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MECHA¥ICAL SIMILITUDE A¥D TURSULENCE*

By Th. v. Xarman

The development of hydrodynamics within the last decade

. has shown that skillful application of the equations from the

dynamics of ideal fluids quite often brings clarity into such

phenomena which in themselves are not independent of the vis-

cosity. The vortex equations, in particular, proved themselves

very useful. I may be allowed to mention the fheory of the
vortex street by which we are able to reproduce thie wmechanism
of the form resistance with suitable approximation under stated

conditions, although sich a resistance is'precluded in a fluid

whieh is perfectly inviscid. Disregarding for the present the

origination of the vortex, the stream attitude in the wake of
the body may be described approximately correct by the Tepre—

sentation of individual vortices, without transgressing the law

coverning the motion of such vortices in an ideal Ffluid. An-

other striking exemple is %he theory of the induced drag of
wings, which likewise shows the extent of applying the‘vorfex
equatioms without overstepping tire bounds of the dynanics of
ideal fluids,

But the prospects are ostensibly less promicing for turbu-~

- IN . ﬁ“m N - . o . - -
*Miechanische Aanlicakeit und Turbulenz." Reprint fpom Nach-
richten von der Gesellschaft der Wissenschaften zu Gottingen,
1930 - Fachgruppe 1 (llatheiatik) Fo. 5, vp. 58-76.
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lent fluid motion. It natﬁrally‘is clear from the beginning
that the balanceAbetWeen-fricfional and inertia forces prepon-
deiates in the problem of nascent turbulence, so that the cited
me thod ddes not enter into consideration at all in this case.
But there remains the topic of the "fully developed turbulence,"
the problem according to thb_theory of_?hydraulic stream atti-
tude," which is perhaps ofhétill gieatéf iﬁportance for.the
practice. Still there are sbme indications which hold at least
some promise of success in an attack on the problém,when disre-
garding the frictional forces, dr better expressed, with the
frictidnal forces confined tolg definite zone, for”instance,
directi& adjacgnt to the wali; ~Some time ago W. Fritsch* meas-
ured in the Aachen Aerodyngmié_xhéfitute the velocity distribu-
tion in groovés between fwo paxallel‘wails byiconstant>wall dis-
tance and for véryingkdegrees Bf Wéll’roﬁghness. The results
showed that the distribution curves ; apaft from the immediate
neighborhood of theiwall - are almost exactly superimposed as
soon as the shearing stress at.thé wall assumés the same value,
regardiess of whether the fluid passes by a polished, smooth
wall or, with correspondingly lower velocity, past a rough wall,
or even a wall being saw-like in profile. The flow resistance
in theée grooves with very rougch walls folloﬁs the so-called
"square" law, i.e., it is proportional to the fluid density and
to the square of the velocity,_bﬁt uﬁaffedted'by_the degree of

fluid viscosity. Is it not feasible therefrom to surmise that

*W. Fritsch, Zeitsch. f. angew. Math. u. Mech., 1928, p. 315.



- 1

N.A.C,A. Technical Memorandum Fo. 611 3

the viscésity is without predominating effect on the development
of the velocity distribution? The present paper represents a
method of attack in this sense, and endeavors an attempt to make
the laws of turbulent flow in grooves amenable for calculation
with a mininum of arbitrary aséumptions.

We are indebted to O. Reyndlds* for his explanation of the
existence of turbulence as’oscillatory motion, which - in con-
trast to molecular unres%;‘reséénsible for the laminary fric-
tion phenomens - he designated as molal fluctuating motion.
Segregating the velocity components dependent on the time (We
call them fluctuating, 6r oscillatory components) further the
pressure variations from the mean values which correspond %o
the basic flow, the general hydrodynamic equations reveal the
momentum components transmitted by the oscillatory motion as
supplementary‘streSSes from the standpoint of the basic motion,
which are defined by megh valﬁes of products from the oscilla-
tory velocities.

