an 

average turbulent friction coefficient µt, which is proportion­

al to the quantity Umax r.*** 

r = const. Umax r dU . 
dy 

H. F. Treer**** recently attempted to fit Stanton's theorem 

to the more up-to-date test material by having resort to addi­

tional enrpirical assumptions. It is, however, evident that the 

equation is carried too far in forming the mean value and· is, 

on the face of it, inappropriate for interpreting actual veloc­

ity distribution. Stanton's application may be adjudged as a 

summary averaging examination of similitude; to conceive the 

n1ech~nism _o_f turbulent flow atti tu~~~he~~udy of simili t\l~-­
*J. V. Boussinesq, Hem. pres. par div. sav., Paris 23, 1877; 

24, 1877. 
**T. E. Stanton, Proc. Roy. Soc., Vol. 85, 1911, p. 366. 

*** . /T 
To be more exact µt = canst .. .4-oQ r; since, however, - at 

least, for large index figures - -!~·is practically proportional 
' ,_, 

to Umax2, the above is likewise approximately correct • 
****M. F. Treer, Phys. Zeitsohr., 1929, Vol. 30, p. 542. 
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must, to i:ay way of thinkin=::, be 'vorded slightly different. 

Similitude of Oscillatory 1!otion . 

Let us check the following assU!i1ption with: the i:le<ln flow 

to be a parallel flow in direction x; -t11e oscillatory flow to 

consist in disturbances. of relatively limited extent in direc-. . ' \ 

tion y and - at least, within a certain time interval - to be 

carried along ·by the main flow ·a·pproxL:mtely as· steady flow con­

fit,urations.· Oux ptobler.1 ·sh.all be to find under' :7hat c'ondi­

tions these fiows can become si::1ilar a:.1ong each other' so tl1at 

·the flo\v c.tti tiides neig1~bo'i~i:i.1g t1ivo' ·po Lits,· which c"onform to 
. . . 

diffe:;:-e:at y values, vary only by a imiltiplica t.i ve factor of " 

of flow. In other words, we ass~ sii:,1ili tude. of the oscilla-

tory attitude, irrespective, ~f tl1e l_ocation of the point in 

v1hose vicinity the oscillation is exai1lined. 

We so place the coordinates that this pertinent point .falls 

on axis y = o, and develops the uean velocity according to y: 

u = U' 0 y + U" 
y2 + . 0 2 

Then we write tl1e stream fu:1ction adjacent to· the point 

2 3 
i' (x,y) = U'o L + U"o L + ... + '.fr (x,y), 

·2 6 . . 
(5) 

wJ.1ere \jr (x, y·) becomes the strearn fuhctioh of the oscillatory 

motion. 

ifovr it is desired that only- 7, and A be affected by the 
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""'"'; -n+ that ; 0 hir U'- TTll;,.. _ pt,r,. -· hut tha.t function f(~.Tl) 
f.I '-' ........... ""' ~~, ~J U' - V' - - - - , " - " . ~ 

be unaffected when 

x ::: i ~ 

y ' = i T) (6) 

-.v· = A f (~,71) 

The hydrodynamic equations for plane steady flow may be 

combined in the so-called vortex transfer equation 

(7) 

where 

is the vortex intensity, and 1' the kinematic viscosity. Dis-

regarding the friction terms and limiting ourselves, in accord 

vri th the assumed definition of the field of oscillation in the 

vicinity of axis y = 0. ~· to the first digits in ;the· terms in-

duced by the principal motion, we obtain 

( U'o y + oWj ii~.! _ aw U"o 
a y / . a..x C'X'. - . 

Introducing (6), we have · · 

A 
1. 

(8) 

(9) 

where symbol ti now pertains to the variables ~ and Tl . This 

equation is resolvable independently of A, i and U' 0 , U" 0 , 

providing 
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U"o 
,... A 

l 3 . 

U r . 
.. ...... 0 

i un o. 