I confine myself to the case of two~dimensional flow and
express the mean of velocity =x ih the mean flow direction by
U, that of velccity y Dby V, and the oscillatory components

vy w and v. Then the supplementary stress components read as

wcom—

OXS""QU?
- - O. v

,.cyv..,. P.v

T =-pPpuv

*0. Reynolds, Phil. Trens. A, Vol. 186, 1894, p. 123.
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These components are conformal to the :so-called laninar
stress components originating.in an unsteady, visgocous fluid due
to the molecular motion as given by

,_cxmgui\‘%
U

(2)

qO'y' = 3 U

‘The analogy becomes.particulariy.apparent whéﬁ %e include
the derivation of the coaffiq%gnt of viscoslty W, which is :
definEd up to a numeriegli?ﬁéféﬁ,:ﬁhe_p?odug§A u =f Ae, N
where P = density, A ;'%ééﬁiééfﬁ.ieﬁgph,vgggv ¢ = molecular *:

: Téke,’for instanée;“iﬁéf¢§§ew§52?gialle;fflow in direction

x, that is, U= U(y), ¥{

y) = 0, and consider the derivation
of the shear stress - first, conformal to
T =—-PQuv

and then, according to

;; 4y - . 4
TERSGEP ?\.»‘Qdy
As oscillatory compoﬁents‘in:fhé molecular motion, we ha&é

w=*%ct1 80 v =2¢, and to the extent that | .
is coupled with. v = ¢, .2and u=% ¢ + 1 %g

%g, which proves the a

u=%¢ -1 7
with v = - ¢, Obviously, uv = .- ¢l

analogy between the two expressions.:
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The next step to render the turbulent shear stress calcu—
lable is to formally introduce a "turbulent friction coefficient,”
as proposed by Boussinesg* and notably, by Stanton.** The lat-
ter, appreciating the velocity distribution developed from the

center in a smooth pipe, disclosed the relation

T
e/ 0 .

where T, % shearing stress transmitted to the wall, T = pipe
diameter, and vy = distance from middle of the pipe. This law
of similitude is summarily adhered to by the introdﬁction of an
average tﬁrbuient friction coefficient H4, which is proportion-
al to the quantity TUp,y T.*** | |

du
ra—§.

T = const. Upygx
1. F. Treer**** recently attempted to fit Stanton's theorem
to the nmore up-to-date testjmaterial by having resort to addi-
tional empirical assumptions. ft is, howéver,vevident that the
equation is carried too far in forming the mean value andtis,
on the face of it, inappropriate forlinterpre%ing‘actual veloc-
ity distribution. Stanton's application may be adjudged as a

surmmary averaging examination of similitude; to conceive the

mechanism of turbulent flow attitude, the study of similitude

*J. V. Bouseinesq, lem. pres. par div..sav., Paris 33, 1877;
24, 1877.
**T. E. Stanton, Proc. Roy. Soc., Vol. 85, 1811, p. 366.

* Kk T . %
To be more exact py = const. & -2 r; since, however, - at
least, for large index figures - %g'is practically propartional

t0o Upex®, the above is likewise approximately correct.
****M. F. Treer, Phys. Zeitschr., 19392, Vol. 30, p. 542.
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(op)

must, to my way of thinking, be worded slightly different.
Sinmilitude of Cscillatory Motion .

Let us check the following as;umption with: the mean flow
to be a parallel flow in direction x; -the oscillatory flow to
consist in disturbanoesiof reTatively limited extent in direc-
tion y and - at 1eééf: w1th1n a certain tlme 1ﬁterval to be
carried along'by the main f]ow aop oxlmntelv as steady flow con-
figurations.' Our proovlen” snall be to Llnd upder wnat condl—
tions these flows can beCOJe gltllar among each other, so tnat
_the Tlow attitudes neighboring two OOlJtS, WﬂlCh conforn to
diffexr ent y values, vary only oy a mthlollcatlve factor of
the oscillatory Velocitﬁ and in the length' heasure of the field

of flow. In other words, we asswune similitude of the oscilla~

tory attitude, irrvespective of the location of the point in

whose vicinity the osoillation is examiﬁed

We so ol ace tne coordlnates th at thls pex tipenﬁ point fzlls
on axis y = O, and develops the nean veloqltydaooording to y:

U = U'QY;. + U?"vo -_ygi;j+ s

Then we write the stream fuiction adjacent to the point
) 2 yS 1 . __
Vix,y) = Ut Zorumg Lov o+ ¥ (x3), 0 (5)
, - -2 6 - 4
where V (x,y) becomes the stresm function of the oscillatory
motion.

How it is desired that only 1 andz A bve affected by the
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by Uty, UM, ete.; but that function f(&,n)

be unaffected when

x = 1¢
yo= 1nm (6)
Vo= Af (E,m)

The hydrodynamic equations for plane éteady flow may be

combined in the so—called vortex transfer equation

ol Ll _ aﬂLM-uAAxI/ (7)
Yy ©OX ox

where

B_if___if.
3x® - ay®

is the vortex intensity, and v the kinematic viscosity. Dis-
regarding the friction terms and limiting ourselves, in accord
with the éssumed definition of the field of oscillation in the
vicinity of axis y = 0. to the first digits in the terms in-
duced by the principal motion, we oblain

Introducing (6), we have "~

. A apAf A AT, B /af AAf Af A f\
X . = = I+ = L~ == S
Ulo 1M 3w St T 3t Jo A (an 3t 3 3n (9)

where symbol A now pertainS'td the variables ¢ and 7. This
equation is resolvable independently of A, 1 and Uly, U'y,

providihg
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&
1
(10)
A
FER
Uty
U" O
~ 12 .
= U qun (11)

of these relations, we now com-~

pute the shearing stress T:
| o TT Lot o £ Af af
T=—=Puvs=sp I =p 2= 1
: XAy ¥ 5E am (12)
or T
TEP1® Ul (13)

The conditions of similitude may - then be combined as follows:
a) The field of -oscillation retains a length indicative

of the length measure of the disturbances, defined by

: gy T 4U:
o E'U’Of;' dy
- U"O g:i*—.q
dy2

b) The shearing'fbicexis pioporfional to the density, to

the square of the characteristic length ! and to the square of
the velocity gradient %g. o
Having defined length 1 to only one factor, we write

2

(L

\dy/ <14)

T =01
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and S 1 =% 4 " (15)

where k 1s a nondimensional constant, dependent only upon the
nature of the fluctuating mechanism, and upon the solution of
the equation for f(&mn). It is the sole constant entering the

here develéped theory of turbulence.
- Prandtl's Theory of "Mixing Length®

Qur data may for the pﬁesent Serve as corrobofatidh‘of %ﬁe
suggestive equation put forth by Professor L. Prandtl* to demon-
strate the laws of turbulsnt flow. He’proceeded with the for-
mula for the shearing streés

T -0 TV
and evaluated u = 1 %g analogous of the equétions of the molec-
ular theory, by introd&cing the length 1 as the nixing length
or distance (analogous to the idea of the mean free path in the
kinetic theory). On the premiscs that a particle in the oscil-
latory motion travels the distance 1 perpendicular to the basic
flow without momentum interchange 0 1 %g becones, in fact, the
momentum which the particle transfers to the layer into which it
was displaced by the mixing wmotion. Préﬁiﬁl then agsumed the
fluctuating component v proportional to the mixing length 1
du ) . .
Iy of the velijlty gradient, so
that in agreement with (13), T = 0 17 (%%}.

Viewing the matter from the viewpoint of the oscillation

*Compare, for example, page 63 of "Proceedings of the Second In-
ternational Congress for Technische llechanik, 1937.°"

and to the absolute value
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theory, this assumption signifies that the correlation between
u and v is supposedly unaffected by the location. This hypoth-
esis 1s so obviously like our assumption of similarity, that-it
is not surprising to find the equation confirmed.