Tf t 3 
A"'UO"' 

uno2 

(10) 

(11) 

To denote the significat:lde 6.f thes.e relations, we now com-

the shearing stress T : 

T - p p ?ilj.r~'l( = .. A2 ?if rif (12) = UV ~ p p- 31 -
?lx0y ari 

...... p i2 ur 02 (13) T = 

The conditions of simili·tude may then ·be combined as follows: 

a) The field of: ·q·scillq;tion retains a length indicative 

of the length measure of the d.ist:urbances, defined by 

.· 
b) The shearing force· i$ P,I'opor:tional to the density, to 

the square of the characteristic length L and to the square of . . . . 

the velocity gradient. ~~- ·> ... 
Having defined length i to only one factor, we write 

T = () l 2 ( d!r\2 
\dy/ 

(14) 

.. 

" . 

. 
" 
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U' i = k -­un 

"""' JSO • Gll 

(15) 

Yirhere k is a nondimensional constant, dependent only upon the 

nature of the fluctuating mechanism, and upon the solution of 

tJ.rn equation for f( Lri). It is the sole constant entering the 

here developed theory of turbulence. 

Prandtl 1 s Theory of 11 1.Iixing Length 11 

Our data. may for the present serve as corroboration of the 

sugge ive equation put forth by Professor L. Prandtl* to demon-

strate the laws of turbulent flow. He proceeded with the for-

mula for the sheaxing stress 

T = - p U V 

and evaluated u = i _<iU a>-ialog01rn of the equations of the molec-
dy 

ular t:1eory, by introducing the length i as the uixing length 

or di~tanbe (analogous to the idea of the mean free path in the 

kinetic theory). On the premises that a particle in the o~cil-

latory motion travels the distance i perpendicular to the basic 

flow without momentum intercha..~ge p i dU becomes, in fact, the 
dy 

momentum which the particle transfers t:o" ti1e layer into which it 
.. 

was displaced by the mixing r.1otion. Pi·an:itl then assu111ed the 

fluctuating component v proportional to the mixing length i 

and to the absolute value j~~I of the velocity gradient, so 
/ dU\2 

that in agreement with (13), T = p i 2 r - · 
\ dy/ 

___ Viewin§L_~he ma._tt"~..::._ fr_~~~~~~ vie-~:point_~! __ !~.~_?_sc~l~~ t~on __ 
*Compare, for example, page G2 of 11 Proceedi:ngs of the Second In­
ternational CongI'ess for Technische :.:echanik, 1927. 11 
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theory, this Etssumption signifies that the correlation between 

u and v is supposedly unaffected by the location. This hypoth-

esis is so obviously like our assumption of similarity, that·it 

is not surprising to find the equation confirmed. 

But nmv our study of similitude reveals decidedly 1nore, for 

it yields an equation defining tlJ.e 111ixing distance which i:;.1 

first approximation appears as ratio of the first two differen-

tial quotients of the basic velocity. 

Flow between Parallel Walls 

Consider the basic flow in direction x between two paral­

lel walls y = ± h (Figa 1). With T 0 as shearing stress at 

the wall, it equals 

(16). 

at y distance away from the channel center, so that the veloc-

ity distribution becomes 

or 

One integration yields 

or (a = a constant) 

1 
U' 

T y = k2 p U' 4 
0 h uu 2 

Jh U" k 1 
U'2 

= g ./Y . 
p 

2 k Jh JY+ 
j

---- y 
. 2Q 

' p . 

const. 

(17) . 

• 
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U' = 
1 

2k 

1 

a - JY 

11 

(18) 

The constant a, is to be defined from the relation with 

the conditions at the wall. For great Reynolds Numbers dU 
dy as-

sumes a high value near the wall and finally approaches the lim­
dU T 0 i ting value - = -, which, due to the smallness of µ re­
dy µ 

ferred to ~~ at a distance away from the wall, is very high. 

As a result the value y, at which dU dy becomes infinite, may 

be allowed to coincide with y = h, so that 

dU 1 fii 1 -----
Jil Jh- ./Y = dy 2k 

wherefroD integration yields the velocity distribution. The 

maximurn Umax is reached at y = O. Then 

- y ~ 1 
Umax-U- f J~-o p 2kh 

dy 

1- Jr 
or 

Umax - U = 
1 

J!i(1og (1 - /i) + /f) k p h. h . 

~ [ ( r-;-\ IY] U = Umax + J ff' log 1 - J ~) + ,/ fl 

This fon1mla was compared with two measurements of D8noh and 

(19) 

(20) 

(20a) 

Nikuradse.* Both defined the values 
-r -·u 

p ' leaving k as sole 

constant to be determined, which appears to have a value of 

about k == 0.36. The resistance law yields, as shown later, 
, "'F. Donch, Forschungsarbeiten, No. 282, 1926. 

J. Nikuradse, Forschungsarbeiten, No. 289, 1929. 
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k = 0.38. 

Figure 2 illustrates ·the comparison, which is fou..J.d to be 

good. One r,1ore word about the· behavior of mixing length L 

The calculation yields 

i = k ui· = 2 k h f'f r1 - r:f) .. 
U" j b ~ . . j h .-. · (21) 

Near to the wall we may w.ri.te . '. 
, .. 
:· y. = h ·-· y ·. 

. . '··· 

so that 

{/ l 
Y1 Y1 

1 ~ = 
.. 

(1 i = 2kh - h + h - ky~ 
L ' 

(22) 

• • ''/'I 

The course of i = 
h 

/Xi.\ . •. . .;. . 
f \h / is noted in Figure 3. It does not 

corresporid to Dgnch and l~ikuiadse 1 s data· ( db°t·ted· .line), which 

they arrived at with fo"rmula · :· 

:···1.r;-. 
i =·J_.-p·· 

dU 
dy 

Their chief contention ;t_s' th9,t: quantity i z:l.s~:ume.s ~ constant 

value in the channel center, whereas it attains a maximum at 

y1 = ~ h and drops to zer9 for; Yi. =". h; .· :aq,cording to our calcu­

lation. Our com.ments are: 

In the :first place, ·i is ~xceedingly difficult to deter-

mine on account of the uncertainty of the differentiation of 
.. " . 

the point-by-point recorded velocity curve; then they compute 
. :. - ... , .. . 

the mixing length in the.: Cfl~nne:J_ (}eµt:er: by a Eiodffied formula, 

the authenticity of which is not' quite beyond question. It is 

.. 

• 

r 
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assUllled forthwith that dU = 0 for 
dy 

y = O, that is, the veloo-

ity is smoothed out at the apex. Our formula shows a hump for 

y = O, a sure sign that the degree of approximation in the cal­

cu:+.ation is insufficient at this point, but it is strange that 

the unsmoothened velocity curve also shows a definite bend. 

I believe the observation material was not extensive enough to 

define the behavior of l in the channel center conclusively. 

The Resistance Law 

By a high velocity gradient dU 
dy' as near to the wall, our 

similitude consideration no longer holds true, because the omis-

sion of the viscosity appears to be no longer justified. It is 

du a question of whether µ ~ can be disregarded or not along 
. dy 

side of the kinematic shearing stress - r u v. It has been 

proved experimentally that nea:r to the wall something like a 

"laminar layer" exists and, in order to define the resistance 

law, i.e., the Umax value corresponding to a certain value of 
1
0, the connection from the velocity curve to the laminar layer 

p 

must be established. 

Before discussing a :more exact theory of the oscillatory 

field, we attempt two different applications which, however, 

yield the same plausible results: 

a) We assume the mixing length t to diminish below zero 
. . 

to a value proportional to the thickness of the laminar lay.er. 

This minimum is supposedly reached at the boundary of the lami-
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nar layer :.vnere the .la::1inar lr;i,yer is t1.:1:en tached. 

To ca,:rry this iqea tl+ro.ugh we resoi-t to G. J. T~~ylor 1 s co:-..1-

c~pt.ion, who arrived .. at tll;e.;_co~ol1:1sion that., .~h~ ~ort~x div~~ion 

{ i. e ~; the mixing lengt}+ i ) . of the turbulence at the wall can 
.. - . ~ ./J j: .-· :.· ' ·. !". • • • ' •. • ' • ':· .- .• • : t .· ~ -~- -- • 

only 1?e ~f-f~cted:"l:>Y the., 1;3}1~aq:~ztg s:t:i;e~s. T. 0 , '. ' . ' ' ' -. ,, ... ; .- .. - ' . 
?-nd that it must 

'. -:-. { .·: ( .. -. 

be propox:tio;nal. to tr+.e ve,lµe . ,- u .. !. . '•:Vri ting l a " for ·--n .. ·. .. . . . . . . ·j··'r-o 
' ' ·.·::::•: :•. ''' ' '' '." -~ .. 

this 'limiting value, we ohtairi for the 
' '' .. ' ' p ' ,, ' 

relevant. que,nti ty of. 
1 /p e 

y = k Cl v J r and u 
1f 0 

U.max ..,. U~y) '··that is for t;he velocity 

differe:nce :)etween cllam:el c.e.nter ai1d laminar layer boundary 

. '[· h fl ] .: 
,. U8 = 1 ~ lo'g . -p- .+ bonst. . 

k r £.v 
.. "'. ~ ' . 