But now our sﬁudy of similitude reveals decidedly wmore, for
it yields an equation defining the ﬁixing distance which in
first approximation appears as ratio of the first two differen~

tial quotients of the basic velocity.
Flow between Parallel Walls

Consider the basic flow in direction x Dbetween two paral-

lel walls y = ¥ h (Fig., 1). With 7, as shearing stress at

A

the wall, it equals

0 % (15);,

at y distance away from the channel center, so that the veloc-

-

ity distribution becomes

y 2, Ut* )
Top = K P gz (17)
or
vU“ . — k ’V!rl;— 1
Ttr® J o I
P
One integration yields
- L. 3k ?;m J vy + const
gr - [Fo
. P

or (2 = a constant) o :45  o 7 :
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(18)

The constant a, is to be defined from the relation with

the conditions at the wall. For great Reynolds Numbers %g a8

sumes a high value near the wall and finally approaches the lim-

T
iting value —H = 1?, which, due to the smallness of U rTe-

ferred to i at a distance away from the wall, is very high.
As a Tesult the value y, at which %g becomes infinite, may

be allowed to coincide with y = h, so that

/To
v _ 1 o 1

¥ % h m- Sy

(19)

wherefrom integration yields the velocity distribution. The

maximum Upsx 18 reached at y = 0. Then

v
-U=J To 1 dy

o o 2kh T
n
Umax"‘Uz"%«/ %(10g<1“ /%\,'*/%7) (20)
U= Upax + —;9 [1og (- /—;+ J %] (20a)

o 5 . 1
This formula was compared with two measurements of Donch and
_T-

or

Nikuradse.* Both defined the values j§3 leaving k as sole
constant to be determined, which appears to have a value of

about k = 0.36. The resistance law yields, as shown later,

*¥. Donch, Forschungsarbeiten, No. 283, 1936.
J. Nikuradse, Forschungsarbeiten, No. 288, 1929.
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Figure 2 illustrates the coﬁ@ariéon, which is found to be
good. One more word about the behavior of mixing length 1.

The calculation yields

o Ut N/37"/’ 'V/SF' A
b=k g 2K n /-, E;)‘ o (21)

Near to the wall we may write .

so that e A e e .
camd S o e B ) g g T B
A U.h.ﬁ‘w}‘ AL s mogE T s (22)
The course of L = £ K*l is noted.ll Fi ré S It & +
h n / DA gu . 0oes no

correspond to DOnch andlmikuradse’s datd ‘(détted 1ine), which

they arrived at with formula -

dU
dy

Their chief oontentign"iéjthatgquanpity"HZ.ésﬁumes a constant
value in the channel ceiter, Whereas‘it?att;ins a maximum at
y, = % h  and drops to zero for; yi‘éﬂh; -agfording to our calcu-
lation. Cur comments are;'_ o '

In the first place,'l' is exceedlqgly dlfflcult to deter—
mine on account of the uﬁcertalnty of the d1;~erept1au10n of
the point-by-point reoorded velocity ourve tnen tney compute

the mixing length in tne c annel centcr by a Lodlfled formula,

the authenticity of Wnlch is not qulte beyond quesclon. It is
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agsumed forthwith that %g =0 for y =0, that is, the veloc-
ity is smoothed out at th; apex. Our formula shows a hump for
vy = 0, a sure sign that the degree of approximation in the cal-
culatioﬁ is insufficient at this point, but it is strange that
the unsmoothened velocify curve also shows a definite bend.