(23) 

:rt1f p w·e ~~timate the differ_~T1;?e in velocity u88 bet-vvee:;.1 
. I) 

both ooun(iarie.s of the laminar layer,,· i.e., between the wall 

and tho. f:rqG boundary. Sinoe t~1e t:"lickness on one side is 

6 ~ ~ .. an¢!. vrn can put T 0 = 
J ~Jr 

·· ee 
µ Q._ 

. 6. 
0 

. ., 
J, • the other, we obtain 

·h-U66 ~ ·..; ...:.PQ:; ·and the differe:1ce between th.e :v:ral1. anii the .channel 

center· "bB'-c-oiites '· 

(24) 

The. (lon-sta;:~1.'t~ :.·;~ ,,c;ind,_ A·. a:f-~;indepenQ.ent .of d:i,me:1s:i,ons 2,nCL Rey-

nolds Hunber. 

,;bJ ."The ... resl+lt is ic.~:m~ical when we assume the 11 .t.urbulent 

tq b_e. p:i:opo;r_tional. to P i 2 
( d:Q\

2 

' ' , .\ dyJ in-

qtead o:IL t.i!le vrhole.·. shea:i;tng stress. .T:1en l r:J.P,Y. quietly diL1in- " 
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ish to zero and the velocity distribution near to the wall be-

comes 

(25) 

This is the sarue equation used by L:r. Wada* in formulating 

the resistance law, but which, ovving to having been published 

in an inconspicuous place, has not received sufficient attention. 

Unfortunately, M:r. Wada held the equation valid for the whole 

channel which mad.e his formulas a little too complicated, al-

though the results· in this paragraph are really contained in 

his report in an ir-iplied form. 

To de~ive the resistance law, I slightly deviate from the 

conventional pararneters and introduce the factors 

Umax h 
Rm = v 

v I TO 
(26) = j ----.. a 

p Um ax 
--2-

In place of the r,:iean velocity the uaxL:1ur.1 velocity appears 

as reference quantity, so that (24) yields 

or 

k ~ log (Rm J '¥) + C 
J~ = 

t log 2 

(27) 

(28) 

We derived the relation between U:max and ilr for plane flow. 

*Journal of JapaneseSoc-: Haval Arch-.-· 41, 1927, p. 103. 
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But it can also be pro,.red applicable to circular pipes, where 

even constant k retains the same value and where constant C 

alone is different. In our derivation we used the mixing dis-

tance k x wall distance and estimated the thickness of the 

laninar layer. But it may be assux.1ed that this is valid for a 

circular pipe also, for the further course of the mixing dis-

tance comes in evidence only in the c 
Figure 4 shmrn some observations of 

constant. 
1 

.JV and 
U r 

(R _ max 
·m· -. v ' r = pipe 'diameter).* It will be noted that there 

is a linear relation between both quantities, extending from 

Rm = 2000 to Rm= 1,600,000. Constant 

k = 0.38 
(29) 

c = 1.83 

the first being pe:.:-haps universal, the second applying particu-

larly to circular pipes. 

The So-called Power Laws 

It is known that the resistance law within large ranges 

of Reynolds Numbers can be adequately expressed by the interpo­

lation formula 
(30) 

Upon this premise it can be proved by a line of reasoning 

advanced by Dr. Prandtl that the velocity distribution (figured 

as beginni;.1g at the v-rall) is given by formul~---·----· 
*The data on very large Reynolds Humoers were supplied by Mr. 
Hikuradse, who placed his, as yet unpublished material, at my 
disposal.· 

.. ·. 

. . . 

k 
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(31) 

The validity of this power formula ceases in the immediate neigh­

borhood of the wall (effect of laminar layer), but extends in 

surprising manner to the other side nearly to the channel cen-

ter. The exponent ·n 

(within about ~ to 

drops as the Reynolds Nura.ber increases 

1 in the range examined thus far). 
9.5 

This puzzle is simple to explain.; Slightly transformed, our 

derived formulas express the 

Resistance , !:!'Ill'. 

""""'""""''' . l a+ b log {Rfi} 
~~ 

Pi (32) 

u 
. y 

:::: a' + b' log.( p ) 

/5. l) .• 

p 

Velocity distribution: 

m equations (30) and {31) can be 
2 - m' 

So when we make n = 

written as 

Resistance law: Jf= = aorist. (R5)n 

Velocity distribution: 

···u ..... (y/!t_..,) .. n 

-=-- = con.st. ·· · · · · 
.J!j_ ·.. ~ -p· . . . 

(33) 

The decrease in exponent n with the Reynolds 1-Tuinber becomes 

readiiy apparent from the following: 

Comparing flow a,tti tudes in the same channel which oorre..:. 

spond to an ident.ical value of T 0 , · and permitting the viscos­

ity to vary, for instance, . " to. decrease gradually; the veloe-
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i ty distribution is ci:Oviously the s2x.1e up·· to the point Yrhere 

the infll;.enp_e<.of.~the..v:i,soos3, ty_:1:;-~,(;or.;1es :not_icefl:ble. TI.1ere a kind 

of laminaJ>layer i~ ·;Sfl,~ ~up,.; a.lt,~ough ~he. .poi~t continu~s to 

shift along .the veloc:i]y <;l_i.s;tr~out:;i.on,.,c~ve .as .. th;9 yiacosi ty. de-

creases·, ;i.~e-., aB"·the_•:Reynq1¢i~.KUXJ.b~r .xises. -;Tl~.e:cqp.jointed 

distri'Qutio_n.curv~;~_ .·· · ,,. .. ., .. 

which is, aside from the cnannel center., 'exponential (Fig. 5), 

l.. s to b · t · d t .·Y = U11n.:_· by a seri· es of po1."'er curves e appro x:pri.a: e ..... -~ " 

wp.ioh touch the axis y = o, 
"'\ 

inducing the contact point to grad-
('. 

ually shi'ft ·toward the 1'ight; acc,9rdingly l/n increases s.nd 
r . . ' . . ''·' 

n decreases. 

R o u g h n e s s 
~ ,. - ~ ·-'" " --~--... 

It has 'been repeatedly ernphasized that the ratio betweei1 

the thickness of 'the lam.in~- laye,r.' r;md the mea~. pro,J;uberance 
~. '.. .. . '·' ' . . ; . . 

of the roughness predominates the phenomena on rough walls. I 

call a ¥rn.11 ··:rcrµ.gh. whel1 ~he .. pxojed:tions are large referr.ed to. the 
> ' .. . ' ~ • • ' . .,,.,•,•-... ~ ..... R• ·-

laminar layer thickness. L1 thi,-s case it r.iay be assurned that 

the ·minimll~'l Y?-lue of the: n'li:ll:i??.g _rlen~th · i is n.ot .cond.itioned by 

the t~1ickness, but by the ~ize .. o;f tJ1e roughness e:iemen.ts~ Thus 
. . . -- ' ,' 

if· €: ·:i~ .t~.e· mean roughness proj·ection (the charac.t~ristic 
' ' . .-- ~ . . .: ' ... 

lengtll. m~asure of the. rough1~~.ss) t: the ·'"1inimmn value._ of i may be 

made propo:i;t,i9nal to E:, . wh:Lch di.sclo$es as. relatio.n between 
•,. • ! ... '..·. 

velocity in channel center Umax and the shearing force at the 

... 
: 

I ·. 
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wall T,..., 
v 

1 ~(~ h ) Umax ~ - .; - .LOg - + const. 
k p E: 

(34) 

or for the resistance coefficient 

kJ2 h 
= log - + const. 

E: 

In other words, the flow resista:nce follows the "square 11 

law, and the resistance coefficient is dependent on the rela­

tive roughness according to (35). This equation admits of a 

check when comparing experiments in grooves, where the distance 

of the walls (2h) varies, but where the nature of the walls 

(quai.1tity t:) is to rer.1ai:n constant. This, horrnver, is to be 

treated in a future report. 

Translation by J. Vanier, 
National Advisory Committee 
for Aeronautics. 
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