I believe the observation material was not extensive enough to

define the behavior of 1 in the channel center conclusively.
The Resistance Law

5y a uigh velocity gradient %g, as near to the wall, our
similitude consideration no longer holds true, because the omis-
sion of the viscosity appears to be no longer justified. It is
a question ofiwhether Q %g can be disregarded or not élong
side of the kinemafic'éhearing stress - P 4 v. It has been
proved experimentally that near to the wall something like a
"laminar 1&&82” exists and, in order to define the resistance
law, i.e., the Upyyx value corresponding to a certain value of
%Q, the connection from the velocity curve to the laminar layer
must be established. | |

Before discussing a more.exact theory of the oscillatory
field, we attempt two different applications which, however,
yield the same plausible results:

a) We assume the mixing 1engﬁh 1 to diminish below zero
to a value proportional to the thickness of the laminar layer.

This minimum is‘supposedly reached at the boundary of the lami-~
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nar layer wnhere the laminar layer is then atﬁached.
To carry this idea t“roufh we Tesox t to G. J ?af’or’s con-

ception, who arrlved at the conclu81on tbat the vortex lelSlon

!

(i.e., the mixing length l) of the. turbulence at the Wall can

only bve. affeoted by the saearlng SUress To,h and that 1t mast

be,propo:;;opalﬁtp‘the”?algeJ-TQer. Trltlpg l = a _;Euu for

/:Q a /7% o
L eeiE s e ee Po e P
this limiting value, we obtain for thé relevant quantity of -

a v ;% and U® = - Chax ™ U(y),lwhat is for the ve1001ty

diffe Tence between channel center and laninar layer boundary

y:

L O

% 1og TT:+'ébnst.rz*p; oo (23)
Then we estlmate tae dlf*a eﬁce in veloolty U betwéen

B SN .
both bpun@axles of the l&ﬁlﬁar 1ayer 1 e., between tne wall

and the fre bouﬂdury. Since the 1ckness on one 81de is

»1,&QQ;W8,Cﬁn put T4 = u Eg~ on the Ouher We oo tamn

Ue® =z /0 “and the difference between the wall and the chamnel

p b4
center becodes ~¢ v U Solucien oo
r . 1 :
. e ee 1 To by ”2333 ui‘
f%ugmax S,U‘ + U = 7 N log —F AJ ’ (24)

The .constentyg .k and A- are;independent of dimens ?OQS and ;QY"
nolds Hunber. _ e .

“b) . sThe.result is identical -when we assuue the “turbulent |
comeﬂént“x?P'r‘&fgg' tQ.bgfpyopoxﬁional;th;9 P (dﬂ\

A dy/
stead ofthe whole shearing stress. Taen .l may quietly dimin-
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ish to zero and the velocity distribution near to the wall be-

cones

oo AU - P R dU\ ,
" = v / - (25)

This is the same equation used by‘mr. Wada* in formulating
the resistance law, tut which, o%ing'to havibg’been published |
in an inconspicuous place, Eas not received sufficient attentlon.
Unfortunately, Mr. Wada held the equaulon valld for. the whole
channel which made his formulas a 11t+1e too oomplloated alm
Enough the result in uh¢s'parwgraph are really contalnsd in
his report in an implied form;

To derive the resistance 1&w, I slightly deviate from the

conventional parameters and introduce the factors

Y..- h
Ry = &% -
/ T
v o= =2 (26)
w/ 0 E@ax?
2

In place of the mean veloclity the maximum velocity appears

as reference quan+1ty, so that (24) yields

Jﬁvw. log (Ry ~/ ¥) + A - % log 2

(27)
or

vf"”

= log (Rmv’v} o | (28)

 We-derived the relation between Uﬁax and V for plane flow.
*Journal of Jopanese Soc. raval Arch. 41, 1927, p. 103.
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But it can also be proved applicable to circular pipes, where
even constant k retains the ssme value and where constant OC
alone is different. 1In our derivation we used the mixing dis-
tance k X wall distance and estimated the thickness of the
laninar layer. But it may be assumed that this is valid for a
circular pipe also, for the further course of the mixing dis-
tance comes in evidence only in the € constant.
« 1 A
Figure 4 shows some observations of 7w end logio Ry VA
Upax T . - .
(R = —2% _, r = pipe diameter).* It will be noted that there
is a linear relation between both quantities, extending from
Rm = 300C to R‘fﬂ = 1,600,300- GOilStant
k= 0.38
(29)
C =1.83
the first being perhaps universal, the second applying particu-

1ar1§ to circular pipes.
The So—called Power Laws

It is known that the resistance law within large ranges
of Reynolds Numbers can be adequately expressed by the interpo-

lation formula

_ const.
W—-'*%‘ﬁ , (30)

Upon this premise it can be proved by a line of reasoning
advanced by Dr. Prandtl that the velocity distribution (figured

as beginning at the wall) is given by formula

*The data on very large Reynolds lfumbers were supplied by ir.
Wikuradse, who placed his, as yet unpublished material, at my
disposal.
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, - _@mA o
/10 ¢ BT
U = const. /_;9- H&z> (31)

The validity of this bower formula ceases in the immediate neigh-
borhood of the wall (effect of laminar layer), but extends in
‘éurprising mahner to the other side nearly to the charnnel cen-

ter. The exponent n drops as the Reynolds Number increases

(within about % to §l§ in the range examined thus far).

This puzzle is simple tO‘exﬁlain} Slightly transformed, our
derived formulas express the

iu". 1 _a+1 log (R,/

/4* (38)

Velocity distribution: = at + D! log (

o .
So when we make n = = m g, equations (30) and (31) can be
written as :
Resistance law: = 7%g.=lcons£~‘(ﬂwfvﬁn‘
. -l
Velocity distribution: = const. (- P ) (33)
- - ) To N

The decrease in expénent: n with the Reynolds Number becomes
readlly apparenﬁ from the followmng

Gomparlng flow attltudes in the same channel which corre-
spond to an 1dentlca1 value of To,' and permitting the viscos-

1ty to vary, for 1nstance, b to decrease gradually, the veloec-
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ity distribution is obviously the éamébﬁéito %he point where

the influence;of the viscosity Lecomes. Aotlceable. ~There a kind
of laminar-layer is.set up, although the.point continues to
shift along-the velocity disiribution.curve as. the viscosity de-
creases, iie., as the: Reynolds Fumber rises. -The. conjointed
distribution curve:

y*‘f (Un&x“ﬁ)}

which is, aside from the channel center,fexponentialq(Fig.;S),

. . ] 1
is to be approximatéd to .y = U by a serles of power curves
Wnacn toucn the axis y = 0, 1ndu01n the contact point to grad«

ually shlft toward the flgnt' acooralngly 1/n 1ﬁoreases and

,'A'

n decreases. ’ ;" 8 . .
K ‘ a

AT T R O u g). 11 n € 8 8 ) [y

It has heen repeatedly emphasized that the ratioc between !

the thickness of ‘the Taminax- 1ayer anﬂ the mean Drotuberapce

of the roughpess predominates the ph@nomena on rough walls. I

2tions are large referred 0. the

laminar layer unlckness. In ﬁ&ls cage 1t nay be assumed tnat
the minirwa velue of the mixing. lengtq i1 is rot oondltloned by
the thickness, but by the size.of .the roughness. elements. Thus
if € -ig.Fhe mean roughness projection (the chazaoterlstlc
length measure of the r@ughness), the ainimum value of 1 may be
made proportional te ¢, which dLscloses as relatlon between

velocity in channel center Upyx and the shearing force at the ‘
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wall T4
/T -
Upax = % A E? log % + const.) (34)

or for the resistance coefficient

;

T = log ? + const.

In other words, the flow resistance follows the "square”
law, and the resistance coefficient is dependent on the rela-
tive roughness according to (35). This equation admits of a
check when comparing experiments in grooves, where the distance
of the walls (8h) wvaries, but where the nature of the walls

(quantity €) is to remain constant. This, however, is to be
treated in a future report.
Translation by J. Vanier,

National Advisory Committee
for Aeronautics.
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